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Resonances can be defined in several ways, 
but it is generally accepted that, under
rather general conditions, we can associate
a resonance to each of the pairs of poles of
the analytic continuation of the S-matrix.



In spite of the long-time elapsed
since the discovery of alpha decay phenomena in nuclei
and their description in terms of resonances, the use of
the concept in nuclear structure calculations has
been hampered by an apparent contradiction with
conventional quantum mechanics, the so-called
probability problem. It refers to the fact that a state
with complex energy cannot be the eigenstate
of a self-adjoint operator, like the Hamiltonian, 
therefore resonances are not vectors belonging to
the conventional Hilbert space.



These lectures are devoted to the
description of resonances, i.e. Gamow states, 
in an amenable mathematical
formalism, i.e. Rigged Hilbert Spaces. Since
we aim at further applications in the domain
of nuclear structure and nuclear many-body
problems, we shall address the issue in a 
physical oriented way, restricting the
discussion of mathematical concepts to the
needed, unavoidable, background.



From a rigorous historical prospective, the
sequence of events and papers leading to our
modern view of Gamow vectors in nuclear 
structure physics includes the following
steps:



a) The use of Gamow states in conventional
scattering and nuclear structure problems
was advocated by Berggren, at Lund, in the
1960s, and by Romo, Gyarmati and Vertse, and
by G. Garcia Calderon and Peierls in the late 
70s.  The notion was recovered years later, by 
Liotta, at Stockholm, in the 1980s, in 
connection with the microscopic description of
nuclear giant resonances, alpha
decay and cluster formation in nuclei. Both at
GANIL-Oak Ridge, and at Stockholm, the use 
of resonant states in shell model calculations
was (and still is) reported actively. 



b) A parallel mathematical development
took place, this time along the line
proposed by Bohm, Gadella and
collaborators.

Curiously enough both attempts went
practically unnoticed to each other for
quite a long time until recently, when some
of the mathematical and physical
difficulties found in numerical applications
of Gamow states were discussed on
common grounds ( Gadella and myself).



Technically speaking, one may summarize
the pros and drawbacks ofBerggren and
Bohm approaches in the following:

(i)The formalism developed by Berggren is
oriented, primarily, to the use of a mixed
representation where scattering states
and bound states are treated on a foot of
equality. In his approach a basis should
contain bound states and few resonances, 
namely those which have a small imaginary
part of the energy. 



ii)In Bohm’s approach the steps
towards the description of Gamow
states are based on the
fact that the spectrum of the
analytically continued Hamiltonian
covers the full real axis. As a 
difference with respect to
Berggren’s method, the calculations
in Bohm’s approach are facilitated
by the use of analytic functions.



The subjects included in these lectures
can be ordered in two well-separated
conceptual regions, namely: 
(a) the S-matrix theory, with reference
to Moller wave operators, to the spectral
theorem of Gelfand and Maurin, and to
the basic notions about Rigged Hilbert
Spaces, and
(b) the physical meaning of Gamow
resonances in dealing with calculation of
observables. 



The mathematical tools needed to
cover part (a) are presented in a self -
contained fashion. 

In that part of the lectures
we shall follow, as closely as possible, 
the discussion advanced in the work of
Arno Bohm.



Gamow vectors and decaying
states

• Complex eigenvalues
• A model for decaying states
• An explanation and a remedy for the

exponential catastrophe
• Gamow vectors and Breit-Wigner

distributions



Some references

• A. Bohm, M. Gadella, G. B. Mainland ;Am.J.Phys 57 
(1989)1103

• D. Onley and A. Kumar ;Am.J.Phys.60(1992)432
• H. Jakobovits, Y. Rosthchild, J. Levitan ; Am.J. Phys.63 

(1995)439)
• H. Massmann, Am. J. Phys. 53 (1985) 679
• B. Holstein; Am.J. Phys. 64 (1996) 1061
• G. Kalbermann; Phys. Rev. C 77 (2008)(R)041601
• G. Garcia-Calderon and R. Peierls; Nuc. 

Phys.A265(1976)443.
• T. Berggren; Nuc. Phys. A. 109 (1968)265. 



