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1. Motivation
Vibrations in Molecules: Vibron Model   F. Iachello et al 
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•Polyatomic molecules and linear chains (polymers)
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Icosahedron  I HIV Rev-RRE & TAR-Tat

• Living organisms :   viruses, icosahedral viral capsids



2. Algebraic Model of Morse Potential
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• Algebraic Model
Algebraic methods combine Lie algebraic techniques, describing the interatomic 
interactions, with discrete symmetry technique, associated with the global symmetry 
of the atoms and molecules in complex compounds. The interacting boson model 
(Iachello & Arima )

 

was applied very successfully to nuclei and particles and lately to 
describe stretching and bending modes in molecules  vibron model (Iachello 81, 
Iachello & Levine 82,95, Alhassid et al 83, Frank & Van Isacker 94). 

In the framework of the anharmonic model (Frank &Van Isacker 94), the anharmonic 
effects of the local interactions are described by a Morse-like potential. The Morse 
potential is associated with the su(2)

 

algebra and leads to a deformation of this 
algebra.
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A is a constant, J+

 

, J-

 

are the raising and lowering operators, is the number 
operator and N is the total

 

number of bosons

 

fixed by the potential shape.
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The eigenstates,                 , correspond to the            

symmetry-adapted basis, where v

 

is the number of quanta in the oscillator, 
v=1,2,…,[N/2].

Anharmonic boson operators :
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• Anharmonic q-bosons
Heisenberg-Weyl q-algebra HWq

 

commutation relations (Biedenharn 89, 
Macfarlane 89)
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Deformation parameter

 

q is in general a complex number, when qØ1, the boson 
commutation relations for harmonic oscillator are recovered.

Casimir operator for HWq:
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Possible Hamiltonian (Angelova, Dobrev&Frank 01):

Anharmonic bosons are obtained when  q
 

is real, q<1:
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Harmonic limit: pØ¶. Assuming 1/pá1, neglecting terms of order 1/

 

and 
higher,
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Substituting (8)  in commutation relation (6) and identifying the parameter p

 

with 
N/2, n

 

with v

 

and the creation and anihilation operators a, a*

 

with b, b*,

 

we

 

recover 
the su(2)

 

anharmonic relations (4). 



• Physical interpretation of the deformation parameter (Angelova 04)

The form (4) of commutation relations of su(2)

can be considered as a deformation of the harmonic oscillator relations with 
deformation parameter N=2p. 

The form of (8) and (4) indicates that for the low-lying levels of the Hamiltonian (7) 
the spectrum corresponds to the Morse eigenvalues. More generally, the 
parametrisation (7) means that up to order 1/p, the HWq

 

algebra contracts to su(2). This

 gives a

 

possible physical interpretation for p

 

or q

 

in terms of N, i.e.

 

the finite number of 
bosons in the potential well.

• Example:

N=55,   vm

 

=27,    p=27,   q=1-1/27=26/27.
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3. Algebraic Model with Quantum Deformations of the Dunham 
Expansion
• Dunham expansion  (Dunham 1932)

Phenomenological description

 

of the vibrational energy of diatomic molecules in a 
given electronic state:
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where we, xe

 

and ye

 

are the molecular constants, the numerical values of which are 
obtained by fitting the potential curve to the experimental spectral data (Herzberg 50, 
latest edition of CRM Spectroscopy ). 

If (9) is truncated to the quadratic term, one obtains the discrete spectrum of the Morse 
potential. It is convenient to re-write the energies in the form,
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• The Hamiltonian (Angelova, Dobrev&Frank 04)

Aim:

 

to incorporate

 

in different approximations both the Morse energy and the 
Dunham expansion.
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is a constant that we choose appropriately,                  are the raising and 
lowering generators of                     ,      deformation parameter q is a complex 
number. 
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q-bosons algebra (HWq) is defined by:
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where         is q-boson creation operator,         is q-boson annihilation operator,           

is the boson number operator, and the boson commutation relations of the 
harmonic oscillator may be recovered for the value q=1. 

