$\beta \beta$ Decay and Algebraic Models

J. Engel

May 24, 2012

Point of This Talk

Using Fermion algebras to test many body approximations in calculation of double-beta-decay matrix elements

Algebras and Methods

- Multi-level SO(5) for testing truncations of shell-model spaces
- SO(8) for testing mean-field based methods: HFB, QRPA, large-amplitude approximations

Neutrinoless Double-Beta Decay

Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta decay forbidden)...

Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta decay forbidden)...

Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta decay forbidden)...

and neutrinos are Majorana...
can observe two neutrons turning into protons, emitting two electrons and nothing else.

Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta decay forbidden)...

and neutrinos are Majorana...
can observe two neutrons turning into protons, emitting two electrons and nothing else.

Different from already observed 2v process.

Usefulness of Neutrinoless Double-Beta Decay
If it's observed, neutrinos are Majorana particles
and

Usefulness of Neutrinoless Double-Beta Decay

If it's observed, neutrinos are Majorana particles
and

Light-v-exchange amplitude proportional to "effective mass"

$$
m_{e e} \equiv \sum_{i} m_{i} U_{e i}^{2}
$$

If lightest neutrino is light:

- $m_{e e} \approx \sqrt{\Delta m_{\mathrm{sol}}^{2}} \sin ^{2} \theta_{\mathrm{sol}} \quad$ (normal)
- $\mathrm{m}_{\mathrm{ee}} \approx \sqrt{\Delta \mathrm{m}_{\mathrm{atm}}^{2}} \cos 2 \theta_{\mathrm{sol}} \quad$ (inverted)

Usefulness of Neutrinoless Double-Beta Decay

Minimum Neutrino Mass (meV)

If it's observed, neutrinos are Majorana particles
and

Light-v-exchange amplitude proportional to "effective mass"

$$
\mathrm{m}_{e e} \equiv \sum_{i} \mathrm{~m}_{\mathrm{i}} \mathrm{u}_{e i}^{2}
$$

If lightest neutrino is light:

- $\mathrm{m}_{\mathrm{ee}} \approx \sqrt{\Delta \mathrm{m}_{\mathrm{sol}}^{2}} \sin ^{2} \theta_{\mathrm{sol}} \quad$ (normal)
- $\mathrm{m}_{e e} \approx \sqrt{\Delta \mathrm{~m}_{\mathrm{atm}}^{2}} \cos 2 \theta_{\mathrm{sol}} \quad$ (inverted)

But rate is also proportional to nuclear matrix element...

Usefulness of Neutrinoless Double-Beta Decay

Minimum Neutrino Mass (meV)

If it's observed, neutrinos are Majorana particles
and

Light-v-exchange amplitude proportional to "effective mass"

$$
m_{e e} \equiv \sum_{i} m_{i} u_{e i}^{2}
$$

If lightest neutrino is light:

- $\mathrm{m}_{e e} \approx \sqrt{\Delta \mathrm{~m}_{\mathrm{sol}}^{2}} \sin ^{2} \theta_{\text {sol }} \quad$ (normal)
- $\mathrm{m}_{\mathrm{ee}} \approx \sqrt{\Delta \mathrm{m}_{\mathrm{atm}}^{2}} \cos 2 \theta_{\mathrm{sol}} \quad$ (inverted)

But rate is also proportional to nuclear matrix element...

Usefulness of Neutrinoless Double-Beta Decay

If it's observed, neutrinos are Majorana particles
and

Light-v-exchange amplitude proportional to "effective mass"

$$
\mathfrak{m}_{e e} \equiv \sum_{i} \mathfrak{m}_{i} \mathrm{u}_{e i}^{2}
$$

If lightest neutrino is light:

- $\mathrm{m}_{\mathrm{ee}} \approx \sqrt{\Delta \mathrm{m}_{\mathrm{sol}}^{2}} \sin ^{2} \theta_{\mathrm{sol}} \quad$ (normal)
- $\mathrm{m}_{e e} \approx \sqrt{\Delta \mathrm{~m}_{\mathrm{atm}}^{2}} \cos 2 \theta_{\mathrm{sol}} \quad$ (inverted)

But rate is also proportional to nuclear matrix element...