-Decay law

Number of particles that have not decay at the time t

(initial decay rate)

(survival)



For a vector that represents the 
decaying state, like 

The probability of survival is written

Therefore, this absolute value should be 
equal to the exponent of the decay rate



The decay condition can be achieved if we think of
the state as belonging to a set of states with
complex eigenvalues

From where it follows that



The equality between the experimental and 
theoretical expressions for the probability 
of survival imply

which is, of course, a  rather nice but strange 
relationship which has been obtained under the 
assumption that there are states, upon which we 
are acting with of a self-adjoint operator (the 
Hamiltonian),  which possesses complex eigenvalues. 



A model for decaying systems

A particle of point-mass (m) 
confined in a spherically
symmetric potential well

The solutions of the non-relativistic
Schroedinger equation are written (zero angular 
momentum for simplicity)





The stationary solutions are obtained in the 
limit of a barrier of infinite height, and 
they are of the form (inside the barrier)

with the real wave number



And for the three regions considered the
quasi-stationary solutions are of the form

the wave-number are real (k) inside and
outside the barrier region and complex (K) 
inside



By requiring the continuity of the function and its
first derivative, and by assuming purely outgoing
boundary conditions to the solution in the external
region, one gets



The solution of the system of equations
yields

and the relation between k and K (eigenvalue
equation)



The initial decay rate can be calculated from
the flux of the probability current integrated
over the sphere

where

(radial component of the current in the external 
region)



After some trivial calculations one gets (for
the external component of the solution)

Since the real part of the energy is much
smaller that the barrier (but positive) we have



Then, by replacing G for its value in terms

of the approximated wave numbers, we find



and

If we proceed in the same fashion 
starting from the definition of the Gamow
vector, we find for the complex wave
number



by keeping only leading order terms, since 
the imaginary part of the energy is much 
smaller that the real part:



With these approximations, the relationship between
k and K determines the structure of the decay width:

and



And by equating the imaginary parts of both
equations one gets



which is fulfilled if (at the same 
order)

This last result is quite remarkable, 
because it shows that decaying states can 
indeed be represented by states with
complex eigenvalues. It also leads to the
rather natural interpretation of the decay
time as the inverse of the imaginary part
of the complex energy.



The exponential catastrophe

For well behaved vectors in Hilbert space
one has the probability density (finite and
normalizable)

But not all vectors are proper vectors, 
since (for instance for Dirac’s kets)



And it means that, for them

Although it is finite at each point (in space) it is
infinite when integrated over the complete domain. 
For a Gamow vector one has, similarly:



from the wave function in the external 
region one has

one has



The factor between parenthesis can be writen in 
terms of a “initial time” associated to the
approximated wave-number, leading to:

This result (which is valid for times t greater than the
“initial “ time) means that a detector place at a 
distance r detects a counting rate that is maximum at
the initial time and decreases exponentially with
increasing time (Bohm-Gadella-Mainland)



Thus, when correctly interpreted, 
Gamow vectors leads to an
exponential decay law and not to
an exponential catastrophe.



Gamow vectors and Breit-Wigner distributions

At this point (and as a first contact with
the proper mathematics)  we shall
introduce another tool to understand
Gamow vectors. That is the analogous of
Dirac’s spectral theorem and the nuclear 
spectral theorem (also called Maurin-
Gelfand-Vilenkin theorem). This will be 
our first exposure to the concept of
Rigged Hilbert Spaces (or Gelfand’s
triads). 



Dirac spectral theorem

In the infinite dimensional Hilbert space we can 
define an orthonormal system of eigenvectors of
an operator with a discrete set of eigenvalues
(the Hamiltonian operator, for instance), such
that

Then, every vector of the same
space can be expanded as:



In scattering problems the Hamiltonian has a continuous
spectrum (in addition to bound states), and this part of
the spectrum can be added to the expansion

To show that this is indeed a correct expansion we shall introduce, 
in addition to the Hilbert space (of normalizable, integrable 
functions) a subspace of all integrable functions in the energy
representation. We think of these functions as “ well behaved”
(infinitely differentiable and rapidly decreasing in the energy rep) 
(technically speaking they are elements of the Schwartz space).



We also need another space, which should
accomodate the antilinear mappings of these
functions (something is antilinear if
F(ax+by)=a*F(x)+b*F(y)).

We then have:

a)The Hilbert space of regular vectors

b)The space (Schawrtz) of test functions

c)Its antilinear mapping.

