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"As mentioned in the Introduction, we have presented in
this volume mainly applications of the harmonic oscillator
related to our own work or to that of those with which we
have come in contact...
...A complete analysis of the subject would require an
encyclopedia, within which one of the volumes could be the
present book."
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Motivation

The harmonic oscillator is the paradigm of integrability and
solvability with applications to many branches of physics. Is
it possible to promote all these features to a relativistic
quantum-mechanical model? The obvious way to proceed
is to add a harmonic oscillator potential to the stationary
Klein-Gordon operator. However, the Dirac equation
requires the "square root" of such operators. For this
reason x, p should appear linearly in a Dirac operator which
parallels the phase-space symmetry of the usual oscillator.
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Motivation

Our purpose is to review the construction of an
interaction for relativistic systems (particles) producing
bound states for arbitrarily high energies with
analytically solvable spectrum. Lorentz invariance is
crucial.

This was achieved by Moshinsky and Szczepaniak
(1989) with further generalizations to describe
interacting particles (1994) through Poincare invariant
equations.
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The Klein-Gordon oscillator

A naive approach to the problem is to propose a one-particle relativistic
equation in the form

(c2~
24 +m2c4 +

1

2
ω2r2)φ = 0 (1)

with the trivial result that energies become (~ = 1 = c)

E2 −m2 = 2ω(n+
3

2
) (2)

However, Lorentz invariance is not clear from the outset. It is also
necessary to find a first order equation in time for a good application to
hamiltonian systems in quantum mechanics.
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The Dirac oscillator

Moshinsky and Szczepaniak introduced a hamiltonian of the form

H = cα · (p± iωmβr) +mc2β (3)

Their purpose was to generalize the symmetry of the harmonic oscillator
to the context of relativistic wave equations. Both coordinate and
momentum operators must appear in linear form in order to preserve
integrability. The symmetry group includes now the Dirac algebra and
decomposes naturally into O(4) (compact component representing an
oscillator) and O(3, 1) (non-compact component representing states with
infinite degeneracy)
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The Dirac oscillator

Here we deal with the Dirac equation with a non-minimal coupling which is
linear in coordinates. Lorentz invariant wave equation reads

(γµ [pµ − iωr⊥µuνγ
ν ] + 1) Ψ = 0 (4)

where γµ are Dirac matrices and

r⊥µ = rµ − (rνuν)uµ (5)

the uν being a time-like four vector such that (uν) = (1, 0, 0, 0) for some
inertial frame. There, (4) can be written as

HΨ = i
∂Ψ

∂t
(6)
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The Dirac oscillator

H = α · (p− iωβr) + β (7)

with β = γ0, αi = βγi, i = 1, 2, 3. Stationary form

HΨ = EΨ (8)

with solutions

Ψ =





ψ1

ψ2



 (9)

satisfying

(

p2 + ω2r2 + 1 − 3ω − 4ωL · S
)

ψ1 = E2ψ1 (10)

(

p2 + ω2r2 + 1 + 3ω + 4ωL · S
)

ψ2 = E2ψ2 (11)
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The Dirac oscillator

ψ1 = ANjl|N(l, 1
2 )jm〉 (12)

ψ2 = (E + 1)−1S · (p− iωr)ψ1 (13)

Energies given by

E2
Njl = 1 + ω

2(N − j) + 1 l = j − 1
2

2(N + j) + 3 l = j + 1
2

(14)

Ψ± =





ψ±
1

ψ±
2



 , if ± E > 0 (15)

The completeness of these eigenfunctions has been proved elsewhere.
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The Dirac oscillator
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Non-relativistic limit

Restoring the units

(E2 −m2c4)ψ1 =
(

c2(p2 + ω2m2r2) − 3~ωmc2 − 4
ω

~
mc2L · S

)

ψ1 (16)

one has ε = E −mc2 � mc2, leading to

εψ1 =

(

HHO − 3

2
~ω − 2

ω

~
L · S

)

ψ1 (17)

The infinite degeneracy does not disappear, but the negative energy
solutions decouple from small components as expected
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The covariant equation

For convenience, let us eliminate the frequency from our units and leave
the rest mass. The equation leading to the Dirac oscillator hamiltonian is

[γµ(pµ + iγνu
νrµ

⊥) +m]ψ = 0, (18)

where uν is unit time-like vector which defines an inertial observer. The
perpendicular projection of coordinates is rµ

⊥ = rµ − (rνuν)uµ and

γj =





0 iσj

iσj 0



 , γ0 =





12 0

0 −12



 . (19)
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Pauli coupling

The Dirac eq. can be written also as

[γµp
µ +m+ SµνF

µν ]ψ = 0 (20)

with the choice Fµν = uµrν − uνrµ. The meaning of the external field can
be found by noting that

∂µF
µν = −uν , (21)

i.e. the vector uν can be interpreted as a current. In the frame of reference
(1, 0, 0, 0) we have a uniform charge density filling the space.
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Solvable Extensions

A supersymmetric formulation (Castaños et al.)

[Qa, Qb]+ = δab(H
2 − 1), [Qa, H

2] = 0 (22)

Q1 =





0 σ · A†

σ · A 0



 , Q2 =





0 −iσ · A†

iσ · A 0



 . (23)

reveals that other choices allow solvability: A = p + iG(r)r, with G(r) a
function leading to H.O. or Coulomb problems with centrifugal barriers.
We shall use an alternative notation to understand infinite degeneracies in
connection with dimensionality.
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Hilbert space

The Lorentz group is locally isomorphic to SU(2) × SU∗(2). The Hilbert
space is L2(C) × SU(2) × SU∗(2)

H = α · (p + iβr) +mβ (24)

We shall use a representation of the Dirac matrices given by

α =





0 iσ

−iσ 0



 , β =





12 0

0 −12



 . (25)

Quantum optical representation (why?)
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Hilbert space

With this notation we may introduce the concept of ∗−spin through the
vector Σi, whose projection eigenvalues account for big and small
components of spinors. Upon rotations, this projection also gives solutions
with positive and negative energies.