Nuclear Matrix Element

$$
M_{0 v}=M_{0 v}^{G T}-\frac{g_{V}^{2}}{g_{A}^{2}} M_{0 v}^{\mathrm{F}}+\ldots
$$

Nuclear Matrix Element

$$
M_{o v}=M_{o v}^{G T}-\frac{g_{V}^{2}}{g_{A}^{2}} M_{0 v}^{F}+\ldots
$$

with

$$
\begin{gathered}
M_{0 v}^{G T}=\langle f| \sum_{a, b} H\left(r_{a b}\right) \vec{\sigma}_{a} \cdot \vec{\sigma}_{b} \tau_{a}^{+} \tau_{b}^{+}|i\rangle+\ldots \\
M_{0 v}^{F}=\langle f| \sum_{a, b} H\left(r_{a b}\right) \tau_{a}^{+} \tau_{b}^{+}|i\rangle+\ldots \\
H(r) \approx \frac{R}{r}
\end{gathered}
$$

Nuclear Matrix Element

$$
M_{0 v}=M_{o v}^{G T}-\frac{g_{V}^{2}}{g_{A}^{2}} M_{0 v}^{F}+\ldots
$$

with

$$
\begin{aligned}
& M_{o v}^{\mathrm{GT}}=\langle\mathrm{f}| \sum_{\mathrm{a}, \mathrm{~b}} \mathrm{H}\left(\mathrm{r}_{\mathrm{ab}}\right) \vec{\sigma}_{\mathrm{a}} \cdot \vec{\sigma}_{\mathrm{b}} \tau_{\mathrm{a}}^{+} \tau_{\mathrm{b}}^{+}|i\rangle+\ldots \\
& M_{\mathrm{ov}}^{\mathrm{F}}=\langle\mathrm{f}| \sum_{\mathrm{a}, \mathrm{~b}} \mathrm{H}\left(\mathrm{r}_{\mathrm{ab}}\right) \tau_{\mathrm{a}}^{+} \tau_{\mathrm{b}}^{+}|i\rangle+\ldots
\end{aligned}
$$

$$
\mathrm{H}(\mathrm{r}) \approx \frac{\mathrm{R}}{\mathrm{r}}
$$

Operators for $2 v$ decay (in closure approx.) are similar but don't contain $\mathrm{H}(\mathrm{r})$.

"Exact" Shell-Model Calculations

Partition of Full Hilbert Space

$P=$ valence space (dimension d)
$Q=$ the rest

$$
\hat{P}=\sum_{i=1}^{d}|i\rangle\langle i| \quad \hat{Q}=\sum_{i=d+1}^{\infty} \mid
$$

Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing d most important eigenvalues.

"Exact" Shell-Model Calculations

Partition of Full Hilbert Space

$P=$ valence space (dimension d)
$Q=$ the rest

$$
\hat{P}=\sum_{i=1}^{\mathrm{d}}|i\rangle\langle i| \quad \hat{Q}=\sum_{i=d+1}^{\infty}
$$

Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing d most important eigenvalues.

"Exact" Shell-Model Calculations

Partition of Full Hilbert Space

$P=$ valence space (dimension d)
$Q=$ the rest

$$
\hat{P}=\sum_{i=1}^{\mathrm{d}}|i\rangle\langle i| \quad \hat{Q}=\sum_{i=d+1}^{\infty}
$$

Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing d most important eigenvalues.
For transition operator \mathcal{M}, must apply same transformation to get $\mathcal{M}_{\text {eff }}$.

Shell model done here

"Exact" Shell-Model Calculations

Partition of Full Hilbert Space

$P=$ valence space (dimension d)
$Q=$ the rest

$$
\hat{P}=\sum_{i=1}^{\mathrm{d}}|i\rangle\langle i| \quad \hat{Q}=\sum_{i=d+1}^{\infty}
$$

Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing d most important eigenvalues.
For transition operator \mathcal{M}, must apply same transformation to get $\mathcal{M}_{\text {eff }}$.

