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'As mentioned in the Introduction, we have presented in

this volume mainly applications of the harmonic oscillator
related to our own work or to that of those with which we
have come in contact...

...A complete analysis of the subject would require an

encyclopedia, within which one of the volumes could be the
present book."
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M otivation

- o

The harmonic oscillator is the paradigm of integrability and
solvability with applications to many branches of physics. Is
It possible to promote all these features to a relativistic
guantum-mechanical model? The obvious way to proceed
IS to add a harmonic oscillator potential to the stationary
Klein-Gordon operator. However, the Dirac equation
requires the "square root" of such operators. For this
reason z, p should appear linearly in a Dirac operator which
parallels the phase-space symmetry of the usual oscillator.
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M otivation

-

# Our purpose is to review the construction of an
Interaction for relativistic systems (particles) producing
bound states for arbitrarily high energies with
analytically solvable spectrum. Lorentz invariance Is
crucial.

# This was achieved by Moshinsky and Szczepaniak
(1989) with further generalizations to describe
Interacting particles (1994) through Poincare invariant
equations.
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The Klein-Gordon oscillator

A naive approach to the problem is to propose a one-particle relativistic
equation in the form

1
(PR2A + m2c* + §w2’r ) =0 (1)

with the trivial result that energies become (h =1 = ¢)

E? —m? = 2w(n + g) (2)

However, Lorentz invariance is not clear from the outset. It is also
necessary to find a first order equation in time for a good application to
hamiltonian systems in quantum mechanics.

o -
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TheDirac oscillator

o

oshinsky and Szczepaniak introduced a hamiltonian of the form T
H = ca - (p + iwmfr) + mc?f3 (3)

Their purpose was to generalize the symmetry of the harmonic oscillator
to the context of relativistic wave equations. Both coordinate and
momentum operators must appear in linear form in order to preserve
Integrability. The symmetry group includes now the Dirac algebra and
decomposes naturally into O(4) (compact component representing an
oscillator) and O(3, 1) (non-compact component representing states with
Infinite degeneracy)

o -
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TheDirac oscillator

Here we deal with the Dirac equation with a non-minimal coupling which is
linear in coordinates. Lorentz invariant wave equation reads

(Y [pp — twrLu Y]+ 1) ¥ =0 (4)

where v* are Dirac matrices and

ri, =1, — (ru,)u, (5)
the u, being a time-like four vector such that (u, ) = (1,0, 0,0) for some
inertial frame. There, (4) can be written as

.0V

o -
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The Dirac oscillator

H=a-(p—iwlr)+p (7)
with 8 =Y, o = 3+*, i = 1,2, 3. Stationary form
HYU = EV (8)
with solutions
v — (] )
P2
satisfying
(p2 + w?r? +1 — 3w — 4wL - S) U = E%yn (10)
(p* + w?r® + 14 3w + 4wL - S) ¢y = E1o (11)
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The Dirac oscillator

r_ o _j

w1 = ANy N(, £)jm) (12)
Yo = (FE + 1)_1S - (p — iwr)yn (13)
Energies given by

2(N —j) +1 =35 —2
By =1tw NI T (14

2(IN+j)+3 l=7+3

o[
4 = N , it £E>0 (15)
(5

The completeness of these eigenfunctions has been proved elsewhere.
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Figure 1. Energy spectrum of the Dirac oscillator. The abscissa corresponds to the total
angular momentum and the ordinate to ey,. The levels are labelled by (N, ). Those
belonging to #'™' are marked by a cross, while those belonging to "' are unmarked.
The corresponding values of » or n are indicated in the right column.
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Non-relativistic limit

x

estoring the units

(E? —m?*c)y =

(02 (p? + w?*m?r?) — 3hwmc? — 4%m02L : S) (08} (16)

one has e = F — mc? < mc?, leading to

3
€1 = (HHO — 57160 — Q%L ' S) (O (17)

The infinite degeneracy does not disappear, but the negative energy
solutions decouple from small components as expected

o -
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The covariant equation

For convenience, let us eliminate the frequency from our units and leave
the rest mass. The equation leading to the Dirac oscillator hamiltonian is

V. (p" + iyutr ) + mlp =0, (18)

where wu,, IS unit time-like vector which defines an inertial observer. The
perpendicular projection of coordinates is v/ = r# — (r”u, )u* and

0 ’iO’j 12 0
Vi = ) ’ Yo = . (19)

o -
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Pauli coupling

-

he Dirac eq. can be written also as

Y2t +m+ S F* Y =0 (20)

with the choice F*¥ = u#rY — u”r*. The meaning of the external field can
be found by noting that

0, F" = —u”, (21)

l.e. the vector u” can be interpreted as a current. In the frame of reference
(1,0,0,0) we have a uniform charge density filling the space.