Σ+ =





0 12

0 0



 = σ+ ⊗ 12, Σ− = (Σ+)†, Σ3 = β (26)

The Hamiltonian can be written in algebraic form

H = Σ+S · a + Σ−S · a† +mΣ3, (27)
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Algebraic structure

The dependence of H on ladder operators shows the invariants
I = a† · a + 1

2Σ3, I ′ = (a · σ)†(a · σ) + 1
2Σ3. A pair of states with angular

momentum j and such that I| 〉 = (2n+ j − 1)| 〉 is given by

|φ1〉 = |n, (j − 1/2, 1/2)j,mj〉|−〉, |φ2〉 = |n− 1, (j + 1/2, 1/2)j,mj〉|+〉. (28)

Another pair of states with the same angular momentum j but with
I| 〉 = (2n+ j)| 〉 is

|φ3〉 = |n, (j + 1/2, 1/2)j,mj〉|−〉, |φ4〉 = |n− 1, (j − 1/2, 1/2)j,mj〉|+〉. (29)
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Algebraic structure

The 2 × 2 blocks of H obtained from these states can be evaluated.

H(j, 2n+ j − 1) =





−m
√

2n
√

2n m



 , (30)

H(j, 2n+ j) =





−m
√

2(n+ j)
√

2(n+ j) m



 (31)

leading to the well known energies E2 = m2 + 2(n+ j) and E2 = m2 + 2n.
Infinite and finite degeneracies come from these two blocks respectively.
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Algebraic structure

The discussion on the algebraic structure above can be implemented
directly in 1 and 2 spatial dimensions.

AR = a1 + ia2, AL = a1 − ia2 = (AR)∗ (32)

with the properties

[AR, AL] = [AR, (AL)∗] = 0, [AR, A
†
R] = [AL, A

†
L] = 4. (33)
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Algebraic structure

The low dimensional hamiltonians are

H(1) = α1 (p+ iβx) +mβ, (34)

with α1 = −σ1, β = σ3 and

H(2) =
∑

i=1,2

αi(pi + iβri) +mβ, (35)

with α1 = −σ2, α2 = −σ1, β = σ3.
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Algebraic structure

These hamiltonians can be cast in algebraic form as

H(1) = σ+a+ σ−a
† +mσ3 (36)

H(2) = σ+AR + σ−A
†
R +mσ3 (37)

Both of them have a 2 × 2 structure: The spin is absent in one spatial
dimension and σ± corresponds to ∗−spin, while in two dimensions σ3

generates the U(1) spin.
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Algebraic structure

The solvability can be viewed again as a consequence of the invariants

I(1) = a†a+
1

2
σ3 (38)

I(2) = ARA
†
R +

1

2
σ3, J3 = ARA

†
R − ALA

†
L +

1

2
σ3 (39)

The two dimensional case exhibits some peculiarities. The conservation
of angular momentum J3 comes from the combination of σ and AR in
H(2), together with the absence of AL, A

†
L. This absence is also

responsible for the infinite degeneracy of all levels. On the other hand, the
three dimensional example is manifestly invariant under rotations due to
its dependence on S · a and S · a† and its infinite degeneracy comes from
the infinitely degenerate operator (σ · a)(σ · a)†.
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The many body Dirac equation

The success of Moshinsky’s work related to the harmonic oscillator of
arbitrary particles and dimensions is due to the fact that the results
provided a good basis to solve variational problems in bound
composite systems

The idea is to extend this success to relativistic quantum mechanics.
However, we need a model which allows the integrability and
solvability we are seeking for.
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The Foldy-Wouthuysen transformation

There exists a unitary operator which transforms the Dirac hamiltonian
into a diagonal operator in spinorial components. In other words, it finds
the basis in which the z component of ∗-spin gives the positive and
negative energies of the system.
Such transformation can be carried out explicitly for exactly solvable
problems such as the free particle and the Dirac oscillator. The idea is to
express the hamiltonian in terms of its even and odd parts and find S such
that

HFW = eiSHDe
−iS = even (1)

In our example, iS = β(α · π)θ, tan(2θα · π) = α · π
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Relativistic Composite Particles

Poincaré invariance of the many body problem
We propose a generalization of the Dirac equation for a system of many
particles. It is defined such that, in the frame of reference where the
center of mass is at rest, we recover a hamiltonian of the form

H =
N
∑

i

Hi + V (x1, ...,xN) (2)

where Hi is the Dirac hamiltonian of the i-th particle. The potential V is
assumed to be independent of the center of mass. Such an equation is

[

N
∑

s=1

Γs(γ
µ
s pµs +ms + ΓsV (xs

⊥))

]

ψ = 0 (3)
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The relative coordinates and the time-like relative coordinates are given
respectively by

xst
µ = xs

µ − xt
µ, xst

⊥µ = xst
µ − xst

τ u
τuµ, (4)

We use the time-like unit vector in the form

uµ = (−PτP
τ )−1/2Pµ. (5)
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For convenience we have defined

Γ =
N
∏

r=1

γµ
r uµ, Γs = (γµ

s uµ)−1Γ. (6)

Taking P i = 0 and H = P 0 in (3), one recovers (2).
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The cockroach nest

For commuting Dirac hamiltonians one expects that the total FW
transformation can be decomposed into individual factors corresponding
to each hamiltonian. We shall define the multiparticle FW transformation
in the next slides, but let us note that for free particles we should obtain

HFW =
N
∑

i=1

βi

√

p2
i +m2

i (7)

where it becomes evident that the energies are now added with ’wrong’
signs due to the β matrices. This means that the transformation to even
hamiltonians contains both particle and anti-particle solutions without a
correction of the signs in front of their kinetic energies. One has to project
the final result onto the purely positive component, otherwise we would
obtain an extraordinary infinite degeneracy.
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The many body Foldy-Wouthuysen transformation
With the aim of characterizing the spectrum of a multibody system with
interactions, we seek for an expansion of H in terms of inverse powers of
the rest mass. Such an expasion should allow the identification of positive
and negative energies of the model. For one particle in a potential V , we
have

H = O + E + V, O = α · p, E = mβ (8)

we apply a unitary operator U = exp(iS) exp(iS′) exp(iS′′),

S =
−iβ
2m

O , S′ =
−iβ
2m

O ′, S′′ =
−iβ
2m

O ′′

O ′ =
β

2m
[α · p, V ], O ′′ =

−(α · p)p2

3m2
, H ′ = UHU † (9)
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Expanding up to 1/(mass)3 in the kinetic energy, 1/(mass)2 in the
potential, we have

H ′ = Ĥ + V, Ĥ = β

(

m+ p2

2m
− p4

8m3

)

+ 1
4m2 s ·

[

(p× E) − (E× p)

]

+ 1
8m2∇2V

(10)

with E = −∇V , S = −i
4 α × α. For two particles H = H1 +H2 + V (r1, r2).