As difficult as solving full problem. But the idea is that A-body effective operators may not be important for $A>2$ or 3 .

"Exact" Shell-Model Calculations

Partition of Full Hilbert Space

$P=$ valence space (dimension d)
$Q=$ the rest

$$
\hat{P}=\sum_{i=1}^{\mathrm{d}}|i\rangle\langle i| \quad \hat{Q}=\sum_{i-r+1}^{\infty}|i\rangle\langle i|
$$

A version of this (plus phenomenology) used to get shellmodel interactions, but not decay operators. Bare operators generally used.
Q Heff-Q
d most important eigenvalues. For transition operator \mathcal{M}, must apply same transformation to get $\mathcal{M}_{\text {eff }}$.

As difficult as solving full problem. But the idea is that A-body effective operators may not be important for $A>2$ or 3 .

Formulation

Q: Take d full eigenstates $|k\rangle$ of your choice. How do you map these onto normalized P -space states $|\widetilde{k}\rangle$ in a way that maximizes $\sum_{k=1}^{\mathrm{d}}\langle\mathrm{k} \mid \widetilde{\mathrm{k}}\rangle$?

Formulation

Q: Take d full eigenstates $|k\rangle$ of your choice. How do you map these onto normalized P -space states $|\widetilde{k}\rangle$ in a way that maximizes $\sum_{k=1}^{\mathrm{d}}\langle k \mid \widetilde{k}\rangle$?

A: Lee-Suzuki mapping: Entirely in P space

$$
|\widetilde{k}\rangle \equiv \frac{1}{\sqrt{1+\omega^{\dagger} \omega}}\left(P+\omega^{\dagger}\right)|k\rangle
$$

ω^{\dagger} takes Q to P with

$$
\omega_{\mathfrak{p}, \mathrm{q}}^{\dagger}=\sum_{\mathrm{k}=1, \mathrm{~d}}\langle\mathfrak{p} \mid \underline{\mathrm{k}}\rangle\langle\mathrm{k} \mid \mathrm{q}\rangle, \quad\{\langle\mathrm{p} \mid \underline{\mathrm{k}}\rangle\}=\text { inverse }\{\langle\mathrm{k} \mid \mathrm{p}\rangle\}
$$

Formulation

Q: Take d full eigenstates $|k\rangle$ of your choice. How do you map these onto normalized P -space states $|\widetilde{k}\rangle$ in a way that maximizes $\sum_{k=1}^{\mathrm{d}}\langle\mathrm{k} \mid \widetilde{\mathrm{k}}\rangle$?

A: Lee-Suzuki mapping: Entirely in P space

$$
|\widetilde{k}\rangle \equiv \frac{1}{\sqrt{1+\omega^{\dagger} \omega}}\left(\mathrm{P}+\omega^{\dagger}\right)|\mathrm{k}\rangle
$$

ω^{\dagger} takes Q to P with

$$
\omega_{\mathfrak{p}, \mathrm{q}}^{\dagger}=\sum_{\mathrm{k}=1, \mathrm{~d}}\langle\mathrm{p} \mid \underline{\mathrm{k}}\rangle\langle\mathrm{k} \mid \mathrm{q}\rangle, \quad\{\langle\mathrm{p} \mid \underline{\mathrm{k}}\rangle\}=\text { inverse }\{\langle\mathrm{k} \mid \mathrm{p}\rangle\}
$$

Mapping of operators follows:

$$
\langle\widetilde{k}| O_{e f f}\left|\widetilde{k^{\prime}}\right\rangle=\langle k| O\left|k^{\prime}\right\rangle
$$

whether O is an interaction H or decay operator \mathcal{M}.