o -
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Solvable Extensions

fA supersymmetric formulation (Castarnos et al.) T
[Qaa Qb]—l— — 5ab(H2 — 1)7 [Qaa H2] =0 (22)
0 o- AT 0 —jo - Al
@1 = , Q2= . (23)
o-A 0 1o - A 0

reveals that other choices allow solvability: A = p +iG(r)r, with G(r) a
function leading to H.O. or Coulomb problems with centrifugal barriers.
We shall use an alternative notation to understand infinite degeneracies in

connection with dimensionality.

o -
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Hilbert space

|7The Lorentz group is locally isomorphic to SU(2) x SU*(2). The Hilbert T
space is Ly(C) x SU(2) x SU*(2)

H=a- (p+ifr)+mp (24)

We shall use a representation of the Dirac matrices given by

o= . : 6= : (25)

Quantum optical representation (why?)

o -
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Hilbert space

fWith this notation we may introduce the concept of x—spin through the T
vector >2;, whose projection eigenvalues account for big and small
components of spinors. Upon rotations, this projection also gives solutions
with positive and negative energies.

0 1, ;
E_|_ — 0 0 — 04+ &) 12, di_ = (E+) . 23 — /6 (26)

The Hamiltonian can be written in algebraic form

H=Y.,S-a+X_S-al +mY;, 27)

o -
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Algebraic structure

|7The dependence of H on ladder operators shows the invariants T
I=al-a+1i%;,I'=(a-o)'(a o)+ +X3. A pair of states with angular
momentum j and such that 7| )= (2n+j5—1)| ) is given by

|¢1> — |n7 (] - 1/27 1/2)j7 mj>‘_>7 |¢2> — |n — 1, (] -+ 1/27 1/2)j7 mj>‘+>' (28)

Another pair of states with the same angular momentum 5 but with
I Y=02n+35)] )is

|03) = |n, (7 +1/2,1/2)4,my)| =), [¢a) = |n—1,(5 —1/2,1/2)j,mj)|+). (29)

o -
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Algebraic structure

he 2 x 2 blocks of H obtained from these states can be evaluated.

— V2
H(j,2n+j—1)= ?/ S (30)
V &N m

H(j,2n + §) = m_ V) (31)

V2(n + j) m

leading to the well known energies E? = m? + 2(n + j) and E? = m? + 2n.
Infinite and finite degeneracies come from these two blocks respectively.

o -
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Algebraic structure

The discussion on the algebraic structure above can be implemented
directly in 1 and 2 spatial dimensions.

Ar = a1 + ta9, A = a1 —tan = (AR)* (32)

with the properties

[AR7 AL] — [AR7 (AL)*] — 07 [AR7 AJ}{] — [AL7 AE] = 4. (33)

o -
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with a1

with a1

Algebraic structure

he low dimensional hamiltonians are

HY = oy (p + ifz) +mp,

= —01,0 = 03 and

H? =% " ai(p; +ifr:) +mp,

i=1,2

—09, 9 = —01, 3 = 03.

(34)

(35)

-
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Algebraic structure

-

hese hamiltonians can be cast in algebraic form as

HY =5.a+o_a' + mos (36)

H®? = oL AR + J_AE[2 + mos (37)

Both of them have a 2 x 2 structure: The spin is absent in one spatial
dimension and o4 corresponds to x—spin, while in two dimensions o3
generates the U (1) spin.

o -
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Algebraic structure

-

he solvability can be viewed again as a consequence of the invariants

1
I = qfaq + 503 (38)
1 1
1(2) :ARAE—FiO'g, Jg :ARATR—ALAE—FiO'g (39)

The two dimensional case exhibits some peculiarities. The conservation
of angular momentum J3; comes from the combination of o0 and Ax In
H®), together with the absence of Ay, A’ . This absence is also
responsible for the infinite degeneracy of all levels. On the other hand, the
three dimensional example is manifestly invariant under rotations due to

its dependence on S -a and S - a' and its infinite degeneracy comes from
\_the infinitely degenerate operator (o - a)(o - a)’. J
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The many body Dirac equation

® The success of Moshinsky’s work related to the harmonic oscillator of
arbitrary particles and dimensions is due to the fact that the results
provided a good basis to solve variational problems in bound
composite systems

-

® The idea is to extend this success to relativistic guantum mechanics.
However, we need a model which allows the integrability and
solvability we are seeking for.

o -
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The Foldy-Wouthuysen transfor mation

Dhere exists a unitary operator which transforms the Dirac hamiltonian
Into a diagonal operator in spinorial components. In other words, it finds
the basis in which the z component of x-spin gives the positive and
negative energies of the system.