Applying successively U1 = exp(iS1) and U2 = exp(iS2) one gets

U2U1H(U2U1)
† = Ĥ1 + Ĥ2 + V + higher order (11)
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In the general case with n particles, one has

H =
N
∑

i=1

Hi + V (r1, ..., rN) (12)

H ′ = UN ...U1H(UN ...U1)
† =

N
∑

i=1

Ĥi + V (r1, ..., rN) (13)

with

Ĥt = βt

(

mt +
p2

t

2mt

− p4

t

8m3

t

)

+ 1
4m2

t

st · (pt × Et − Et × pt) + 1
8m2

t

∇2
tV,

t = 1, 2, · · ·n
(14)
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Application to a two quark system
The hamiltonian is

H ′ = (β1 + β2)

(

m+ p2

2m
− p4

8m3

)

+ V

+ 1
4m2

(

s1 + s2

)

·
[

(p× E) − (E× p)

]

+ 1
4m2∇2V

(15)

with the potential V = 1
2mω

2(r1 − r2)
2.

In the center of mass frame, the choice of positive energy components
reduces the hamiltonian to

H ′ =

(

2m+ 3
ω2

8m

)

+

(

p2

m
+
mω2r2

4
+
ω2

4m
S · L

)

− p4

4m3
(16)

with r,p relative coordinate and momentum. The spectrum of the problem
is found by diagonalizing the matrix with elements given by
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< n′l,

(

1
2

1
2

)

S; j,m|H ′|nl,
(

1
2

1
2

)

S, j,m >

=

(

2m+ 3ω2

8m
+ ω

(

2n+ l + 3
2

)

+ ω2

8m
[j(j + 1) − l(l + 1) − s(s+ 1)]

)

δnn′

− 1
4m3 < n′l′|p4|nl >

(17)

where we use two particle harmonic oscillator states with spin, i.e.

|nl,
(

1

2

1

2

)

S; j,m >≡
∑

µ,σ

< lµ, Sσ|jm > |nlµ > |
(

1

2

1

2

)

Sσ > (18)

We take N ≤ Nmax to get a finite matrix.
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As an application, one can describe the mass spectrum of binary systems
such as bottomonium or charmonium. It is possible to introduce quartic
corrections to the potential in order to obtain more realistic spectra
V ′ = −amω4r4

16 . The FW transformation of such a term yields next order
corrections, therefore we neglect them. The coupling constants and the
rest mass are taken as adjustable parameters. They are fitted to
experimental data using least dispersion.
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Energy comparison. Solid: experimental. Dotted: theory.
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Energy comparison. Solid: experimental. Dotted: theory.
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Application to the three body problem
The hamiltonian is now

H ′ =

3
∑

t=1

βt

(

mt +
p2

t

2mt

− p4
t

8m3
t

)

+
1

4m2
t

st ·(pt×Et−Et×pt)+
1

8m2
t

∇2
tV +V

(19)

with a potential

V =
Mω2

6

[

(r1 − r2)
2 + (r2 − r3)

2 + (r3 − r1)
2

]

(20)
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Jacobi coordinates

The harmonic oscillator for n particles

H = 1
2

n
∑

i=1

p2
i +

ω2

2n

n
∑

i,j=1

(ri − rj)
2 (21)

can be decoupled into n− 1 oscillators by using the Jacobi coordinates

(ṗs)j = [s(s+ 1)]−1/2
s
∑

t=1

((pt)j − (ps+1)j) , s = 1, . . . , n− 1,

(ṗn)j = n−1/2
n
∑

t=1

(pt)j (22)
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In Jacobi coordinates without the center of mass we have

H ′ = Mc2 +

(

1

4
ṗ2
1 +

1

12
ṗ2
2

)(

1

m1
+

1

m2

)

+
1

3m3
ṗ2
2 +

1√
12
ṗ12

(

1

m1
− 1

m2

)

− 1

8m3
1c

2

(

1

4
ṗ4
1 +

1

36
ṗ4
2 +

1

3
ṗ2
12 +

1

6
ṗ2
1ṗ

2
2 +

1√
3
ṗ12ṗ

2
1 +

1

3
√

3
ṗ12ṗ

2
2

)

− 1

8m3
2c

2

(

1

4
ṗ4
1 +

1

36
ṗ4
2 +

1

3
ṗ2
12 +

1

6
ṗ2
1ṗ

2
2 −

1√
3
ṗ12ṗ

2
1 −

1

3
√

3
ṗ12ṗ

2
2

)

+
1

18m3
3c

2
ṗ4
2

Mω2

8c2

[

1

m2
1

S1 ·
(

L̇1 +
1

3
L̇2 +

1√
3
L̇12

)

+
1

m2
2

S2 ·
(

L̇1 +
1

3
L̇2 −

1√
3
L̇12

)

− 8

3m2
3

S3 · L̇2

]

+
M~

2ω2

8c2

(

1

m2
1

+
1

m2
2

+
1

m2
3

)

+ V (23)
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The spectrum is obtained by diagonalizing

< n′1, l
′
1, n

′
2, l

′
2, L

′;

(

1

2

1

2

)

T ′ 1

2
S′; j′m′|H ′|n1, l1, n2, l2, L;

(

1

2

1

2

)