Application to Two-Shell SO(5)

Generators

Pair creation operators for each shell:

$$
S_{\mathrm{Pp}}^{\dagger i}=\sum_{\alpha \in i} \mathrm{p}_{\alpha}^{\dagger} \mathrm{P}_{\bar{\alpha}}^{\dagger} \quad \mathrm{S}_{n \mathrm{n}}^{\dagger i}=\sum_{\alpha \in i} n_{\alpha}^{\dagger} n_{\bar{\alpha}}^{\dagger} \quad S_{\mathrm{pn}}^{\dagger i}=\sum_{\alpha \in \mathfrak{i}} n_{\alpha}^{\dagger} \mathrm{p}_{\bar{\alpha}}^{\dagger}
$$

where α runs over all levels in shell i.
Other generators:

$$
\begin{array}{llll}
S_{p p}^{i} & S_{n n}^{i} & S_{p n}^{i} & \overrightarrow{\mathcal{T}}_{\mathfrak{i}}
\end{array}
$$

Application to Two-Shell SO(5)

Generators

Pair creation operators for each shell:

$$
S_{\mathrm{Pp}}^{\dagger i}=\sum_{\alpha \in \mathrm{i}} \mathrm{p}_{\alpha}^{\dagger} \mathrm{p}_{\bar{\alpha}}^{\dagger} \quad \mathrm{S}_{\mathrm{nn}}^{\dagger i}=\sum_{\alpha \in \mathfrak{i}} n_{\alpha}^{\dagger} n_{\bar{\alpha}}^{\dagger} \quad \mathrm{S}_{\mathrm{pn}}^{\dagger \mathrm{i}}=\sum_{\alpha \in \mathrm{i}} n_{\alpha}^{\dagger} \mathrm{p}_{\bar{\alpha}}^{\dagger}
$$

where α runs over all levels in shell i.
Other generators:

$$
\begin{array}{llll}
S_{\mathfrak{p} p}^{i} & S_{\mathfrak{n} \mathfrak{n}}^{i} & S_{\mathfrak{p} \mathfrak{n}}^{i} & \overrightarrow{\mathcal{T}}_{i}
\end{array}
$$

Hamiltonian

$H=\epsilon \hat{N}_{2}-G \sum_{i, j=1}^{2}\left(S_{\mathfrak{p p}}^{\dagger i} S_{\mathfrak{p p}}^{j}+S_{n \mathfrak{n}}^{\dagger i} S_{n \mathfrak{n}}^{j}+g_{\mathfrak{p p}} S_{\mathfrak{p n}}^{\dagger i} S_{\mathfrak{p n}}^{j}+g_{p h} \overrightarrow{\mathcal{T}}_{i} \cdot \overrightarrow{\mathcal{T}}_{\mathfrak{j}}\right)$
$g_{p p}$ controls strength of $n p$ pairing, which is isovector here but plays same role here as isoscalar pairing in real life.

$\beta \beta$ (Closure) Matrix Element in SO(5)

Simplified Fermi transition operators

$$
\mathcal{M}_{2 v}^{\mathrm{F}}(\mathrm{cl} .)=\sum_{i, j} \tau_{i}^{+} \tau_{j}^{+} \propto \mathcal{T}_{+} \mathcal{T}_{+} \quad \mathcal{M}_{0 v}^{\mathrm{F}}=\sum_{i, j} \frac{\tau_{i}^{+} \tau_{j}^{+}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|},
$$

$M_{2 v}^{\mathrm{F}}(\mathrm{cl}$.$) is product of generators, but M_{0 v}^{\mathrm{F}}$ contains radial dependence that has nothing to do with SO(5).

$\beta \beta$ (Closure) Matrix Element in SO(5)

Simplified Fermi transition operators

$$
\mathcal{M}_{2 v}^{\mathrm{F}}(\mathrm{cl} .)=\sum_{i, j} \tau_{i}^{+} \tau_{j}^{+} \propto \mathcal{T}_{+} \mathcal{T}_{+} \quad \mathcal{M}_{0 v}^{\mathrm{F}}=\sum_{i, j} \frac{\tau_{i}^{+} \tau_{j}^{+}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|},
$$

$M_{2 v}^{\mathrm{F}}\left(\mathrm{cl}\right.$.) is product of generators, but $M_{0 v}^{\mathrm{F}}$ contains radial dependence that has nothing to do with $\mathrm{SO}(5)$.

