

Single-neutron excitations near 132Sn Jolie A. Cizewski Rutgers University

Beauty in Physics Celebrating Franco lachello

O(6) dynamical symmetry of IBA and ¹⁹⁶Pt

Level scheme of ¹⁹⁶Pt

A. Arima and F. Iachello, PRL **40**, 385 (1978) J.A.C., R.F. Casten et al. PRL **40**, 167 (1978)

Boson-fermion dynamical symmetry and supersymmetry in Os-Ir-Pt-Au-Hg Nuclei: Tests with transfer reactions

FIG. 9. Schematic diagram of the n = N + M = 8 supermultiplet of the U(6/4) supersymmetry and the adjacent n = 7 and 6 supermultiplets.

O(6) + j=3/2 proton

 ¹⁹⁴Pt(t,α) reaction populates 3/2⁺ states in ¹⁹³Ir with Spin(6) symmetry ratios. Theory: F. lachello, PRL 44, 772 (1981)
Experiment: J.A.C. et al., PRL 46, 1264 (1981)

¹⁹⁶Pt region: Protons 50<Z<82; Neutrons 82<N<126

"Flat" harmonic oscillator potential with positive spin-orbit interaction

What happens to shell structure away from stability?

Evolution of nuclear shell structure

Beauty May 2012

RUTGERS

Spectroscopy of Neutron-rich Nuclei at HRIBF

Beauty May 2012

RUTGERS

Spectroscopy of neutron-rich nuclei at HRIBF

Neutron transfer reactions with neutron-rich nuclei

A≈130 (d,p) and (⁹Be,⁸Beγ) Collaboration

Rutgers University: J.A.C., <u>Brett Manning</u>, R. Hatarik, M.E. Howard, P.D. O'Malley, A. Ratkiewicz

ORNL: J.M. Allmond, D.W. Bardayan, J.R. Beene, A. Galindo-Uribarri, J.F. Liang, C.D. Nesaraja, <u>Steve D. Pain</u>, D.C. Radford, D. Shapira, M.S. Smith

Univ. Tennessee: S. Ahn, K.Y. Chae, R. Kapler, <u>Kate L. Jones,</u> B.H. Moazen, S.T. Pittman, K.T. Schmitt

Tennessee Tech: Ray L. Kozub

Michigan State Univ: Filomena Nunes ORAU: W. A. Peters

Louisiana State University: J.C. Blackmon, M. Matos

University of Surrey: S. Hardy, T.P. Swan, J.S. Thomas, G.L. Wilson

Colorado School of Mines: K.A. Chipps, L. Erikson, R. Livesay

Ohio University: A.S. Adekola UNAM: E. Padilla-Rodal

Funded in part by the

E U.S. DOE Office of Science & NNSA/SSAA & National Science Foundation

¹³²Sn Z=50, N=82

Nuclear reaction & structure studies

Beams of neutron-rich ¹³²Sn t_{1/2}=40s

RUTGERS Sn (d,p): what should expect to see?

K.L. Jones et al.

¹³²Sn(d,p) Q-value

K.L. Jones et al. Nature, **465**,454 (2010)

(d,p) exp cross sections & spectroscopic factors

- Input for theoretical cross sections DWBA
 - Potentials (optical model)
 - Incoming deuteron, outgoing proton, neutron bound state
 - Wave function of the deuteron
 - Wave function of transferred particle, e.g., 2f_{7/2} neutron
- Output from theoretical cross sections compared to exp
- (relative) $S \approx 1 \Rightarrow$ full spectroscopic strength

$$S = \left(\frac{d\sigma}{d\Omega}\right)_{\rm exp} / \left(\frac{d\sigma}{d\Omega}\right)_{DWBA}$$

Identified $2f_{7/2}$, $3p_{3/2}$, $(3p_{1/2})$, $2f_{5/2}$ neutron strength in ¹³³Sn

K.L. Jones et al. Nature, **465**,454 (2010) Phys. Rev. C **84**, 034601 (2011)

E _x (keV)	Jπ	Config	SF	SF	C ²
			(DWBA)	(FR-ADWA)	(fm⁻¹)
0	7/2-	2f _{7/2}	0.86(14)	1.00(8)	0.64(10)
854	3/2-	3p _{3/2}	0.92(14)	0.92(7)	5.6(9)
1363(31)	(1/2-)	3p _{1/2}	1.1(3)	1.2(2)	2.6(4)
2005	(5/2-)	2f _{5/2}	1.1(2)	1.2(3)	9(2)x10 ⁻⁴
Beauty May 2012					

¹³²Sn one of best examples of double-magic nucleus

Modern analysis of SF from ¹³²Sn and ²⁰⁸Pb(d,p)

r-process (n,γ) sensitivity studies

Simulations of the r-process probe **global** sensitivity to 132 Sn(n, γ) rate.

J. Beun, et al. J. Phys. G 36, 025201 (2009)

r-process sensitivity studies

Simulations of the r-process show huge, **global** sensitivity to the 130 Sn(n, γ) rate, in contrast to the 132 Sn(n, γ) rate.

 $t_{1/2}(^{130}Sn) = 162s$

J. Beun, et al. J. Phys. G 36, 025201 (2009)

r-process sensitivity studies

Simulations of the r-process show huge, **global** sensitivity to the 130 Sn(n, γ) rate, in contrast to the 132 Sn(n, γ) rate.

 $t_{1/2}(^{130}Sn) = 162s$

J. Beun, et al. J. Phys. G 36, 025201 (2009)

A≈130 Sn σ (n,γ) and sensitivities

RUTGERS N<82 (d,p) what should expect to see?

Beauty Iviay 2012

Near ¹³²Sn Z=50, N=82

Nuclear reaction & structure studies

Beauty May 2012

R.L. Kozub, et al.

¹³⁰Sn(d,p) & ¹³²Sn(d,p)

Beauty May 2012

R.L. Kozub, et al.

¹³⁰Sn(d,p) & ¹³²Sn(d,p)

R.L. Kozub, et al.

Many more nuclei can be studied in next few years

Long term prospects for probing neutronrich nuclei near N=82 are bright

Facility for Rare Isotope Beams (FRIB) under construction at MSU

Summary of A≈132 (d,p)

- Measured single-neutron excitations in ¹³³Sn
 - Expected 2f_{7/2}, 3p_{3/2}, 3p_{1/2}, 2f_{5/2} states identified with S≈1
 - ¹³²Sn is one of best examples of doubly magic nucleus
- Preliminary analysis of ¹³⁰Sn(d,p)
 - Sizeable, concentrated ℓ =1 strength at high excitation energies
 - Impact: direct neutron capture strength
- Recent measurements of ^{124,126,128,130,132}Sn (d,p) and (⁹Be,⁸Beγ)
 - Gamma-rays to reduce uncertainties in E_{x} , populate other states, support J^{π} values
 - Similar concentration of (tentative) ℓ =1 strength at high excitation energies
- Near term: studies with n-rich beams and particle-gamma coincidences

Future prospects are bright:

New opportunities for neutron-rich studies in US and abroad

THANK YOU

Single-neutron excitations near ¹³²Sn

Supported by U.S. Department of Energy NNSA and Office of Nuclear Physics and National Science Foundation

Happy Birthday Franco!