T
1

2
S; jm > (24)

where the states are

|n1, l1, n2, l2, L;

(

1

2

1

2

)

T
1

2
S; jm >=

∑

µ,σ

< Lµ, Sσ|jm > |n1, l1, n2, l2, Lµ > |
(

1

2

1

2

)

T
1

2
Sσ > (25)

Matrix elements are computed by means of Racah algebra. We take
Nmax = 3.
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To achieve a better agreement with experiment, we may introduce a mass
an a frequency which depend on the integrals of the motion We include a
comparison with the spectra of Σ particles (strange baryons). Dotted:
Theory. Solid: Experimental
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Table of parameters

JP ω (en Mev) M

1
2

+
96 1.00

1
2

−
184 1.00

3
2

+
187 1.27

3
2

−
179 0.93

5
2

+
137 1.11

5
2

−
137 1.03
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Two particle Dirac oscillator
The hamiltonian and the Poincare invariant equation are

H = (α1 − α2) · (p− i
ω

2
rB) + β1 + β2 (26)

[

∑

s=1,2

Γs

(

γµ
s (pµs − iωx′⊥µsΓ) + 1

)

]

Ψ = 0 (27)

The resulting spectrum is given by E = ±EN,s,j,m

EN,s,j,m =

2
√

1 + ωN, 0 for s = 0, P = (−)j

2
√

1 + ω(N + 2), 0 for s = 1, P = (−)j

2
√

1 + ω(N + 1), 0 for s = 1, P = −(−)j

(28)
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The wavefunctions are known for all cases indicated before:

Ψ =















ψ11

ψ21

ψ12

ψ22















,





ψ11

ψ22



 =
1√
2





a+ + a−

a+ − a−



 |N(j, 0)jm〉 (29)

For s = 0. Whenever s = 1 and P = (−)j , we have





ψ11

ψ22



 =
1√
2





b+ + b−

b+ − b−



 |N(j, 1)jm〉 (30)
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For s = 1, P = −(−)j the result is





ψ11

ψ22



 =
1√
2





c++ + c−+

c−+ − c++



 |N(j + 1, 1)jm〉

+
1√
2





c+− + c−−

c−− − c+−



 |N(j − 1, 1)jm〉 (31)

where the coefficients c±±, a±, b± are determined by the secular
equations arising from the Schroedinger equation for the relativistic
hamiltonian. Taking into account (26), the stationary equation yields the
complementary components of the wavefunction ψ21,ψ12.
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The three-particle Dirac oscillator
Poincare invariant equation and hamiltonian:

(

n−1
n
∑

s=1

Γs(γ
µ
s Pµ) +

n
∑

s=1

[

γµ
s (p′µs − iωx′⊥µsΓ) + 1

]

)

Ψ = 0 (32)

HΨ =
n
∑

s=1

[αs · (p′
s − iωx′

sB) + βs] Ψ = EΨ (33)
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The spectrum is obtained by combining the equations for some of the
spinor components of the wavefunction and noting that the total number of
quanta of the TWO PARTICLE oscillator is conserved (two Jacobi
coordinates). The wavefunctions are

Ψ+ =















ψ111

ψ122

ψ212

ψ221















, Ψ− =















ψ112

ψ121

ψ211

ψ222















(34)
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and they satisfy

OΨ+ = 0, O ≡ MD−1
− M† −D+ (35)

with

D+ = diag (E − 3, E + 1, E + 1, E + 1), (36)

D+ = diag (E − 1, E − 1, E − 1, E + 3) (37)
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M = 2i
√

2ω















S3 · η′
3 S2 · η′

2 S1 · η′
1 0

S2 · η′
2 S3 · η′

3 0 S1 · η′
1

S1 · η′
1 0 S3 · η′3 S2 · η′

2

0 S1 · η′
1 S2 · η′

2 S3 · η′
3















, (38)

η
′
s = ηs −

1

3
(η1 + η2 + η3) (39)

ξ
′
s = η

′†
s (40)
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Using the states

|n1, l1, n2, l2(L);
1

2

1

2
(T )

1

2
(S); JM〉 =

[

[(ṙ1|n1l1) × (ṙ2|n2l2)]L ×
[[

(1|1
2
) × (2|1

2
)

]

T

× (3|1
2
)

]

S

]

JM

(41)

one finds the matrix elements of O . We diagonalize for each number of
quanta. The resulting matrices are FINITE. We restrict to N = 0, 1, 2. The
wavefunctions are finally obtained by finding the null vectors of the matrix
〈O 〉 for each energy. The complementary components are obtained using
the original stationary equation, as before.
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N N1 N2 n1 n2 l1 l2 P L J

0 0 0 0 0 0 0 + 0 S

1 1 0 0 0 1 0 - 1 |1 − S| ≤ J ≤ 1 + S

1 0 1 0 0 0 1 - 1 |1 − S| ≤ J ≤ 1 + S

2 2 0 1 0 0 0 + 0 S

2 0 2 0 1 0 0 + 0 S

2 1 1 0 0 1 1 + 0 ≤ L ≤ 2 |L− S| ≤ J ≤ L+ S

2 2 0 0 0 2 0 + 2 |2 − S| ≤ J ≤ 2 + S

2 0 2 0 0 0 2 + 2 |2 − S| ≤ J ≤ 2 + S

Table of states for Nmax = 2
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Energies for ω = 0.03. The eigenvalues are distributed in four groups
around the values −3,−1, 1, 3

-4 -2 0 2 4

E

0.03

Spectrum for ω = 0.1 and N = 2,

3 3.5 4 4.5 5

E

0.1
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Spectrum for ω = 1 and N = 2

3 3.5 4 4.5 5

E

1.
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One dimensional n-particles

The kinetic part of the hamiltonian

H = (1 +B)
n
∑

i

σi
1a

′
i + h.c.+ mass (42)

is infinitely degenerate. We have removed all other degrees of freedom in
order to show that the cockroach nest makes itself present for an arbitrary
number of interacting particles. Its elimination is not a trivial task, in
despite of our careful choice of observables. To see the infinite
degeneracy, apply eigenstates of σi