But it can be decomposed into SO(5) tensors and evaluated with help of generalized Wigner-Eckardt Theorem:

$$
\begin{aligned}
& \left\langle\Omega_{i}, \mathcal{N}_{i}, T_{i}, M_{i}\right| \mathcal{M}_{\mathcal{N}_{0}, T_{0}, M_{0}}^{\left(\omega_{1}, \omega_{2}\right)}\left|\Omega_{i}, \mathcal{N}_{i}^{\prime}, T_{i}^{\prime}, M_{i}^{\prime}\right\rangle= \\
& \quad\left\langle\left(\Omega_{i}, 0\right)\left\|\mathcal{M}^{\left(\omega_{1}, \omega_{2}\right)}\right\|\left(\Omega_{i}, 0\right)\right\rangle \\
& \times\left\langle T_{i}^{\prime} M_{i}^{\prime} ; T_{0} M_{0} \mid T_{i} M_{i}\right\rangle\left\langle\left(\Omega_{i}, 0\right) \mathcal{N}_{i}^{\prime} T_{i}^{\prime} ;\left(\omega_{1}, \omega_{2}\right) \mathcal{N}_{0} T_{0} \|\left(\Omega_{i}, 0\right) \mathcal{N}_{i} T_{i}\right\rangle
\end{aligned}
$$

How Well Does Mapping Work at 2-Body Level?

Answer: Leaves room for imporovement

Phenomenological QRPA

Start with Wood-Saxon potential, G-matrix interaction, usual BCS procedure.

Ansatz for intermediate states:

$$
|v\rangle=\mathrm{Q}_{v}^{\dagger}|0\rangle \text { where } \mathrm{Q}_{v}^{\dagger}=\sum_{p n} X_{p n}^{v} \alpha_{p}^{\dagger} \alpha_{n}^{\dagger}-Y_{p n} \alpha_{p} \alpha_{n}
$$

yields matrix equations:

$$
\left(\begin{array}{cc}
A & B \\
-B^{*} & -A^{*}
\end{array}\right)\binom{X^{v}}{\gamma^{v}}=\Omega^{v}\binom{X^{v}}{\gamma^{v}}
$$

with

$$
\begin{aligned}
A_{p n, p^{\prime} n^{\prime}}=E_{\text {single quasipart. }} & +V_{p n, p^{\prime} n^{\prime}}^{p h}\left(u_{p} v_{n} u_{p^{\prime}} v_{n^{\prime}}+v_{p} u_{n} v_{p^{\prime}} u_{n^{\prime}}\right) \\
& +V_{p n, p^{\prime} n^{\prime}}^{p p}\left(u_{p} u_{n} u_{p^{\prime}} u_{n^{\prime}}+v_{p} v_{n} v_{p^{\prime}} v_{n^{\prime}}\right)
\end{aligned}
$$

$B_{p n, p^{\prime} n^{\prime}}=($ similar expression $)$
$V_{p n, p^{\prime}, n^{\prime}}^{p p}$ usually contains the adjustable multiplier $g_{p p}$.

Fiddling with the QRPA

Generalized HFB

Generalized BCS mixes proton and neutron quasiparticles:

$$
\begin{aligned}
\alpha_{1}^{\dagger} & =u_{i, p}^{(1)} p_{i}^{\dagger}+v_{i, p}^{(1)} p_{\bar{i}}+u_{i, n}^{(1)} n_{i}^{\dagger}+v_{i, n}^{(1)} n_{\bar{i}} \\
\alpha_{2}^{\dagger} & =u_{i, p}^{(2)} p_{i}^{\dagger}+v_{i, p}^{(2)} p_{\bar{i}}+u_{i, n}^{(2)} n_{i}^{\dagger}+v_{i, n}^{(2)} n_{\bar{i}} \\
\alpha_{1} & =\ldots \\
\alpha_{2} & =\ldots
\end{aligned}
$$

Generalized HFB combines this with (generalized) Hartree Fock in usual way.