Realization of                       (Ganchev&Petkova 89):
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Morse:   q~1, jhc e 4/ωα =
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4. Application to Diatomic Molecules 
•

 

The

 

model was applied to 161 electronic states of all diatomic molecules for which 
values of the molecular constants are known.

•

 

The values of the independent parameters p’

 

and j

 

are calculated in terms of the  
experimental constants xe

 

and ye.

•

 

p' -

 

quantum deformation parameter is

 

directly related to the coefficient ye

 

in the

 cubic term of Dunham expansion

• j -

 

related to the

 

coefficients

 

xe

 

and ye

 

.

•

 

The number of bound vibrational states generated by the electronic states of the 
diatomic molecule is estimated.

•

 

The model fits well with all experimental data except for 30 states for which the 
values of xe

 

and ye

 

do not satisfy the conditions.
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ground state:

p' =188.66         quantum deformation 

j = 29.16

Bound states:            Dunham: 29,        Morse: 28,

New experimental data: bound states Morse: 27, Dunham:28, 

observed 23 lines (rovibrational)
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4. Coherent States of the Morse Potential
Coherent states: In quantum mechanics a coherent state is a state of a quantum 
harmonic oscillator with dynamics that closely resembles the behaviour of classic 
harmonic oscillator. It is known as single harmonic oscillator prototype  of the 
coherent state of the oscillating electromagnetic field.

Coherent states of anharmonic potentials:

-

 

vibrations in molecules and solids

-

 

quantum information and quantum computing

-

 

quantum control

Morse potential is a good model for studying quantum information

 

and quantum 
control as it gives a finite

 

number of bound states. Thus the design of control is 
limited to a finite regime.

Generalised coherent states and Gaussian coherent states of Morse potential 
(Angelova&Hussin, 08).



Coherent states  constructions:

Coherent states: (Schrodinger 1926)
Squeezed states: (Kennard 1927)

Definitions:
• Displacement operator method
• Ladder (annihilation) operator method
• Minimum uncertainty method

Many important papers:
Bargmann,  Glauber,  Klauder,  Perelomov, Gilmore, 
Iachello,  Man’ko..... 
and many books Klauder

 
&Skagerstam

 
, Perelomov, 

Dodonov&Man’ko, Gazeau, Rand, ...



Klauder’s

 

construction of coherent states CS [Klauder, Phys Rev 2001],
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Morse potential:  ( )xx
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Squeezed Coherent States  [Angelova,  Hertz, Hussin
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We introduce two types of  states:

• Oscillator-like (o-type) –ladder operators: h(2)
 

algebra

• Energy-like (e-type) –ladder operators: su(1,1)
 

algebra
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Phase-space trajectories for o-type (dashed) and e-type (solid) 
coherent states,  z=2, γ

 
= 0, t

 
is [0,1].
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Fig: Time evolution of e-type
(a) coherent states and     (b) squeezed coherent states for HCl
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Density  probabilities of squeezed coherent states, z=2, γ=0.6 
e-type (blue),  o-type (red), for HCl



Mandel parameter Q
is used to study the statistical properties of CS and SQS,

Fig: Mandel parameter for  e-type (blue)  and o-type (red) states for z=2 for HCl
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Comparison of Mandel Parameter  in the vacuum z=0
 

for 
o-type (red) and e-type (blue)  squeezes states



5. Conclusions
•

 

q-deformations of general Hamiltonian, which in different approximations lead 
to Morse potential or Dunham expansion;

•

 

New physical interpretations of quantum deformation parameters,

 

related to 
finite number of  states;

• Parameters calculated in terms of experimental constants;

• Generalised and Gaussian coherent states of Morse potential;

•

 

Oscillator-like and energy-like coherent

 

and squeezed coherent states  defined

 by ladder operators;

Questions: 

Why do energy-like coherent states behave better?

Why there is a squeezing effect in the coherent states?



FutureWork
• bending modes [Iachello&Oss]
modified  Pöschl-Teller potential

• Generalize the model 
-Include other bonds

-Include interactions between bonds                              u(2)              u(2)

u(2)

• Extend the model to 2 and 3 dimensions

Franco Iachello, thank you for showing us that 
beauty in physics is in its simplicity
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