1 to (H − mass)2. Question: is there a
system of one-dimensional Dirac particles which parallels the Calogero
model?
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Comment

The original application of the three particle Dirac oscillator
contained eigenstates of the permutation group, dealing
also with particle statistics. At the end of the calculations,
energies and eigenfunctions were obtained and a prediction
for the form factor of the proton was given. However, let me
quote Moshinsky once again
"We conclude by stressing that we have made a calculation
using an harmonic oscillator picture with a single parameter
(frequency) and it is as good or as bad as many more
complicated ones that start from QCD or that use many
more parameters."
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The three-particle Dirac oscillator
Poincare invariant equation and hamiltonian:

(

n−1
n
∑

s=1

Γs(γ
µ
s Pµ) +

n
∑

s=1

[

γµ
s (p′µs − iωx′⊥µsΓ) + 1

]

)

Ψ = 0 (1)

HΨ =
n
∑

s=1

[αs · (p′
s − iωx′

sB) + βs] Ψ = EΨ (2)
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The spectrum is obtained by combining the equations for some of the
spinor components of the wavefunction and noting that the total number of
quanta of the TWO PARTICLE oscillator is conserved (two Jacobi
coordinates). The wavefunctions are

Ψ+ =















ψ111

ψ122

ψ212

ψ221















, Ψ− =















ψ112

ψ121

ψ211

ψ222















(3)
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and they satisfy

OΨ+ = 0, O ≡ MD−1
− M† −D+ (4)

with

D+ = diag (E − 3, E + 1, E + 1, E + 1), (5)

D+ = diag (E − 1, E − 1, E − 1, E + 3) (6)
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M = 2i
√

2ω















S3 · η′
3 S2 · η′

2 S1 · η′
1 0

S2 · η′
2 S3 · η′

3 0 S1 · η′
1

S1 · η′
1 0 S3 · η′3 S2 · η′

2

0 S1 · η′
1 S2 · η′

2 S3 · η′
3















, (7)

η
′
s = ηs −

1

3
(η1 + η2 + η3) (8)

ξ
′
s = η

′†
s (9)
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Using the states

|n1, l1, n2, l2(L);
1

2

1

2
(T )

1

2
(S); JM〉 =

[

[(ṙ1|n1l1) × (ṙ2|n2l2)]L ×
[[

(1|1
2
) × (2|1

2
)

]

T

× (3|1
2
)

]

S

]

JM

(10)

one finds the matrix elements of O . We diagonalize for each number of
quanta. The resulting matrices are FINITE. We restrict to N = 0, 1, 2. The
wavefunctions are finally obtained by finding the null vectors of the matrix
〈O 〉 for each energy. The complementary components are obtained using
the original stationary equation, as before.
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N N1 N2 n1 n2 l1 l2 P L J

0 0 0 0 0 0 0 + 0 S

1 1 0 0 0 1 0 - 1 |1 − S| ≤ J ≤ 1 + S

1 0 1 0 0 0 1 - 1 |1 − S| ≤ J ≤ 1 + S

2 2 0 1 0 0 0 + 0 S

2 0 2 0 1 0 0 + 0 S

2 1 1 0 0 1 1 + 0 ≤ L ≤ 2 |L− S| ≤ J ≤ L+ S

2 2 0 0 0 2 0 + 2 |2 − S| ≤ J ≤ 2 + S

2 0 2 0 0 0 2 + 2 |2 − S| ≤ J ≤ 2 + S

Table of states for Nmax = 2
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Energies for ω = 0.03. The eigenvalues are distributed in four groups
around the values −3,−1, 1, 3

-4 -2 0 2 4

E

0.03

Spectrum for ω = 0.1 and N = 2,

3 3.5 4 4.5 5

E

0.1
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Spectrum for ω = 1 and N = 2

3 3.5 4 4.5 5

E

1.
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One-dimensionaln particles

The kinetic part of the hamiltonian

H = (1 +B)
n
∑

i

σi
1a

′
i + h.c.+ mass (11)

is infinitely degenerate. We have removed all other degrees of freedom in
order to show that the cockroach nest makes itself present for an arbitrary
number of interacting particles. Its elimination is not a trivial task, in
despite of our careful choice of observables. To see the infinite
degeneracy, apply eigenstates of σi

1 to (H − mass)2. Question: is there a
system of one-dimensional Dirac particles which parallels the Calogero
model?
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Comment

The original application of the three particle Dirac oscillator contained
eigenstates of the permutation group, dealing also with particle statistics.
At the end of the calculations, energies and eigenfunctions were obtained
and a prediction for the form factor of the proton was given. However, let
me quote Moshinsky once again
"We conclude by stressing that we have made a calculation using an
harmonic oscillator picture with a single parameter (frequency) and it is as
good or as bad as many more complicated ones that start from QCD or
that use many more parameters."
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Exactly solvable extensions

Consider a hermitean operator of the form Φ(r,p) as the potential to be

introduced in the total hamiltonian. One has H(d) = H
(d)
0 + Φ, with H(d)

0

given by the d−dimensional Dirac oscillator. On physical grounds, this
corresponds to a bound fermion perturbed by a momentum-dependent
potential. We introduce also an internal group for this field, for example the
SU(2) associated to isospin or as the gauge group of a non-abelian field

Φ =
(

T+S · a + T−S · a† + γT3

)

(12)

One may consider any potential of the form
Φ = F (T+S · a + T−S · a† + γT3) where F admits a power expansion.
Evidently, [I(3),Φ] = 0. A suitable group of states can be used to evaluate
the 4 × 4 blocks of H. We describe this procedure by restricting ourselves
to the linear case for simplicity.
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Exactly solvable extensions

Lower dimensional examples follow the same pattern

H(1) = σ+a+ σ−a
† +mσ3 +

(A+ σ3B)
(

T+a+ T−a
† + γT3

)

(13)

H(2) = σ+AR + σ−A
†
R +mσ3 +

(A+ σ3B)
(

T+AR + T−A
†
R + γT3

)

(14)