Such transformation can be carried out explicitly for exactly solvable
problems such as the free particle and the Dirac oscillator. The idea is to
express the hamiltonian in terms of its even and odd parts and find S such
that

Hprw = 6iSHD6_iS — even (1)

In our example, iS = f(a - 7)0, tan(20a - 1) = - 7

o -
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Relativistic Composite Particles

fPoincaré Invariance of the many body problem
We propose a generalization of the Dirac equation for a system of many
particles. It is defined such that, in the frame of reference where the
center of mass is at rest, we recover a hamiltonian of the form

N
H=>Y H;+V(xi,..,xn) 2)

where H; is the Dirac hamiltonian of the :-th particle. The potential V' is
assumed to be independent of the center of mass. Such an equation is

N
[Z Ls(Vepus + ms + TV (2]))| ¥ =0 (3)

-
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The relative coordinates and the time-like relative coordinates are given
respectively by

t st __ st st T
T, =X, — XU Uy, (4)

We use the time-like unit vector in the form

u, = (—P.PT)"2P,. (5)

o -
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or convenience we have defined

I'= H Y, Ty = (yHu,) 'T. (6)

Taking P* = 0 and H = P in (3), one recovers (2).

o -
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T he cockroach nest

fFor commuting Dirac hamiltonians one expects that the total FW
transformation can be decomposed into individual factors corresponding
to each hamiltonian. We shall define the multiparticle FW transformation
In the next slides, but let us note that for free particles we should obtain

N
Hpy = Zﬁi\/p% +m? ()
1 =1

where it becomes evident that the energies are now added with 'wrong’

signs due to the 5 matrices. This means that the transformation to even

hamiltonians contains both particle and anti-particle solutions without a

correction of the signs in front of their kinetic energies. One has to project

the final result onto the purely positive component, otherwise we would
Lobtain an extraordinary infinite degeneracy. J
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hFhe many body Foldy-Wouthuysen transformation T
With the aim of characterizing the spectrum of a multibody system with
Interactions, we seek for an expansion of H in terms of inverse powers of
the rest mass. Such an expasion should allow the identification of positive

and negative energies of the model. For one particle in a potential V', we
have

H=04+&+V, O=a-p, £&=mp (8)

we apply a unitary operator U = exp(iS) exp(i5”) exp(i.5”),

___w /_—_iﬁ / //___w 7
S_Qm ’ S_Zmo7 S_Zmo
_ X 2
| o':%[a.p,m, 0" = (‘gm‘;% H' = UHU! ©
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N -

Expanding up to 1/(mass)? in the kinetic energy, 1/(mass)? in the
potential, we have

~ A 2 4
H =H+YV, H:ﬁ(m+§—m—8§n3>
(10)

+ﬁs- [(p x E) — (E x p)] + 8,}12 V2V

withE = —VV, S = Z*a x a. For two particles H = Hy + Hy + V(r1,rs).
Applying successively U; = exp(iS1) and U = exp(iSy) one gets

U2U1H(U2U1)T — ﬁl + ﬁg + V 4+ higher order (11)

o -
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fIn the general case with n particles, one has T
N
H:ZHHLV(rl,...,rN) (12)
=1
N
H =Uy..UtH(Uy..U)" =) H; +V(r1,...,TN) (13)

1=1

with

t

t=1,2,---n

(14)

~ 2 4
Ht :6t<mt_|_ ptt . p—t3> —|—ﬁst-(pt XEt—Et Xpt)—FﬁV?V,
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|7App|ication to a two quark system T
The hamiltonian is

H' = (5 +52)(m+ f,,i — gﬁjg) +V
(15)

+4722 (sl + SQ) : [(p x E) — (E x p)] + 47;2 V2V

with the potential V = 1mw?(r; — r3)%.
In the center of mass frame, the choice of positive energy components
reduces the hamiltonian to

2,..2 2

w? P’ mwir w p?
H = (2m+ 32 L “s.oL)- 2 16
(m+ 8m>+(mJr 4 +4m ) 4m3 (16)

with r, p relative coordinate and momentum. The spectrum of the problem
Is found by diagonalizing the matrix with elements given by
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<l (%%)S;j7m|[{’|nl, (%%)S,j,m >

- (2m+ B +w(2n+l+ 3) + [+ 1) — U1+ 1) —s<s+1>]>5m'

1

< n'l'|p*nl >

4m3
(17)
where we use two particle harmonic oscillator states with spin, i.e.
Inl S P R > <lp, Solim > |nlp > | P ET:
nt, | == |9; = ——

{0

We take N < N,,.. to get a finite matrix.

o -
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As an application, one can describe the mass spectrum of binary systems
such as bottomonium or charmonium. It is possible to introduce quartic
corrections to the potential in order to obtain more realistic spectra

V' = — amw?r?

