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I. Introduction
The motivation of this work
These days, because of the rapid development of 
supercomputers, consideration of models and 
development of approximation methods do not attract 
attention of researchers.  However, still we cannot 
diagonalize the nuclear shell mode Hamiltonian for heavy 
nuclei in the foreseeable future.  
Truncation and approximations for example are still necessary.  
Here we report our recent study of the approximation in 
diagonalization of the shell model Hamiltonian. 



Let us consider a shell model Hamiltonian 
with dimension D and total spin I .

II. Linear correlation between eigenvalues and 
diagonal matrix elements

( )IH



We assume that the Hamiltonian consists of 
two-body effective interactions.
The distribution of eigenvalues of shell model 
Hamiltonians with tow-body interactions has 
been known to be Gaussian (normal).
J.B.French and S.S.M.Wong, Phys. Lett.B33,
449(1970) etc.



Distribution of eigenvalues
of the Wildenthal USD interactions for .
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First we sort the matrix elements       in such 
a way that the diagonal elements are sorted 
from smaller values to larger ones      

The eigenvalues                      of the original 
matrix are not changed by this operation. 

We find that the distribution of the diagonal 
elements is almost Gaussian.
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Distribution of eigenvalues           and diagonal elements  
of the Wildenthal USD interactions for .
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28Si



Linear correlation
Because the distributions of both the 
eigenvalues and diagonal matrix elements 
are Gaussian. 
With precisely the same average,  they are 
expected to exhibit the linear correlation.  
Indeed the correlation is remarkably good.  
We found that this correlation is well 
applicable not only to realistic systems, but 
also to any two-body random ensemble.  
Below we give a few examples. 



Linear correlation between eigenvalues and sorted diagonal matrix elements

for          ,  r is the linear correlation coefficients. 

Correlation between eigenbalues and diagonal matrix elements after sorting for 

-Panels (a) – (f) correspond to I=0,2,3,4,5,6 states.  The USD interaction is

used. (B.A.Brown and B.H.Wildenthal, Ann. Rev. Nucl. Part 38, 29(1988))

24 Mg

24 Mg



Agreement between predicted values by a 
straight line indicated by red color and exact 
eigenvalues is good.

Agreement is especially very good 
in medium energy.



If we assume the linear correlation, we 
easily have the following equations.

If the above formula is accurate, we can 
predict all eigenvalues easily without 
diagonalization. 
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This is an example how this simple correlation works for low-lying states. 
As already indicated in the figures, they are very good for medium energies, 
and reasonable but not good enough (not bad, either!) for low-lying states. 

24Mg



The influence of sorting the diagonal elements 
can be seen in the change of distribution of non 
diagonal elements.

As example 24Mg 0+ (a) and 2+ (b) are taken.
The USD interactions are used.



Without sorting With sorting



Relative magnitudes of matrix elements with 
and without sorting the diagonal matrix 
elements are seen in these figures.



The sorting procedure of diagonal elements 

redistributes non-diagonal elements more 

systematically.  Large non-diagonal 

elements are found in a narrow band 

near the diagonal elements.



Now we compare two truncation schemes: 
one is the conventional truncation based 
on the single-particle occupation. 
The other is the truncation based on the 
sorting the diagonal matrix elements. 

Questions: Are they more or less close to 
each other ? If not, which is better ?



In the following, D means the total 
dimension of the original Hamiltonian and 
d is the dimension of a trancated 
Hamiltonian.



Results in red are obtained by sorting the diagonal matrix elements; 
Results in blue correspond to those obtained by following the single-particle 
energies.     One sees that the truncation based on the sorting diagonal matrix 
elements is better.  D, the total number of spin I states, d: dimension of the 
truncated space.  Here we take I=0 and 2 for Si-28 and Ti-46 as examples. 

Overlaps of exact wave functions and those obtained by truncation 



Also it is easier to introduce an extrapolation 

method to predict exact eigenvalues, 

because the red curves are more smoothly 

connected.



III. Extrapolation approach
• As observed above, we had better truncate our 

basis by sorting the diagonal matrix elements 
from the smaller to the larger.  The dimension of 
the original Hamiltonian H is denoted by D. 

