RELATION of MASSES and SPECTROSCOPIC OBSERVABLES to STRUCTURE

R. BURCU CAKIRLI

Max-Planck-Institut für Kernphysik, Heidelberg, Germany & Istanbul University, Istanbul, Turkey

k--Rlanck-Institut ür Kemphysik

Broad perspective on structural evolution

The remarkable regularity of these patterns is one of the beauties of nuclear systematics and one of the challenges to nuclear theory. Whether they persist far off stability is one of the fascinating questions for the future

Nuclear Structure from Binding Energies

Masses – Nuclear Structure, Nucleon Interactions

Key nuclear concepts that masses and binding energies can illuminate

- Shell Structure
- Shape and phase changes, etc.
 - Proton/Neutron shell gaps
 - Pairing effects

• By removing the linear dependence in, for example, $S_{2n} \rightarrow$ isolate and amplify collective effects

- \rightarrow much more sensitive tests of nuclear models
- Interactions between the last protons and neutrons

Structure for well known light nuclei

 S_{2n} and $E(2_1^+)$ for Z ~ 16

But no magic number effect for Si at N=20 ??? What is happening?

Study is in progress

S_{2p} - Z

MAX PLANCK INSTITUTH FOR NUCLEAR PHYSICS

S_{2p} behavior

S_{2p} and S_{2n} behavior

Relation between S_{2n} and $E(2^+)$ values

Masses, Binding, and Structure

IBA-1 Binding Energies, $N_{B} = 16$

MAX PLANCK INSTIT FOR NUCLEAR PHYS

Cakirli, Casten, Winkler, Blaum and Kowalska, PRL 102, 082501 (2009)

MAX-PLANCE CERELL BOHAF

Relation between S_{2n} and E(2⁺) values

- Hence changes in S_{2n} in latter substantially reduced
- S_{2n} is sensitive both to structure and the val. nucl. #

<r²> for the rare-earth nuclei

MAX-PLANCK CERELLBOHAFT

Differential observables (isotope shifts)

MAX-PLANCE-CERELL BOHA

Differential results

 $\delta E(2_1^{+})_N = \left[E(2_1^{+})_{(N-2)} - E(2_1^{+})_{(N)} \right] / \left[E(2_1^{+})_{(N-2)} + E(2_1^{+})_N \right]$

like a normalization

Summary

- Masses and structure sensitively, subtly correlated.
- Why don't we see N=20 shell effect in S_{2n} for Si?
- What is happening for Ne at N=16?
- Well deformed nuclei (many bosons) show changes in S_{2n} if there is a visible change in $E(2_1^+)$
- Striking correlations of differential observables representing single particle motion, nuclear radii and collective observables -- to our knowledge, not recognized heretofore. New way of looking at structural changes (in particular, exotic nuclei).
- Deviations from the differential results can be used to highlight anomalous behavior or possibly spot data worthy of remeasurements (for $<r^2>$, spectroscopic observables, masses)

Collaborators

Rick Casten Klaus Blaum Ryan Winkler Yuri Litvinov Daria Shubina and ESR-GSI

Humboldt Foundation

THANK YOU

BACKUPS

 \mathbf{c}

MAX-PLANCE CESELL BOHAFT

ΗE S MAX PLANCK INSTITU FOR NUCLEAR PHYSIC

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

S_{2n} and S_{2p}

δV_{pn} has singularities for N = Z in light nuclei

- Wigner energy, related to SU(4),
 spin-isospin symmetry. Physics
 is high overlaps of the last proton
 and neutron wave functions
 when they fill identical orbits.
- Expected to vanish in heavy
 nuclei due to: Coulomb force for
 protons, spin-orbit force which
 brings UPOs into different
 positions in each shell and
 protons and neutrons occupying
 different major shells.

- $\langle r^2 \rangle$ as a function of Z or/and N

- Differential observables (isotope shifts) as function of Z or/and N

Differential observables with E(21+)

$\delta E(2_1^+)_{\mathsf{N}} = E(2_1^+)_{\mathsf{N}} - E(2_1^+)_{(\mathsf{N}-2)}$

With R_{4/2} $\delta R_{4/2} = R_{4/2 (N)} - R_{4/2 (N-2)}$

With B(E2; $2_1^+ \rightarrow 0_1^+$) $\delta B(E2) = B(E2)_{(N)}$ **B**(E2) (N-2)

Neutron Number

With S_{2n} $\delta S_{2n} = S_{2n(N)} -S_{2n(N-2)}$

Evolution of Nuclear Structure (as a function of valence nucleon number)

Origin of collectivity – **Residual interactions,** especially among the valence protons and neutrons

AAX PLANCK INSTITUT FOR NUCLEAR PHYSIC

... need to be careful about the interpretation

• NPA, 882, 71 2012 by L.Chen et al.