5 The FW transformation of such a term yields next order
corrections, therefore we neglect them. The coupling constants and the
rest mass are taken as adjustable parameters. They are fitted to
experimental data using least dispersion.

o -
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(ev) Bottomonium System
m=4.5 Gev, w=0.34d Gev, w=0.92
1.4
1.z
T(38)
1
T(28)
Xz (2P)
y Yoy (2P) X, (2P) b2
0.6 T(13)
Xz (1P)
0.4
o.z
1_ OI+ 1I+ 2I+ d

LEnergy comparison.

Solid: experimental. Dotted: theory.

-
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(Gev) Charmonium System

m=1.4 Gev, w=0.51 Gev, «w=0.05

LEnergy comparison. Solid: experimental. Dotted: theory. J
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prpIication to the three body problem
The hamiltonian is now

3 2 4
Pt Pt 1 1 2
H = _ : E;,—E —=VV+V
2. (1% s~ S ) + s (Pex BB VRV
(19)
with a potential
Mw? 2 2 2
V= : (ry —r2)” + (r2 —r3)” + (r3 —ry) (20)

o -
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Jacobl coordinates

-

he harmonic oscillator for n particles

H=3Y pi+5- > (i) 21)

can be decoupled into n — 1 oscillators by using the Jacobi coordinates

(pS)] — 1/22 pt pS-i—l )8:1,...,71,—1,

(Pn)j = n_l/ZZ(pt)j (22)
t=1

o -
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N

n Jacobi coordinates without the center of mass we have

Mc2+(3p%+ 1p3) ( . )+ip2+im( S )
4 12 mi1 Mo 3ms V12 mip Mg
1 1 1 1 1 1 . 1
Sm3c2 (?91 36202 T 31912 + P1P2 fp12p1 \/§P12P2>
1 1., 1 1 1 . 5 L . 5
3m3c? (ZM + 36]92 + 3]912 + 6]91]92 \/§p12p1 — ﬁpu]?z)
187713 2192 ]\g; [ 12 S - (L1 + %LQ + %Lm)

1 : 1. 1 . 8 :
—5 59 - (L1 + §L2 — —L12) — 5593 L2]

my

msy V3 3m3

Mh2w? [ 1 1 1
¥ 5+ — + +V (23
C mi  ms m3

-
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he spectrum is obtained by diagonalizing

11 11

<n1, 1,n2, 27L/ (22>T/ S’,jm|H’\n1,l1,’n2,lg,L (§§>T S;im > (24)
where the states are

11

‘n17l17n27127[/; —= |15 S]m >=
2 2
11
Z < Lu, So|jm > |ny,ly,n9,la, Ly > |(22>T So > (25)

w,o

Matrix elements are computed by means of Racah algebra. We take
Nz = 3.

o -
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0 achieve a better agreement with experiment, we may introduce a mass
an a frequency which depend on the integrals of the motion We include a
comparison with the spectra of X particles (strange baryons). Dotted:
Theory. Solid: Experimental

Mewv Sigma Resonances

2200

2000 4

iz00 |

1e00 F

1400 -

1z00 |
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1 17t 2 I £ 5% J
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Table of parameters

JP

+

+

+

NI DIOT N[ NIW N[= N
|

w (en Mev)

96
184
187
179
137
137

M

1.00
1.00
1.27
0.93
1.11
1.03

-
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wo particle Dirac oscillator
The hamiltonian and the Poincare invariant equation are

H=(a; —ay)- (P—igr3)+ﬁ1 + B2 (26)
[ Z T (V4 (pus — iwz’ , T) + 1)| T =0 (27)
s=1,2

The resulting spectrum is given by £ = £EN 5 j m

2v/1+wN,0 for s=0,P=(—)’

L EN,s,j,m — 2\/1 —|—CU(N + 2),0 for s= 1,P = (—)j (28)J
2y/1+w(N+1),0 for s=1,P=—(—)
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-

he wavefunctions are known for all cases indicated before:

[ wn

g= | ¥ | Y} _ L [ e Fas IN(5,0)5m) (29)
¢12 ¢22 \/§ ar — a_

\ 2o

For s = 0. Whenever s =1 and P = (—)’, we have

P11 1 by +b_ D
= — N(j,1)7m (30)
o b b [N (j,1)jm)

o -
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fFor s =1, P =—(—)7 the result is T
Y11 1 Ciyt+e | _ |
NG IN(j+1,1)m)
¢22 2 C—4+ — Cqy
1 Cy— +cC— . .
+ = IN(j —1,1)jm) (31)
\/§ C—_— —Cq_

where the coefficients c4 4, a4, b+ are determined by the secular
equations arising from the Schroedinger equation for the relativistic
hamiltonian. Taking into account (26)), the stationary equation yields the
complementary components of the wavefunction 51,115.