H(3) = Σ+S · a + Σ−S · a† +mΣ3 +

(A+ Σ3B)
(

T+S · a + T−S · a† + γT3

)

. (15)
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Exactly solvable extensions

With these extensions, it is evident that the new invariants for one, two
and three dimensions are

I(1) = a†a+
1

2
σ3 +

1

2
T3 (16)

I(2) = ARA
†
R +

1

2
σ3, J3 +

1

2
T3 = ARA

†
R −ALA

†
L +

1

2
σ3 +

1

2
T3 (17)

I(3) = a† · a +
1

2
Σ3 +

1

2
T3, J = a† × a + S. (18)
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Exactly solvable extensions

Eigenstates of H(3). We proceed to evaluate the 4 × 4 matrix
H(N, j) ≡ 〈 |H(3)| 〉.

|φN
1 〉 = |n, (j + 1/2, 1/2)j,mj〉|−〉Σ|−〉T (19)

|φN
2 〉 = |n, (j − 1/2, 1/2)j,mj〉|−〉Σ|+〉T

|φN
3 〉 = |n− 1, (j − 1/2, 1/2)j,mj〉|+〉Σ|−〉T

|φN
4 〉 = |n− 1, (j + 1/2, 1/2)j,mj〉|+〉Σ|+〉T

where n is the oscillator radial number, j is the total angular momentum
and mj its projection in the z axis. These are eigenstates of I(3) with
eigenvalue N = 2n+ j − 1/2.
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Exactly solvable extensions

The resulting 4 × 4 blocks of H with elements H(N, j)kl = 〈φN
k |H|φN

l 〉 are















−m− (A−B)γ (A−B)
√

2(n+ j) −
√

2(n+ j) 0

(A−B)
√

2(n+ j) −m+ (A−B)γ 0
√

2n

−
√

2(n+ j) 0 m− (A+B)γ (A+B)
√

2n

0
√

2n (A+B)
√

2n m+ (A+B)γ















and the secular equation |H(N) −E| = 0 can be solved explicitly using
the formula for the roots of a quartic polynomial. The infinite degeneracy
is now broken, since one cannot reduce H(N) to smaller blocks where
only n appears. The exception to this occurs when A = B = 0, which
obviously recovers the usual Dirac oscillator.
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Exactly solvable extensions

With the aid of the vector uµ we can introduce more interactions in a
covariant way. A non-local, non-abelian field tensor F µν =

∑3
i=1 TiF µν

i

can be introduced in the equation by means of the Pauli coupling. We
propose

F µν
1 = εµνλρuλr⊥ρ (20)

F µν
2 = εµνλρuλp⊥ρ (21)

F µν
3 = 0, (22)

for which the Dirac equation reads

[γµp
µ +m+ SµνF

µν +BSµνF µν ]ψ = 0, (23)
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Exactly solvable extensions

The nature of such field can be elucidated by inserting our F µν in the
corresponding non-local field equations. Using

F µν = uµ(rν
⊥T1 + pν

⊥T2) − µ↔ ν (24)

one has

F µν = i([pµ, Bν ] − µ↔ ν) + [Bµ, Bν ]. (25)
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Exactly solvable extensions

The gauge potential and the current can be obatained in the form

Bµ = uµ(
1

2
rµr

ν
⊥T1 + rνp

ν
⊥T2) Bilinear in p, r. (26)

jν = i[pµ, F̃
µν

] + [Bµ, F̃
µν

] (27)

= −uνT1 + pν
⊥ +

(

1

2
{pν

⊥, rµr
µ
⊥} − {pµ

⊥, r
ν
⊥}rµ

)

T2 (28)

= −uνT1 + pν
⊥ + trilinear terms in p,r .
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Eigenvalues

The vanishing coupling shows the eigenvalues of the Dirac oscillator.
Degeneracies are lifted and level spacing increases.

El Colegio Nacional July 29, 2010 – p. 25/35



Quantum Optics

The structure of our hamiltonian shows that our model can be mapped to
a Jaynes-Cummings hamiltonian of two atoms (of two levels each)

H = σ+a+ σ−a
† +mσ3 + T+a+ T−a

† + γT3 (29)

where σ, T are now the operators for the atoms 1 and 2. The operator a is
the anhilation operator of the electromagnetic field mode. Spin-spin
interactions can be introduced as well.
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Purity

Defining a partition of the system A+B

We take a pure state density operator ρ = |ψ(t)〉〈ψ(t)| of the entire system
and compute purity P and entropy S of the Dirac oscillator subsystem.

P (t) = TrN,σ

(

(Trτρ(t))
2
)

S(t) = −TrN,σ (Trτρ(t)Log (Trτρ(t))) ,

(30)

where TrN,σ is the trace with respect to oscillator and ∗-spin degrees of
freedom, while Trτ is the trace with respect to isospin.
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Integrability

Integrals of the motion

I(3) = a† · a +
1

2
Σ3 +

1

2
T3, J = a† × a + S. (31)

but we analyze the one dimensional case for simplicity

I(1) = a†a+
1

2
σ3 +

1

2
T3 (32)
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Integrability

We use the eigenstates of I(1)

|φn
1 〉 = |n+ 2〉| − −〉 |φn

2 〉 = |n+ 1〉| − +〉
|φn

3 〉 = |n+ 1〉| + −〉 |φn
4 〉 = |n〉| + +〉 (33)

H =

















H0 0 0 . . .

0 H1 0 . . .

0 0 H2

...
...

. . .

















