The Structure of the Hoyle State and its 2^{+}Partner State in ${ }^{12} C$

Moshe Gai For the UConn-Yale-TUNL-Weizmann-PTB-UCL Collaboration
LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097
and WNSL, Dept of Physics, Yale University, New Haven, CT 06520-8124

Abstract

We measured the ${ }^{12} C(\gamma, 3 \alpha)$ reaction with an Optical Time Projection Chamber (O-TPC) detector and gamma-ray beams from the HI γ S facility of the TUNL at Duke. Clear Evidence for the second 2^{+}state in ${ }^{12} C$ was observed at 10.4 MeV . The measured $B\left(E 2: 2_{2}^{+} \rightarrow\right.$ g.s. $)$ and the measured alpha-particle width which exhausts the Wigner limit, provide clear evidence for a structure similar to the structure of the 0_{2}^{+}Hoyle state at 7.654 MeV in ${ }^{12} C$. Thus the long sought for "Hoyle Partner" 2^{+}state is unambiguously identified in ${ }^{12} C$. However, the measured energy, width and gamma width of the 2_{2}^{+}state exclude significant contribution from this state to the formation of ${ }^{12} C$ in stellar helium burning (even) at high temperatures ($\mathrm{T}>3 \mathrm{GK}$) beyond the contribution predicted from the Hoyle state. The structure of the 2_{2}^{+}and the 0_{2}^{+}Hoyle Partner states in ${ }^{12} C$ remains an open question and existing data cannot distinguish between a spherical (e.g. low N limit of a BEC condensate) vibrational structure and a deformed rotational structure.

