

Four strange guys

First Irregularly Scheduled Non-meeting of the IBA Circus, July, 1983, Brookhaven National Laboratory

A mini-Wigner effect in p-n interactions in heavy nuclei and the 0[110] transformation in the Nilsson scheme

Click to edit Mastepsubtive steasten WNSL, Yale University

First, a brief remark on Franco's role in nuclear structure physics from a broader perspective -- from " 30000 feet" 5/29/12 as we say.

Themes and challenges of nuclear structure physics -

 common to many areas of Modern Science- Complexity out of simplicity -- Microscopic

How the world, with all its apparent complexity and diversity, can be constructed out of a few elementary building blocks and their interactions

What is the force that binds nuclei? - Simplicitbydorcomplexty what they doic

How the world of complex systems* can display such remarkable regularity and simplicity

What are the simple patterns that emerge in nucleा? What do they tell us aloout what nuclei do?

The themes of complexity and simplicity have been used to describe nuclear structure in numerous major Documents in the last decade

\author{

- US LRP - 2007
 - NuPECC Long Range Plans
 - US Nat. Acad. RISAC Report -2008
 - US Nat. Acad. Decadal Study - 2012
 - Many others
}

This is not chance - it owes very much to the work and insights of Franco in promulgating the ideas of symmetries and simple patterns in nuclei for decades.

Many scientists do nice work. It is rare to find one 5/29/12 who defines and transforms a field and who does it hasically with a nencil Ill

How I met the IBA (and Franco)

Serendipity in Physics

Themes and challenges of nuclear structure physics -

Complexity oul ofsimplicity -- Microscopic
How the world, with ay apparent complexity and diversity, can be constructed out of a Fey degmentary building blocks and their interactions

What is the force thatynds nuclei? Simplichly dut of complexity whater doi?

How the world of complex systems* can display sughremarkable regularity and simplicity

What are the simple patterns that emerge in nuclei? What do they tell us about what nuclei do?
Nucleबt 3961 Rit $\sim 1021 / \mathrm{s}$, occupy $\sim 60 \%$ of the nuclear volume; 2 forces

Importance of valence p-n interactions as drivers of collectivity

Seeing structural evolution Different perspectives can yield different insights

Onset of deformation

Onset of deformation as a phase transition mediated by a change in shell structure driven by the p-n interaction
"Crossing" and "Bubble" plots as indicators of phase transitional regions mediated by sub-shell changes

Average empirical valence p-n interactions

Empirical interactions of the last proton with the last neutron
$\delta V p n(Z, N)=1 / 4\{[B(Z, N)-B(Z, N-2)]$
$-[B(Z-2, N)-B(Z-2, N-2)]\}$

5/29/ .

Spikes in $\boldsymbol{\delta} \mathrm{V}$ pn in light $\mathrm{N}=\mathrm{Z}$ nuclei

Heavy Nuclei: N = Z nuclei do not exist, Role of Coul., Spin orbit - any remnants?

Valence Neutron Number

And now for odd $-Z$ heavy nuclei

What is going on? Why these peaks? Consider orbits involved in Nilsson picture

Nilsson orbits occupied in Nval ~ Zval rare earth nuclei

See colored curves on Nilsson diagram. Note similar roles, slopes in each plot.
Identically colored orbits are "sister" orbits. What characterizes them?

Nilsson orbits occupied in Nval $\sim \mathbf{Z v a l}$ rare earth

 nuclei
[514]
N and nz differ by one.
180 W: p 7/2 [404]; n 7/2
[514Since $N=n x+n y+n z, \quad n x+n y$ is conserved.

These unique "sister" orbits differ only by a single quantum in the z direction - ZQT

Hence, expect large spatial overlap, large p-n 5/29/12
R.B. Cakirli. K. Blaum and R.E. Castutyractieh\$(2010) 061304 (R)

Spatial overlaps ($\psi p 2 \psi n 2$) of Nils. wave functions

Probability overlaps of Nilsson Wave functions

$$
|\delta n z|+|\delta n x+\delta n y|
$$

So, in practice, the highest overlaps occur for exactly our

Moreover, these 0[110] orbits fill nearly in synch throughout a pair of major shells

1/2[431]	1/2[541]
-3/2[422]	3/2[532]
-5/2[413]	5/2[523]
7/2[404]	7/2[514]
-1/2[420]	1/2[530]
3/2[411]	3/2[521]
5/2[402]	5/2[512]
1/2[550]	1/2[660]
3/2[541]	3/2[651]
5/2[532]	5/2[642]
7/2[523]	7/2[633]
9/2[514]	9/2[624]
11/2[505]	11/2[615]
1/2[411]	1/2[521]
3/2[402]	3/2[512]
1/2[400]	1/2[510]
	7/2[503]
	9/2[505]
	13/2[606]
	3/2[501]
	5/2[503]
	1/2[501]

Nilsson diagrams:

0[110] pairs

All 16 proton orbits related by $0[110]$ to $16 / 22$ neutron orbits. Enhanced p-n interactions as proton, neutrons fill together.
Neutron orbits not matched all have $\mathrm{nz}=0$, high lying. Do not contribute to prolate deformation.

Locus of collectivity

Collectivity and maxima in $\boldsymbol{\delta} \mathrm{Vpn}$

Maxima in $\boldsymbol{\delta} \mathrm{Vpn}$ and $\mathbf{N v a l} \sim$ 7val

Relation of Harm. Osc. orbits and mainr chall ctrıintıira

$50-82$	$50-82$
$3 \mathrm{~s} 1 / 2$	$1 / 2[400]$
$2 \mathrm{~d} 3 / 2$	$1 / 2[411]$
	$3 / 2[402]$
$2 \mathrm{~d} 5 / 2$	$1 / 2[420]$
	$3 / 2[411]$
	$5 / 2[402]$
$1 \mathrm{~g} 7 / 2$	$1 / 2[431]$
	$3 / 2[422]$
	$5 / 2[413]$
$7 / 2[404]$	
$1 \mathrm{~h} 11 / 2$	$1 / 2[550]$
	$3 / 2[541]$
	$5 / 2[532]$
	$7 / 2[523]$
	$9 / 2[514]$
	$11 / 2[505]$

Principal Collaborators

R. Burcu Cakirli Dennis Bonatsos Sophia Karampagia Klaus Blaum

Thanks, Franco, for 36 years of inspiration and for your amazing insights into atomic nuclei, their beauty, and their symmetries !!!