Under these conditions, Gelfand defines the
triads (or Rigged Hilbert Spaces, or triplets) as 
the construction



Nuclear spectral theorem:

Let H be a self-adjoint operator in the Hilbert
space. Then it exists in the subspace

a set of elements with the property

Such that any function of (b) can be 
written in the form



Let us see how these notions apply in the case of
Gamow vectors

A particular generalized eigenvector with complex
eigenvalues can be defined by:

which is a functional over well behaved functions



Properties and conditions on these vectors:

1) (Generalized eigenvalue equation)

2) (Time evolution)

(Probability of detecting a given
value of the energy E)

3)



Proof of the properties



(use Cauchy integral formula):

The integral is calculated over a closed contour
(real energy axis) and an infinite semicircle in the
lower half of the complex plane, leading to



since

vanishes on the infinite semicircle in the
lower half of the complex plane only for
t >0.  

More generally, since there is one (pair of ) S-matrix pole at E, 
then every well behaved vector can be given by the generalized
expansion ( A. Mondragon has shown it first, and then with E. 
Hernandez) we shall come back to this result later on)



The approximation to the exponential decay
law

• The exponential decay law is a 
consequence of the choice of the Breit-
Wigner energy distribution (a natural 
choice, indeed). 

• Influence of the direct integration over
the physically positive energy
spectrum: it affects the decay law



It seems natural to think of the Breit-
Wigner energy distribution as the result of
the composition between to branches, like:

Where the function f(E) has no poles (Krylov) 
to ensure that the only poles are those at the
positive and negative half-planes.



Then, if we integrate a given
amplitude, like

in the real axis, and use Cauchy formula, we get, 
for the relevant part of the integral

that the main contribution comes from the pole located
at the lower half-plane, at it yields:



this result can be generalized easily by 
considering a semibounded spectrum (that
is : the real positive set of eigenvalues) 



where the functions K are modified
Bessel functions of imaginary argument. 
The term by term expansion of A(t) 
reads



Then, the first term already gives the expected
dependence (decay law) as a function of the
imaginary part of the complex energy, and it is
valid provided t>>1/Real part of (E).



The same result can be obtained by 
applying the steepest descent method, by 
re-writting A(t) as 

where



then

and



from which



and with the modified Bessel functions



finally

which is, again, the expected time 
dependence of the amplitude A(t)



Gamow vectors: a tour from the
elementary concepts to the (more 
elaborate) mathematical concepts

Some references:

R de la Madrid and M. Gadella ; Am. J. Phys. 
70 (2002) 626

R de la Madrid, A. Bohm, M. Gadella ;  
Forstchr. Phys. 50 (2002) 185

O. Civitarese and M. Gadella; Phys. Report. 
396 (2004) 41



-We shall compare the description of Gamow
vectors

1)in the scattering problem, 

2)the S-matrix formalism, and

3)in the rigged Hilbert space framework

All are equivalent way of introducing Gamow
vectors and their properties, but some are more 
illustrative than others, as we shall see in the
following notes.



-Resonances for a square barrier potential
Since we have already discussed the case in the
first lecture, we shall review here the main results and
expressions for a later use. We shall start with

Schroedinger equation in the Dirac notation. When the
energies belong to the continuum spectrum of H, the
vectors are Dirac’s kets and they are not vectors in the
Hilbert space (they are not square integrable). However, 
we can use them to expand the space of wave functions



We are searching for solutions of
the equation



in spherical coordinates it reads

with



The solutions are



Boundary and continuity conditions



they are of the form



with solutions





Thus, the zero angular momentum solution reads

with



the expansion of the wave function will then be

and from it one has (in bra and kets notation)



S-matrix



the probability-amplitud  of detecting an out-state
(superscipt -) in an in-state (superscript +) is



the S-matrix, in the energy representation, is
written

the continuation of S is analytic except at its
poles, which are determined by



that is

the solutions come in pairs of complex
conjugate values of the energy, 



Decaying resonance energies (square well potential)



Growing resonance energies (square well potential)



-resonance wave numbers (for the square well
potential)