, (34)

where Hn is a 4 × 4 block.
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Entanglement with external fields

Initial state ψ = χn ⊗ χ,

|χ〉 = 1/
√

2(cos θ|+〉 + sin θ|−〉) (35)

and χn is a solution of the unperturbed Dirac oscillator

|χn〉 = A(+)
n |n〉|+〉 +A(−)

n |n+ 1〉|−〉 (36)

We use exact solutions to compute P (t), S(t) (purity and entropy). Other
initial conditions can be used in the context of Quantum optics, but this
side of the analogy is not discussed here.
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Results

A resonant effect around γ = m
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Results

A resonant effect around γ = m
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Remarks

Purity as a measure of relativistic entanglement requires a good
choice of partitions

A toy model suggests that particle creation and maximal
entanglement are related

This can be interpreted as a resonant effect in the Quantum Optics
analogy
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The Dirac oscillator

The equation leading to the Dirac oscillator hamiltonian is

[γµ(pµ + iγνu
νrµ

⊥) +m]ψ = 0, (1)

but we shall use the one and two dimensional hamiltonians

H = σ+a+ σ−a
† +mσ3, (2)

H = σ+aR + σ−a
†
R +mσ3 (3)

UNAM and Uni-Ulm July 29, 2010 – p. 3/47



Our motivation: Graphene
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What is graphene?
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What is graphene?
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History (1947-2007)

Band theory in tight binding approximation (1946)

Field theory of electrons in 2+1 from lattice (1984)
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History (1947-2007)

Experimental evidence (2005)

Review of results: theory and experiment (Novoselov, 2007)

Spectrum measurement

Quantum Hall effect

Klein’s Paradox

Topology and curvature deffects
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History (1947-2007)
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General considerations

For our purposes, the situation can be modelled by a Schroedinger
equation with a potential consisting of deep wells, each of them
located at a lattice point. The specific shape of atomic wave functions
is irrelevant, as long as we know how the overlaps (interactions)
decay as a function of the distance between resonators. For practical
purposes, such decay can be regarded as exponential, which follows
from considering a lattice of constant potential wells. As an additional
remark, such potentials should be deep enough such that only one
level (or isolated resonance) well below the surface contributes to the
dynamics.
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One dimensional model

A lattice consisting of two periodic sublattices is considered. They have
the same period and are denoted as type A and type B. Each sublattice
point can be labeled by an integer n according to its position on the line,
i.e.xn. The energy of the single level to be considered in the well is
denoted by α for type A and β for type B. The state corresponding to a
particle in site n of lattice A is denoted by |n〉A and the corresponding
localized wave function is given by ξA(x− xn) = 〈x|n〉A. The same
applies for B. The probability amplitude ∆ (or overlap) between nearest
neighbors is taken as a real constant.

H =





HAA HAB

HBA HBB



 (4)
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One dimensional model

Configuration of potential wells (or resonators) on a chain. a) The periodic
case. b) General deformation. c) Dimer deformation.
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One dimensional model

Resonators in a one dimensional lattice. The plot above gives a
representation of resonators as a function of the x-coordinate, while the
plot below shows an idealization of the corresponding potential (wells) and
the wave functions of resonances. These functions may leak outside the
wells.
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One dimensional model

Density plot of coupling between resonators. Exponential decay.
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The free case

The hamiltonian can be cast in terms of Pauli matrices
σ3, σ+ = σ1 + iσ2, σ− = σ†

+ by defining

Π =

















. . .

∆ ∆

∆ ∆

. . .

















(5)

and setting M = (α− β)/2, E0 = (α+ β)/2. We have

H = E0 + σ3M + σ+Π + σ−Π† (6)

This is a general structure which explains the appearance of pseudospin.
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It is left to show that there is a region where the spectrum is linear (Dirac).
The spectrum is computed by squaring H.

(H −E0)
2 = M2 + ΠΠ† (7)

Bloch’s theorem enters in the form

Πφk = ∆(1 + ei2πλk)φk, ΠΠ†φk = ∆2|1 + ei2πλk|2φk (8)
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The energies and eigenfunctions of H are

E(k) = E0 ±
√

∆2|1 + ei2πλk|2 +M2 (9)

ψ± = N





φk

±E(k)−E0−M

∆(1+ei2πλk)
φk



 , (10)

Around points where the inter-band distance is minimal, we have the
usual relativistic formula

E(κ) = E0 ±
√

∆2κ2 +M2, (11)
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The amplitudes are proportional to the overlap between neighboring sites
and decay exponentially as a function of the separation distance between
resonators, i.e.

∆n,n+1 = ∆e−dn/Λ, (12)

where dn + λ is the separation distance between resonators of type A and
B in the n-th position. When dn = 0, the periodic configuration is
recovered. The length Λ has been introduced for phenomenological
reasons: The decay law might be given by a multipole law, but we fit it to
an exponential decay by adjusting Λ.
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With all this, it is natural to expect a modification in the operators Π,Π†.
We use a, a† and impose [a, a†] = ω = constant (The limit ω = 0 recovers
Bloch’s theorem). One finds the conditions

∆n,n = ∆, ∆2
n+1,n+2 − ∆2

n,n+1 = ω (13)

Therefore the distance formula for the resonators is

dn = Λ log

(

∆2

∆2 − nω

)

, 0 < n < nmax (14)

with nmax = [|∆2

ω
|].
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One dimensional Dirac oscillator

Finally, we have the hamiltonian

H = E0 + σ3M + σ+a+ σ−a
† (15)

with energies and wave functions

E(n) = E0 ±
√

ωn+M2, 0 > n > ∆2/ω (16)

ψ± = N





φn+1

±(E(n)−E0)−M√
ω(n+1)

φn



 ,
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Wavefunctions

Ground state as a function of site number. The ground state wavefunction
is obtained by multiplying the values given in the ordinate by the individual
resonant wavefunctions. These are considered to be highly peaked at
each site. The signs alternate from site to site.

5 10 15 20 25
x @ΛD

Φ Ground State
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Wavefunctions

Ground state density as a function of site number. The probability density
is obtained by multiplying the values in the ordinate by the individual
resonant wavefunctions, which are considered to be highly peaked at
each site. The density does not exhibit nodes.