Not much point in generalized QRPA (will see why shortly).

Application to SO(8)

Generators

Pairing operators:

SO(5) pairing operators
isoscalar pairing operators

$$
S_{v}^{\dagger}=\left[a^{\dagger} \tilde{\mathbf{a}}\right]_{M_{T}=v}^{S=0, T=1} \begin{aligned}
& P_{\mu}^{\dagger}=\left[a^{\dagger} \tilde{\mathbf{a}}\right]_{M_{S}=\mu}^{S=1, T=1}
\end{aligned}
$$

$$
S_{v}
$$

Particle-hole operators:
P_{μ}
Gamow-Teller operators

$$
\overrightarrow{\mathcal{S}} \quad \overrightarrow{\mathcal{T}} \quad \mathcal{F}_{v}^{\mu} \equiv \sum_{i} \sigma(\mathfrak{i})_{\mu} \tau(i)_{v}
$$

Hamiltonian

$$
H=-\frac{g(1+x)}{2} \sum_{v} S_{v}^{\dagger} S_{v}-\frac{g(1-x)}{2} \sum_{\mu} P_{\mu}^{\dagger} P_{\mu}+g_{p h} \mathcal{F}_{v}^{\mu \dagger} \mathcal{F}_{v}^{\mu}
$$

$(1-x) /(1+x)$ (ratio of ioscalar/isovector pairing) is $g_{p p}$

$2 v \beta \beta$ (Closure) Matrix Element in SO(8)

Ordinary BCS + QRPA or RQRPA
(with ph interaction)

Generalized BCS
(no ph interaction)

$2 v \beta \beta$ (Closure) Matrix Element in SO(8)

Ordinary BCS + QRPA or RQRPA (with ph interaction)

Generalized BCS
(no ph interaction)

- RQRPA doesn't work in "isoscalar-pairing" phase (right of each fig.)
- Generalized QRPA pointless in "isovector-pairing" phase (left of each fig.)

Beyond QRPA: GCM and Large-Amplitude Motion

For $0 v$ decay, only need initial and final ground states. Rodgriguez and Martinez-Pinedo have done sophisticated Gogny generator-coordinate calculaton; mix mean fields with different shapes, pairing fields:

Beyond QRPA: GCM and Large-Amplitude Motion

For $0 v$ decay, only need initial and final ground states. Rodgriguez and Martinez-Pinedo have done sophisticated Gogny generator-coordinate calculaton; mix mean fields with different shapes, pairing fields:

But no explicit np pairing/spin-isospin correlations here. SO(8) says they should be important.

Matrix elements in different schemes

GCM numbers tend to be on the high side.

Curent Work: Alternative Large-Amplitude Approx.

 Until Now: Induce deformation with constraint operatator Q. Calculate deformed kinetic, potential energies, inertial parameters. Determine most collective Q. Determine equivalent Bohr Hamiltonian.

Procedure maps maps adiabatic TDHFB dynamics in collective subspace to 5-d Bohr Hamiltonian.

Now: Inclusion of Collective np Pairing

- Start with generalized moving HFB that includes $n p$ mixing.
- Add collective np pair-creation operator to set of constrained operators.
- Map to generalized 6-d Bohr Model (usual 5 plus new collective mode)
- In SO(8) 6-d reduces to 1-d.

Results So Far

$$
M_{\mathrm{GT}}^{2 v}(\mathrm{cl} .)
$$

Wave functions (not yet calculated) will sample this entire space for all $g_{p p}$.

Final Question:

IBM also being used to calculate double beta decay. Can we use a fermion algebra to test it?

Final Question:

IBM also being used to calculate double beta decay. Can we use a fermion algebra to test it?

Many thanks to Franco for starting me off in this beautiful field.