o -
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The three-particle Dirac oscillator
Poincare invariant equation and hamiltonian:

(nl > Ta(vhP) + ) [, — iway , 1) + 1}) =0 (32)
s=1

s=1

HV = Z [as - (Pl — iwx,B) + 35| ¥ = EV (33)
s=1

o -
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|7The spectrum is obtained by combining the equations for some of the T
spinor components of the wavefunction and noting that the total number of
guanta of the TWO PARTICLE oscillator is conserved (two Jacobi
coordinates). The wavefunctions are

(i ) [ iz )

\If+ _ ¢122 7 v — ¢121 (34)

77D212 ¢211

\ V221 ) \ V222 )

o -
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and they satisfy

OV, =0, O=MD_'M'-D, (35)

with
D, =diag(F—-3,E+1,E+1,E+1), (36)
D, =diag(FE—1,E—1,E—1,FE+ 3) (37)

o -
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/Sg-né So-mb Si-mp 0

. S2-my S3-mj 0 Si-m
M = 21V 2w S ) g g : (38)
1M 373 273

\ 0 Si-m, So-mh Syl

(39)

S
V)

I
S
»

|

|
=

_|_
3
\V]
_|_
S
<

¢ = 7l (40)

-

E| Coleaio Nacional Julv 28. 2010 — p. 32/



Using the states

11 1
[ Io(L); ==(T)=(S); JM) =
|n17 1,12, 2( )722( )2(5)7‘] >
: . 1 1 1
(Gt x (almat)],  |[(113)x @5)| x G15)] | m
T CANSYi

one finds the matrix elements of O . We diagonalize for each number of
guanta. The resulting matrices are FINITE. We restrictto N = 0,1, 2. The
wavefunctions are finally obtained by finding the null vectors of the matrix
(O) for each energy. The complementary components are obtained using

the original stationary equation, as before.

o -
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N I[Nt [No 1 mo fl1 |2 L J
O PO 0 0) 0) O 0 0 S
1 1 b o b b 1 1-S|<J<1+8
1 b b b b b I 1 1—S|<J<1+S
2 2 0 1 0 O 0 0 S
2 0 2 0) 1 O 0 0 S
> b b b b & 0<L<2 |[L—S|<J<L+8
> b b b b kb > 2_S|<J<2+8
> b 2 b b b P 2 2_S|<J<2+8

Table of states for N,,,,, = 2

o

-
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fEnergies for w = 0.03. The eigenvalues are distributed in four groups T
around the values —3,—-1,1, 3

Mo

Spectrum forw = 0.1 and N = 2,

3 35 4 45 5
E
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s

pectrum forw =1and N =2

o -
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One dimensional n-particles

Dhe Kinetic part of the hamiltonian

H=(1+B)) oia}+ h.c.+mass (42)

IS infinitely degenerate. We have removed all other degrees of freedom in
order to show that the cockroach nest makes itself present for an arbitrary
number of interacting particles. Its elimination is not a trivial task, in
despite of our careful choice of observables. To see the infinite
degeneracy, apply eigenstates of ¢ to (H — mass)?. Question: is there a
system of one-dimensional Dirac particles which parallels the Calogero
model?

o -
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Comment

fThe original application of the three particle Dirac oscillator T
contained eigenstates of the permutation group, dealing
also with particle statistics. At the end of the calculations,
energies and eigenfunctions were obtained and a prediction
for the form factor of the proton was given. However, let me
guote Moshinsky once again

"We conclude by stressing that we have made a calculation
using an harmonic oscillator picture with a single parameter
(frequency) and it is as good or as bad as many more
complicated ones that start from QCD or that use many
more parameters.”

o -
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The three-particle Dirac oscillator
Poincare invariant equation and hamiltonian:

(nl > Ta(vhP) + ) [, — iway , 1) + 1}) =0 (1)
s=1

HVU = "o, - (p, — iwx,B) + 3] U = BV (2)
s=1
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|7The spectrum is obtained by combining the equations for some of the T
spinor components of the wavefunction and noting that the total number of
guanta of the TWO PARTICLE oscillator is conserved (two Jacobi
coordinates). The wavefunctions are

(i ) [ iz )

v, = 122 o= Y121 3)

77D212 ¢211

\ V221 ) \ V222 )
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with

and they satisfy

OV, =0, O=MD_*M'-D,

D, =diag(F—-3,E+1,F+1,E+1),

D, =diag (E—1,E—1,E—1,E+3)

IJ-I‘.'_-L
g im,
&

Vg ¥
w0

(4)

(5)