5 10 15 20 25 x @ΛD

ÈΦÈ2 Ground State Density
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Two dimensional lattice

The concepts given in the last sections are now extended to produce an
emulation of graphene. We shall use the same algabraic strategy to
derive spectra and a possible extension through deformations, namely the
two dimensional Dirac oscillator.
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Two dimensional lattice

Deformations
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Two dimensional lattice
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The free case in 2D

We start with the tight binding hamiltonian

H = α
∑

A

|A〉〈A| + β
∑

A

|A + b1〉〈A + b1| (17)

+
∑

A,i=1,2,3

∆(|A〉〈A + bi| + |A + bi〉〈A|)

The usual Pauli operators are constructed through the definitions

σ+ =
∑

A

|A〉〈A + b1|, σ− = σ†
+ (18)

σ3 =
∑

A

|A〉〈A| − |A + b1〉〈A + b1|, (19)
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while the kinetic operators Π,Π† are defined as

Π =
∑

A,i

∆(|A〉〈A + bi − b1| + |A + b1〉〈A + bi|) . (20)

The spectrum and eigenfunctions are obtained again by squaring H. With
M and E0 given as before, we obtain

H = E0 +Mσ3 + σ+Π + σ−Π† (21)

and

(H −E0)
2 = M2 + ΠΠ† (22)
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The Dirac points

Energy surfaces (taken from Novoselov et al.)
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The Dirac points

The spectrum and eigenfunctions are then

E(k) = E0 ±
√

∆2|
∑

i

ei2πλbi·k|2 +M2 (23)

ψ± = C±φ1
k +D±φ2

k, C± =
±(E(k) −E0) −M

∆(
∑

i e
i2πλbi·k)

D± (24)

It is well known that the degeneracy points of the spectrum for the
massless case are k0 = ± 1

2λ
(1,−

√
3). Around such points one finds

E(k− k0) −E0 = ±
√

∆2k2 +M2 (25)
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The Dirac oscillator in 2D

We deform the lattice through an extension of the kinetic operators, just as
in the one dimensional case. Let us consider site dependent transition
amplitudes ∆(A,A + b1) connecting the sites labeled by A,A + b1.
Again, these are related to distances d(A,A + b1) between resonators as
∆(A,A + b1) = ∆exp(−d(A,A + b1)/Λ). Now we define the ladder
operator

aR =
∑

A,i

∆(A,A + b1) (|A〉〈A + bi − b1| + |A + b1〉〈A + bi|) (26)

and impose [aR, a
†
R] = ω.
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After some algebra, one can prove that this leads to recurrence relations

∆(A,A + b1) = ∆, (27)

∆2(A,A + b2) + ∆2(A + b2,A + b2 − b3) = (28)

∆2(A + b1,A + b1 + b2) + ∆2(A + b2 + b1,A + b1 + b2 − b3),

∆2(A,A + b2) + ∆2(A,A + b3) = (29)

∆2(A + b1,A + b1 − b3) + ∆2(A + b1,A + b1 − b2) + ω.

Complicated, but one can use a program to generate all lattice points !!
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Deformed lattices

Deformations
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Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is
used as a seed. A choice of deformation angle may produce periodicity in
one direction (trivial case)
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Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is
used as a seed. No periodicity.
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Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is
used as a seed. No periodicity.
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Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is
used as a seed. No periodicity.
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Final result

The resulting hamiltonian of this problem is

H = E0 + σ3M + σ+aR + σ−a
†
R (30)

with eigenvalues

E(NR) = E0 ±
√

ω(NR + 1) +M2, 0 < NR < ∆2/ω (31)
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Reflection

Preliminary experimental results. The blue line indicates the Dirac point.
The equally spaced spectrum appears due to the deformation. The gap
indicates the zero point energy of the oscillator
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Transmission

The equally spaced spectrum appears due to the deformation. The gap
indicates the zero point energy of the oscillator
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The importance of tight binding

We claim that rotational symmetry around degeneracy points is a direct
consequence of the tight binding approximation, as we shall see. It is well
known that rotational symmetry in the Dirac equation demands a
transformation of both orbital and spinorial degrees of freedom. It is in the
orbital part that we shall concentrate by studying the energy surfaces
around degeneracy points beyond the tight binding model. In our study, it
will suffice to look inside the first Brillouin zone since the rest of the
reciprocal lattice can be obtained by periodicity. Small deviations from
degeneracy points (denoted by k0) in the form k = k0 + κ give the energy

E = ∆|
∑

i

exp (iλ(k0 + κ) · bi)| ' ∆λ|κ|, (32)

which is rotationally invariant in κ.
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A second-neighbor interaction of strength ∆′ modifies the kinetic operator
Π as

Π = ∆
∑

i=1,2,3

Tbi
+ ∆′

∑

i=1,2,3

Tai
+ T−ai

, (33)

where the vectors ai have now appeared, connecting a point with its six
second neighbors. The energy equation becomes

E = |∆
∑

i

exp (iλk · bi) + ∆′
∑

i

2 cos (λk · ai)|. (34)
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We expect a deviation of degeneracy points k′
0, for which k = k′

0 + κ.
Upon linearization of the exponentials in κ we find the energy

E '
√

(κ · u)2 + (κ · v)2 (35)

where the vectors are given by

u = λ∆
∑

i

cos(λk′
0 · bi)bi (36)

v = λ∆
∑

i

sin(λk′
0 · bi)bi + 2λ∆′

∑

i

sin(λk′
0 · ai)ai (37)
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Energy contours

First neighbour interaction, circular contours
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Energy contours

Second neighbour interaction, elliptic contours
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The presence of ∆′ gives the energy surfaces (35) as cones with
elliptic sections whenever κ is inside the first Brillouin zone.
Regardless of how we complete the energy contours to recover
periodicity, it is evident that the resulting surfaces are not invariant
under rotations around degeneracy points. The circular case is
recovered only when ∆′ = 0, leading to k′

0 = k0. In this case, the
vectors reduce to v = (1, 0),u = (0, 1) when k0 is the degeneracy
point at (1/2λ, 0).

In summary, extending the interactions to second neighbors has the
effect of breaking the isotropy of space AROUND DEGENERACY
POINTS, which is an essential property of the free Dirac theory.
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Conclusions

We provide a useful description for a problem motivated
by graphene and its emulation in electromagnetic
billiards.

Spectra, eigenfunctions and Dirac points have been
reproduced.

We have developed a method to analyze deformations
through the algebraic properties of the system

The experimental realization of this well known
relativistic system is desirable.
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