Gamow vectors

The time independent Schroedinger equation is
written

and the radial part of the zero angular momentum
Gamow vector is given by



with the complex wave number

and



the boundary conditions are:

notice the purely outgoing condition
at infinity



the purerly outgoing boundary condition
(impossed to Gamow vectors) is often written

next, we have to solve the equations to calculate the
radial wave functions explicitely, in matrix notations
they read



where



the determinant of the system is then written

leading to the dispersion relation



Then for each pair of complex energies we find
the decaying



and growing radial solutions



Green function method

the formal solutions are



where the functions entering the definition of
G are the solutions of the radial equation which
vanishes at the origin

or fulfills a purely outgoing boundary condition

and their wronskian





The boundary conditions for the outgoing
wave are



With solutions given by

the wronskian is of the form



the structure of the Green function is, 
therefore

With residues at the poles (which
are the same poles of S)



Complex vector expansions

From the amplitude

We can extract the contribution of resonances by 
making an analytic continuation of the S-matrix
and by deforming the contour of integration





From it, one gets

and a similar expression holds for the out-
state



Contribution from decaying Gamow vectors



Contribution from growing Gamow
vectors



Time asymmetry of the purely outgoing
boundary condition:

for kd=Re(k)-iIm(k); with Re(k), Im(k)>0 (fourth
quadrant)  we write

and



In the same fashion, for the growing vectors
we have for kg=-Re(k)-iIm(k); (with Re(k), 
Im(k)>0, third quadrant )

and



Leading to the probability densities



and



Rigged Hilbert Space treatment of continuum
spectrum

• Mathematical concepts
• Observables

Reference: O. Civitarese and M. Gadella
Phys. Rep. 396 (2004) 41, and references quoted

therein.



The Hilbert space of scattering
states

We can write the Hilbert space of a  self-adjoint (central)  
Hamiltonian as the direct orthogonal sum of the discrete (d) 
and continuous (c) subspaces

And, moreover,  we can decompose the continuous
subspace into two mutually orthogonal parts (absolutely
continuous (ac) and singular continuous (sc) parts)



Scattering states are not-bound regular states and
they belong to to the ac part of the spectrum,  other
states are contained in sc (fractal section of the
spectrum of H), thus



The Moller operator
We assume that any scattering state is
asymptotically free in the past. For any scattering
state , φ it exists a free state ψ such

As the limit in a Hilbert space is taken
with respect to its norm, this is equivalent to say that



Since the evolution operator is unitary, 
we have:

Then, we can de<ne an operator which relates each
scattering state with its corresponding
asymptotically free state



Analogously, we also assume that any scattering
state is asymptotically free in the future. This
means that for any scattering state, there
exists a free state such that

then, there exists an operator



These operators are the Moller wave operators

with the properties



Proof:



The evolution of the state, from the initial
prepared state to the scattered state is given by

Then it seems natural to define the S 
matrix in terms of Moller operators

so that



With this choice

Which is equivalent, in infinitesimal 
form, to

Analytic continuation of S(E)->S(p=+√2mE) 
(complex p-plane or k-plane)



(i) Single poles in the positive imaginary axis of S(z) 
that correspond to the bound states of H.
(ii) Single poles in the negative imaginary axis that
correspond to virtual states.
(iii) Pairs of poles, in principle of any order, in the
lower half-plane. Each of the poles ofa pair
has the same negative imaginary part and the same
real part with opposite sign. 
Thus, if p is one of these two poles the other is −p*
(complex conjugation). These poles are
called resonance poles and in general there is an
infinite number ofthem



Rigged Hilbert spaces (RHS)

We shall define resonance states as 
eigenvectors of H with complex eigenvalues, 
located at the resonance poles. 

As self-adjoint operators in Hilbert spaces
do not have complex eigenvalues, resonant
states cannot be vectors on a Hilbert space. 

They belong to certain extensions of
Hilbert spaces which are the rigged Hilbert
spaces (RHS). 



We start with a definition of RHS:

A triplet of spaces is a rigged Hilbert space (RHS) 
if:

The intermediate space H is an infinite-
dimensional Hilbert space.