(6)
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/Sg-né So-mb Si-mp 0

. So:my Ss-mz3 0 Si-m)
M = 21V 2w S ) S G : (7)
1T 373 212

\ 0 Si-m, So-mh Syl

(8)

¢ = 7l (9)

S
V)

I
S
»

|

|
=

_|_
3
\V]
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S
<
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Using the states

11 1
[ Io(L); ==(T)=(S); JM) =
|n17 1,12, 2( )722( )2(5)7‘] >
: . 1 1 1
(Gt x (almat)],  |[(113)x @5)| x G15)] | a0
T CANSYi

one finds the matrix elements of O . We diagonalize for each number of
guanta. The resulting matrices are FINITE. We restrictto N = 0,1, 2. The
wavefunctions are finally obtained by finding the null vectors of the matrix
(O) for each energy. The complementary components are obtained using

the original stationary equation, as before.

o -
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N I[Nt [No 1 mo fl1 |2 L J
O PO 0 0) 0) O 0 0 S
1 1 b o b b 1 1-S|<J<1+8
1 b b b b b I 1 1—S|<J<1+S
2 2 0 1 0 O 0 0 S
2 0 2 0) 1 O 0 0 S
> b b b b & 0<L<2 |[L—S|<J<L+8
> b b b b kb > 2_S|<J<2+8
> b 2 b b b P 2 2_S|<J<2+8

Table of states for N,,,,, = 2

o
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fEnergies for w = 0.03. The eigenvalues are distributed in four groups T
around the values —3,—-1,1, 3

Mo

Spectrum forw = 0.1 and N = 2,

3 35 4 45 5
E
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pectrum forw =1and N =2
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One-dimensionaln particles

Dhe Kinetic part of the hamiltonian

H = (1+ B) Z ota) + h.c. + mass (11)

IS infinitely degenerate. We have removed all other degrees of freedom in
order to show that the cockroach nest makes itself present for an arbitrary
number of interacting particles. Its elimination is not a trivial task, in
despite of our careful choice of observables. To see the infinite
degeneracy, apply eigenstates of ¢ to (H — mass)?. Question: is there a
system of one-dimensional Dirac particles which parallels the Calogero
model?

o -
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Comment

|7The original application of the three particle Dirac oscillator contained T
eigenstates of the permutation group, dealing also with particle statistics.
At the end of the calculations, energies and eigenfunctions were obtained
and a prediction for the form factor of the proton was given. However, let
me quote Moshinsky once again
"We conclude by stressing that we have made a calculation using an
harmonic oscillator picture with a single parameter (frequency) and it is as
good or as bad as many more complicated ones that start from QCD or
that use many more parameters."

o -
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Exactly solvable extensions

fConsider a hermitean operator of the form ®(r, p) as the potential to be
introduced in the total hamiltonian. One has H® = H\? + &, with H "
given by the d—dimensional Dirac oscillator. On physical grounds, this
corresponds to a bound fermion perturbed by a momentum-dependent
potential. We introduce also an internal group for this field, for example the
SU (2) associated to isospin or as the gauge group of a non-abelian field

®=(TyS-a+T-S-al +T3) (12)

One may consider any potential of the form

®=F(T,S-a+T_S-a' +~T3) where F' admits a power expansion.
Evidently, [I(®), ®] = 0. A suitable group of states can be used to evaluate
the 4 x 4 blocks of H. We describe this procedure by restricting ourselves

to the linear case for simplicity.
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Exactly solvable extensions

.

ower dimensional examples follow the same pattern

HWY = oLa—+ o_a' + mos +
(A+ o3B) (T+CL—|—T_CLT —|—’)/T3) (13)

H® =g Ap + O'_AJIF% + mos +
(A4 o3B) (T+AR + T_AE + 7T3> (14)

H® =%,S-a+X_S-a +mX; +
(A+33B) (T4S-a+T-S-a' ++73). (15)

o -
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Exactly solvable extensions

With these extensions, it is evident that the new invariants for one, two
and three dimensions are

1 1
I = gfq + —o3 + =13 (16)
2 2
2) P 1 f P11
‘v = ARAR + 503, J3 + §T3 = ARAR — ALAL + 50’3 + §T3 (17)
(3) _ g ! ! i
I'‘? = a -a+523+§T3, J=a'"xa+S. (18)

o -
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Exactly solvable extensions

Eigenstates of H®). We proceed to evaluate the 4 x 4 matrix

H(N,j)=( [H®] ).