• Then we diagonalize the sub-matrix h with small 
dimension d.  We predict the lowest eigenvalue 
by extrapolations [Shen, Zhao, Arima, Phys. Rev. 
C82, 014309]. 
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Let us rewrite them and obtain formulas which can be used recursively.

Where                                                       .



We obtain readily the effective Hamiltonian

H 0
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Now we simplify our calculations by requiring that
(1)  summation index n is a finite number instead of infinity.

If we keep only n=2, we obtain 

This is the eigenvalue with the second order perturbation. 



Now let me give a few examples how our method works.  In these 
examples We consider the three lowest 0+ and 2+ states, as examples.  The 
left column corresponds to exact solution, and the middle and the left 
columns correspond to those obtained by diagonalizing the  effective 
hamiltonian,  with  d/D= 1/10, 1/20, respectively. 

In the following six pages the only approximation we have made is the 
restriction on  values of k.  For exact solutions, k is infinite. However, in 
practice a very small number of k is actually good enough. 



The level 



Now let me give a few examples how our method works.  In this Figure we 
take the USDB interaction for Si-28 and concentrate on the three lowest 
0+ and 2+ states.  The left corresponds to exact solution, and the middle 
and the left column correspond to those obtained by diagonalizing the  
effective hamiltonian with k=2, with d/D= 1/10, 1/20, respectively. 



This figure is the same as the last one, except k=4.



Here k=6



The same as the last page, except that here we investigate 
Ti-46 by using the GXPF1 with k=2.



Ti-46, GXPF1 interaction, k=4



Ti-46, GXPF1 interaction, k=6



The second approximation is enlightened by the fact that the magnitude 
of matrix  elements close to the diagonal ones is much larger than the 
magnitude of matrix elements far from the diagonal ones. 

Therefore our second approximation is straightforward. One neglect the 
contribution of matrix elements far from the diagonal ones. To expidite this 
process, we divide the matrix H into m^2 sub-matrices with dimension d’. 

Let us denote 
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After sorting, large matrix elements of the 
shell model Hamiltonian are distributed along 
the diagonal line.
Therefore matrix elements of bii are much 
larger than those of bi, j≠i.



Wave functions thus obtained are neither 
orthogonal with each other and normalized.



Eigenvalues of three lowest states versus ln[D/d], 
(a) I=0 of Si28, (b) I=2 of Si-28, (c) I=0 of Ti-46, (d) I=2 of Ti-46. 

Calculated results of three lowest energies versus in D/d.
Dots in black are obtained by exact diagonalizations, and dots in other colors are 
our predictions by using our new perturbation method of 4th order.



Si-26, USDB interaction, k=4



Ti-46, GXPF1 interaction, k=4



Now we discuss how good (or not good) of our effective Hamiltonian in 
terms of d/D. We take I=0 states (D=41335) Cr-48 as an example. 



Here we make only one approximation: we restrict the value of k.    



Here we made all three approximations, i.e., (1)  restriction on values of k=4 (as 
above); (2) the diagonalization of h is limited to  the three lowest states; (3) 
(3) we consider only the diagonal submatrices with dimension much smaller than D.



Here we list the overlaps between the wave functions of exact shell model 
calculations and the wave functions of our effective shell model
Hamiltonian. Here we have restriction on k only. 



It takes large computational time to 
diagonalize large matrixes with dimension D.

This time is approximately proportional to D3.
However, by our new approximation method, 
we can reduce this time to D d’2.
This means we can save very much 
computational time.



Part IV

Summary and conclusions



We have shown that 

•Diagonal matrix elements, if sorted from the smaller to the larger, 
display  linear correlation with eigenvalues. 

•We derived formulas for higher order perturbations in the way as the 
effective interaction theory. 

•Sorting the diagonal matrix elements provides us with a new method 
of truncating the huge shell model space. 

•The new approach by using perturbation presents nice agreement 
with exact solutions. 

I hope that this method will be useful in future study of nuclear 
structure theory and wish to use them to study for example intruder 
states such as in 12C and 16O and heavier nuclear mysteries.
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Franco; Congratulations on your 70th Birthday!
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Thank you for your attention !
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