Is a topological vector space, which is dense 
in H (we call this space left-sail space of
RHS)

Is the anti-dual space of

(we call this space : right-sail
space of RHS)



RHS are useful, among other applications, for:

1. Giving a rigorous meaning to the Dirac
formulation of quantum mechanics .

In this case,it is customary to demand that the
vector space on the left be nuclear(e.g.; obey the
Nuclear Spectral Theorem, according to which

every observable, or set of commuting
observables, has a complete set of generalized
eigenvectors whose corresponding eigenvalues

exhaust the whole spectrum of the
observable. This is in agreement with the Dirac

requirement



2. Giving a proper mathematical meaning to
the Gamow vectors, i.e., vector states which
represent resonances
3. Extending quantum mechanics to
accommodate the irreversible character of
certain quantum processes such as decay
processes.
4. Dealing with physical problems requiring
the use of distributions. In fact, distributions
are well known to be objects in the dual of a 
nuclear locally convex space



Rigged Hilbert spaces have the following
properties:

Property 1. Let A be an operator on H. If we define 
the domain (D) of its adjoint, then the following
conditions are fulfilled:
(i) The domain contains the left-sail space of the
RHS.
(ii) For each function belonging to the left-sail
space the action of the adjoint operator on it also
belongs to the left-sail space.
(iii) The adjoint operator is continuous on the left-
sail space . Then



Property 2. Let A be an operator with the properties
described in Property 1. A complex number λ
is a generalized eigenvalue of A if for any function φ
belonging to the left-sail space and for some non-
zero F belonging to the right-sail space we have that

then



Property 3. A result due to Gelfand and Maurin
states the following: Let A be a self-adjoint
operator on H with continuous spectrum σ(A). 
Although it is not necessary, we may assume that
the spectrum is purely continuous. Then, there
exists a RHS, such that
(i) A can be extended by the duality formula

to the anti-dual right-sail space.
(ii) There exists a measure dµ. on σ(A), which can 
be chosen to be the Lebesgue measure if the
spectrum is absolutely continuous, such that for
almost all λ Є σ(A) with respect to dµ, there
exists a nonzero functional F(λ) of the right-sail
space such that



This means that the points in the continuous
spectrum of A are eigenvectors of the extension
of A into the right-sail space. However, these
eigenvectors do not belong to the Hilbert space.



From the previous properties of RHS we
have that for all φ and ψ (of the left-sail
space)



Then, in Dirac notation:







where
(i) The integral over the negative axis refers to
the negative axis in the second sheet of the
Riemann surface.
(ii) C is the semicircle, in the lower half-plane of
the second sheet, centered at the origin with
radius R, which does not contain any pole of S(E).

(iii) The sum ofthe residues extends over
all poles of S(E) in 
the region limited by the contour [-R,R]









Normalization and mean values

• The problem: how to evaluate mean value of operators, like the
Hamiltonian, on Gamow vectors?. Since the inner product (scalar
product) of Gamow vectors is not defined, we have several
possibilities, namely:

• The mean values are zero (N. Nakanishi, Prog.Theor.Phys. 19 
(1958) 607)

• The mean values are complex (M. Gadella, Int. Journal. Theor.Phys. 
36 (1997) 2271.

• The mean values are real (on the RHS, A. Bohm and M. Gadella, 
Dirac kets, Gamow vectors and Gelfant triplets; Springer-Verlag
(1989))

• The mean value are the result of interferences between capturing
and decaying vectors (T. Berggren; Phys. Lett. B 373 (1996) 1.)



The mean values are zero

If we define the action of the Hamiltonian on the Gamow
vector as:

Comment: the object

Is not defined, since the vectors do not
belong to the Hilbert space of H.



•The mean values are complex

Comment: physically un-acceptable, since
we cannot determine simultaneously the
real and imaginary part of the expectation
value



The mean values are real

For a mapping of analytic functions (like projections on the
positive real semi-axis) the norms are finite, 





Changing variables to

the integral transforms like

Thus we find



The mean value are the result of interferences
between capturing and decaying vectors



In momentum space (Berggren) one has

This is Berggren’s main result.