61 ) = In, (7 +1/2,1/2)5,

b2 ) = |n, (7 — 1/2,1/2)5,

b3) =|n—1,(j —1/2,1/2)3,
( )

m;)
mgj)
m;)
62 ) = In—1,(5 +1/2,1/2)j,m;)

ME:
ME:

)
)
)
)

\d

\g

\g

\g

~

+
~

~

)
)
)
)

+
~

(19)

where n is the oscillator radial number, 5 is the total angular momentum
and m; its projection in the z axis. These are eigenstates of 13 with

eigenvalue N =2n+j — 1/2.

o

-
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Exactly solvable extensions

- o

The resulting 4 x 4 blocks of H with elements H(N, j)x, = (¢% |H|¢7" ) are

[ —m—(A-B)yy (A-B)2m+j) —2n+)) o)
(A—B)y/2(n+j) -m+(A—-B)y 0 V2n
—/2(n+ ) 0 m—(A+ B)y (A+ B)vV2n
\ 0 V2n (A+B)V2n m+(A+B)y )

and the secular equation |H(NN) — E| = 0 can be solved explicitly using
the formula for the roots of a quartic polynomial. The infinite degeneracy
IS now broken, since one cannot reduce H (N ) to smaller blocks where
only n appears. The exception to this occurs when A = B = 0, which
obviously recovers the usual Dirac oscillator.

o -

El| Coleaio Nacional Julv 29. 2010 — p. 21/



Exactly solvable extensions

fWith the aid of the vector «,, we can introduce more interactions in a
covariant way. A non-local, non-abelian field tensor F** = S0 T, F*
can be introduced in the equation by means of the Pauli coupling. We
propose

FY = e"w‘pu)\'rlp (20)
FH = e uypl, (21)
FE" =0, (22)

for which the Dirac equation reads

Yt +m+ S, F* + BS,,F" )¢y =0, (23)

o -
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Exactly solvable extensions

fThe nature of such field can be elucidated by inserting our ¥ ,,,, in the
corresponding non-local field equations. Using

FH =ubt(r| T+ p"To) — pu < v (24)

one has

FH* =i([p", B"] — u < v) + [B,, B,]. (25)

o -
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Exactly solvable extensions

-

he gauge potential and the current can be obatained in the form

1

B, = uu(ifrufriTl + r,p' T5) Bilinear in p, r. (26)
3V =ilpy, F 1+ [Bu, F (27)

_ v v 1 v 7 woov

= —u 11 +p| + i{pJ_,TMTJ_}—{pJ_,TJ_}TM 15 (28)

= —u”T1 + p| + trilinear terms in p,r .

o -
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Eigenvalues

The vanishing coupling shows the eigenvalues of the Dirac oscillator.
Degeneracies are lifted and level spacing increases.

Energy levels as a function of coupling

Energy (Natural units)

o 1 Z 3

/ Coupling (Discrete values)
| ! -

Levels without external field
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Quantum Optics

The structure of our hamiltonian shows that our model can be mapped to
a Jaynes-Cummings hamiltonian of two atoms (of two levels each)

H=oc,a+0_a' +mos+Tra+T_a' +~T5 (29)

where o, T are now the operators for the atoms 1 and 2. The operator a is
the anhilation operator of the electromagnetic field mode. Spin-spin
Interactions can be introduced as well.

o -
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Purity

fDefining a partition of the system A + B
We take a pure state density operator p = |¢(t))(1(t)| of the entire system
and compute purity P and entropy S of the Dirac oscillator subsystem.

P(t) = Ting ((Trrp(t))
S(t) = —Trx, (Trop(t)Log (Tr-p(t)).
(30)

where Try . IS the trace with respect to oscillator and x-spin degrees of
freedom, while Tr is the trace with respect to isospin.

o -
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Integrability

N

ntegrals of the motion

1 1
I(g)zaT-a—l—523+§T3, J=a' xa+8. (31)

but we analyze the one dimensional case for simplicity

1 1
I = qafag + 503 + §T3 (32)

o -
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We use the eigenstates of (1)

[#T) = In+2)| = —)
¢3) = In+1)|+—)

(Ho
0
0

\

where H,, is a4 x 4 block.

o

0
Hy
0

Integrability

|¢3) = In+1)] = +)

0
0
Hoy

(33)

(34)

-
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Entanglement with external fields

N

nitial state ¥ = y,, ® x,

) = 1/v/2(cos 0|+) + sin 0]—)) (35)

and y,, is a solution of the unperturbed Dirac oscillator

Xn) = AL ) |[+) + A [n+ 1)| =) (36)

We use exact solutions to compute P(t), S(t) (purity and entropy). Other
Initial conditions can be used in the context of Quantum optics, but this
side of the analogy is not discussed here.

o -
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A

resonant effect around v = m
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Results

A

resonant effect around v = m

Entropy

o -

E| Coleaio Nacional Julv 29. 2010 — p. 33/



Results

A

resonant effect around v = m

Entropy

| -
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Remarks

® Purity as a measure of relativistic entanglement requires a good
choice of partitions