To better understand the previous results we shall
start from T. Berggren’ work , and compare it with
our own work

Delta-function normalization in momentum space, 
for a continuum wave function



For a given operator









If we replace in the expectation value

then





Finally,

From where it reads



Following Berggren’s interpretation



In our approach



and







As an example, let us explore the consequences
of the procedure for an arbitrary self-adjoint
operator

then



This value is real, since:





In Berggren’s formalism





Summary
• The quantum mechanical expectation value of a 

hermitean operator, when the system is in a resonant
state, may be derived from the corresponding values
defined for the continuum states having energies close
to the resonance energy. (Berggren’s result)

• When resonant Gamow states are constructed in a 
rigged Hilbert space, starting from Dirac’s formula, the
expectation value of a self-adjoint operator acting on a 
Gamow state is real. (Our result)



Some applications of Gamow
vectors

• Illustration of resonances in a simple 
quantum mechanical problem

• Zeno paradox in quantum theory
• Alpha decay (revisited)
• The Friedrichs Model
• Nuclear  structure and nuclear reactions

with Gamow vectors



Some illustrative references
• H. Massmann ; Am.J.Phys 53 (1985) 679
• A. Peres; Am. J. Phys. 48 (1980) 931
• B. Holstein; Am. J. Phys. 64 (1996) 1061
• M. Baldo, L. S. Ferreira and L. Streit; Phys. Rev. C 36 

(1987) 1743
• E. Hernandez and M. Mondragon; Phys. Rev. C 29 

(1984) 722
• R. J. Liotta et al; Phys. Rev. Lett. 89 (2002)042501



and several other references from
other authors and from myself… too 
lazy to compile them here, sorry…I
will quoted them in the written
version of the lectures….



A simple example (from H. Massmann; Am. 
J. Phys.  53 (1985) 679))

Let the potential be a one dimensional delta-
barrier





with



This is the dependence of the phase shift
with the wave number; it increases by π
giving rise to resonances (kx=nπ )



In this example, the ratio between the
probability of finding the particle in the inside
region and outside it (in an interval equal to the
position of the barrier) is given by



For a finite value of α

Graph of the ratio R, as 
a function of the energy



In terms of the S-matrix, the previous
results can be written as

and with the S-matrix defined as

It is found that



with

and

Then, if ß->0 we get a resonance, that is the wave 
number adquires a “resonant value” , such that at the 
position of the barrier



For k closer to a resonant value

Then, at lowest order in the
difference ∆k

with



The, for isolated resonances the S-
matrix can be written

Thus, we hare obtained again the
characteristic Breit-Wigner structure. 
The agreement between the exact
solution and the approximated one, for
isolated resonances, is shown in the
next figure





Another application: Zeno effect
(suggested refs: A. Peres ;Am.J. Phys. 48 
(1980) 931; and O.C. and M. Gadella; Phys. 
Rep. 396(2004)41)

We may say that, from common knowledge, a 
watched kettle never boils.  But if you like to
appear as an illustrated girl/man you may say in 
Quantum Mechanics an unstable system under
constant observation will not decay (Zeno’s
effect)



From the first lecture, we define the
non-decay amplitude at the time t

and the non-decay probability

1) for t=0 the derivative of P(t) respecto to t is
zero, then for small values of t one has



The proof of this relation, when the eigenvector is
outside the domain of the Hamiltonian (like a Gamow
vector) is rather lenghty but we can, for the sake
of completeness, show a naive version of it, based
on the evolution of the system very near a 
resonance, such that the only significant part of the
exponential behavior is given by the imaginary part
of the energy. Under this restriction:

where ∆H≈Г



hence

the left hand side tends to unity as n tends
to infinity, it means that if the time interval
is small enough (and the measurement is
repeated a large number of times during the
time interval) the survival amplitude is larger
than the exponential and the system does not
decay.



2)for intermediate times, starting from a certain
time t1, smaller than the half-life, to a certain time 
t2, larger than the half-life, the non-decay
probability is exponential

The time t1 needed to begin with the
exponential behavior is called the Zeno time.

3) For very large values of t 



Alpha decay revisited
(ref: B. Holstein; Am.J.Phys. 64 
(1996) 1061)

The alpha-decay rate is expressed

where σ is the WKB barrier penetration factor 

ω/2π is the frequency at which the pre-
formed alpha-particle strikes the barrier, 
and ξ is a factor of the order of unity.



The potential is the sum of the nuclear 
potential and the Coulomb interaction. In the
l=0 wave it looks like



The radial wave functions are of the form



With the wave numbers

The relation between the constants, 
as required by the matching conditios
are:



Leading to the system

with solutions



but, simultaneously

Which implies that the energies which
may fulfill it must be complex. The
associated dispersion relation

since the right hand side is suppressed, this
equation yields



This is exactly the condition found in the first
lecture, in dealing with the definition of Gamow
vectors for a single barrier.

Following the conventional WKB treatment
(see Holstein) we define the probability
flux  and the decay rate as



By impossing normalization

The decay rate is re-written



Naturally, we can understand this result by 
explicitely writting for the complex eigenvalue

in



then, we re-obtain, for the wave function in 
the external region, the result from the
previous lectures



The Friedrichs model

The simplest form includes a Hamiltonian
with a continuous spectrum (eigenvalues in 
the real positive axis) plus an eigenvalue
embedded in this continuum. The state is
represented as

α is a complex number and φ(ω) belongs to
the space of square integrable functions on
the positive real axis



The scalar product is given by

(restriction of the unperturbed
Hamiltonian)



State vector for the
bound state

Total Hamiltonian

interaction



In order to describe resonances, 
we consider the reduced resolvent of H in the bound
state

which is given by



is a complex analytic function with no 
singularities on the complex plane other than
a branch cut coinciding with the positive 
semi-axis. It admits analytic continuations.
The proof of this result is very technical and
we refer the interested reader to the
original sources (see Phys. Rep. 396 (2004) 
41)



The form of the analytic continuations is

The poles are determined by the
zeros of the equations



The Friedrichs model in RHS

(formal steps)

a) The spectral decomposition of the unperturbed
Hamiltonian

b)The decomposition of the interaction



c)The state

d) orthogonality



e) Scalar product (old notation)

Scalar product (new notation )



f)interaction



Here, we intend to get the explicit
form of the Gamow vectors for
the Friedrichs model.

Let x be an arbitrary positive
number (x>0) and write the

eigenvalue equation

with



By applying to it the complete Hamiltonian we get the
system of equations

It yields an integral equation with one solution of
of the form



This is a functional in the right-sail
space of the RHS. It admits a 
continuation to the lower half plane, 
with a single pole:

then



which gives

then



with the help of Taylor’s theorem

we get



thus

This is the formal solution of the decaying
Gamow vector  for the Friedrichs model . 
In the same way, we have for the growing
Gamow vector the expression



Some applications to nuclear 
structure calculations

-Eigenvalue problem for Gamow vectors in N-N interactions
Refs: M. Baldo, L. S. Ferreira and L. Streit (Phys. Rec. C. 36 
(1987) 1743

- Two particle resonant states in a many body mean field

Refs: R. J. Liotta et al; Phys. Rev. Lett 89 (2002) 042501

- The Friedrichs model with fermion boson couplings
Refs: O.C, M. Gadella and G. Pronko
(J.Mod.Phys.E 15 (2006) 1273; ibid. 16 (2007)1.



The extended Friedrichs model
(a fermion interacting with a boson field which has a 
discrete and a resonant state





which leads to the coupled system



One can  introduce each of these fields in the
original equations, to re-write the coupled
system



leading to the following system of equations



With the quantities A, B, etc, given
by



Then, on formal grounds, we have shown that
the coupling of a bound fermion state with a 
boson field with has a resonant state yields a 
resonant behavior for the fermion.

This finding has some significance for nuclear 
structure calculations, where, like in 
Berggreen’s basis, the fermions include Gamow
resonances and they are used to construct
boson fields (like two-particle or particle-hole
excitations)



some applications of the Friedrisch model to  
physical systems (Onley and Kumar; Am. J. Phys. 
60 (19929 431: 

We shall  consider a system which consists of a 
particle wich can exists in a discrete state 
(particle-hole state) or in a continuum as a free 
massive boson, then applying our previous 
concepts we write the wave function of the free 
particle as



The interaction between both sectors of 
the wave function can be written

The system is prepared at t=0 in its 
discrete state, in the particle-hole state, 
with the initial conditions



The equation of motion (in the 
interaction picture)

Yields the equations for the amplitudes



The, from both equations one gets

After a long time (t->∞) b(k,∞) is the 
probability amplitude to find the boson state 
and a(∞) is the survival amplitude in the p-h
state. If a(t<0)=0,  its Fourier transform can be 
written



and

To get the expression for f(ω) we integrate

and take Є->0



therefore

This integral is transformed as an 
integral on complex energies



In the complex energy plane the 
integration path is of the form



since



Since now we have an explicit 
expression for f(ω) we can write, for
the survival amplitude

Which may be solved, by integration, for 
an explicit structure of Z(ω)



The proposed dependence of the 
interaction and of the density of 
states is

Where g is a coupling strength factor, m is 
the mass of the boson and b is a real value 
whose absolute value is smaller than the 
mass m

Under this  assumption, the 
integral of Z  yields







And with it, we integrate the expression 
of the survival amplitude in the  regions 
limited by the contour



The contribution from the cut is a slowly varying 
function of the form



The following are results given by Onley
and Kumar, and they illustrated rather 
nicely the transition from the linear to the 
exponential decay



The decay is exponential up to 5 
lifetimes (the time is given in units of 
the lifetime), but the regime changes at 
about 6 lifetimes due to interferences 
between the pole and the cut



Survival for small fractions of 
the lifetime



Dependence of the survival upon 
the coupling constant



Onset of non-exponential 
decay, for the strong 
coupling case



Line shapes (for the continuous  

part  of the spectrum,  

for  w_0 close to m



Line shapes (for the continuous 
part of the spectrum, for w_0 
1000 MeV



Assisted tunneling of a metastable state 
between barriers (G. Kalbermann; Phys. Rev. 
C. 77 (2008) 041601 (R)

Problem: exposing a system to external 
excitations can enhance its tunneling rate.

Model: 



Initial non-stationary state

Stationary states (even and odd solutions)



Normalization factors (even 
solutions)



Normalization factors (odd solutions)



External perturbation

Wave function



Amplitudes:



Matrix element of the external potential



Then, the eqs. for the amplitudes 
read

(for even solutions)

(for odd solutions)



Rescaling the variables:

The amplitudes are given by



The normalization factors have 
zeros at the values

where j is the pole index, with



with these expressions the poles are located 
symmetrically above and below the real momentum 
axis, with values given by



In Kalbermann’s calculations, the pole 
structure is of the form:



The first pole dominates the structure of 
the wave function, as of the decay constant, 
which is then given by (even states)

And (odd states)



Then, from Kalbermann’s results it is seen that two 
main effects are due to the action of the 
external potential upon the decaying states, 
namely:

a) The decay constant is enhanced 

b) The dominance of the first pole produces an 
extra damping

That is: the external field causes the acceleration 
of the tunneling  (the wave function will tunnel 
faster)



Two-Particle Resonant States in a Many-Body
Mean Field (from PRL 89 (2002) 042501

“…The role played by single-particle resonances and of
the continuum itself upon particles moving in the continuum
of a heavy nucleus is not fully understood.
One may approach this problem by using, as
the single-particle representation, the
Berggren representation. 
One chooses the proper continuum
as a given contour in the complex energy plane
and forms the basis set of states as the bound states plus
the Gamow resonances included in that contour plus the
scattering states on the contour…” (quoted from the
paper)



One may
thus think that the Berggren representation can also be
used straightaway to evaluate many-particle quantities, as
one does with the shell model using bound representations.
Unfortunately this is not the case. The root of the problem
is that the set of energies of the two-particle basis states
may cover the whole complex energy plane of interest….”



Then, the main contribution to the imaginary part of
the energy of the many-body states is given by 
Gamow vectors in the single-particle basis, as 
expected, with no effects coming from scattering
states. To illustrate this point we go to the nex
example (dispersion of neutrinos by a nucleus)



Some applications to nuclear structure
and nuclear reactions

refs: O.C, R. J. Liotta and M. Mosquera 
(Phys. Rev. C. 78 (2008) 064308)

We study the
process (charge
current neutrino-
nucleos scattering)

By assuming that the single particle states to be 
used in the calculations belong to a basis with bound, 
quasi-bound, resonant and scattering states.



The proton-particle states are (al large
distances they behave as exp{ikr}):

a) bound states, for which Re(k)=0, 
Im(k)>0,

b)anti-bound states, for which Re(k)=0, 
Im(k)<0.

c) outgoing (decay) states for which
Re(k)>0, Im(k)<0,

d) incoming (capture) states for which
Re(k)<0, Im(k)<0.



Proton states after the diagonalization of the
Woods Saxon plus Coulomb potential









The results of the calculations, show that:

1. the largest contributions to the considered
channels of the cross section are given by 
nuclear excitations where bound and resonant
states participate as proton single-particle
states, and

2. the contribution of single-particle states in 
the continuum is, for all practical purposes, 
negligible.



Some final words after these
examples….
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