®» A toy model suggests that particle creation and maximal
entanglement are related

® This can be interpreted as a resonant effect in the Quantum Optics
analogy

o -
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The Dirac oscillator

-

he equation leading to the Dirac oscillator hamiltonian is

Y. (P + iy u’r) + mly =0, (1)

but we shall use the one and two dimensional hamiltonians

H=o0,a+0_a' +mos, 2)

H = a+aR—|—0_aE—|—m03 (3)

o -
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Our motivation: Graphene

Fig. 2 Aromic force microscopy image of a graphene arystal on top of an
ouchaired i substrate. Folding of the flakie can be seen, The measured thickness
of graphene coresponds to the interlsyer distance in graphite. Scale

bar= 1 pm. [Reprinted with parmission from!3. © 2005 Netional A cademy of
Scrences. |
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What is graphene?

FIG. 1. The honeycomb Iattice as a superposition of
two triangular sublattices. The basis veclors are
Ay - (+3/2, — ’Hﬂ; A3=10,1l)a and the sublattices are

connected by b, =(1/2V3,1)a; B,=(V2J3, —§)a;
FI—{—IJ'I"H'I?.“}E

2450
-
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What is graphene?

identified sides

ii= ém
ik= mn
K= ni

equivalent corners

I 1l

K=Em
&=n

!
j

FIG. 2. The Brillouin zone. The reciprocal-lattice
basis vectors are R, = (4m/+32)(1,0); Ry=(4w/+/3a)
X (%—:}-ﬁ ). The degeneracy points occur at the corners,

ifkimn, of the Brillouin zone. Two of these are in-
equivalent, we have chosen §, = (4n/~3a2)(+, 1/2¥3)

at point / and §; = — q; at point L.

-
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History (1947-2007)

$ Band theory in tight binding approximation (1946)

FPHYBICAL REVIEW VOLUME fl. HUMHBER % MAY 1. L#47

The Band Theory of Graphite

P B. WALLACE"
Natiamal Restarch Cowncid of Connda, Chaik Riser Laboratory, Chalh River, Ontario

(Reeeived Degember 19, 19467

The alructure of (he clertronic enerpy bands and Brillowin penes for graphite s developed
Using the “tght binding'' approximation. Graphite is found 1o be 2 semi-conductor with mero
activation enempy, e, there are oo free electremy ab 2evo temperature, but they am oreated
at higher temperatiires by escitation to a band contiguous to tha highest one which s normally
fillad. The clectrical conductivicy is meated wich pssumptions about the mean free path. [t i
found to be about 100 times as great parallel to as across eryatal plancs. A large and anisnirome
diamagnetic susceptibility is predicted for the conduction electrons; this ds greatest for fields
acrose tho bvers. The velnme optical absorpiion is accounted for.

® Field theory of electrons in 2+1 from lattice (1984)

PHYSICAL REVIEW
LETTERS

Vonume 53 24 DECEMBER 1984 MNusmiue 16

Condensed-Matter Simulation of a Three-Dimensienal Anomaly

Gomdon W. Semenoff
The Inavicute for Advanced Study, Princetan, New Jorsay 08540, and Departmont of Physics, '™
Universily of Briish Colurnbia, Vascouver, British Columibla V6T 246, Canada
[Rexcived 4 Scprornter 1994)

A condensed-matier analog of {2+ 1)-dimensional electredynamics is constructed. and
the eonsecquences af m récently discovered anomaly in such systems are discussed.
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History (1947-2007)

-

® Experimental evidence (2005)

Yal 432010 November 2005(dal:10.3038 Anatured 4233 natre
LE T TERS

Two-dimensional gas of massless Dirac fermions in

graphene

K. 5. Navoselov', A, K. Geim', 5. V. Morozov®, D. Jiang', M. |. Katsnelson®, 1. V. Grigorieva', S. V. Dubonos®

& A, AL Firsoy

® Review of results: theory and experiment (Novoselov, 2007)

# Spectrum measurement
o Quantum Hall effect

» Klein’s Paradox

# Topology and curvature deffects

o -
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History (1947-2007)

Fig. 1. Left: Crystallographic structuie of graphene. Atoms fom different
sublattices {A and B) are maked by different shades of gray, Right: Band

structura of graphen2 in the vidnity of the Feani level. The condnctance band
touches the valence band a K and K points

-
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General considerations

-

® For our purposes, the situation can be modelled by a Schroedinger T
equation with a potential consisting of deep wells, each of them
located at a lattice point. The specific shape of atomic wave functions
IS Irrelevant, as long as we know how the overlaps (interactions)
decay as a function of the distance between resonators. For practical
purposes, such decay can be regarded as exponential, which follows
from considering a lattice of constant potential wells. As an additional
remark, such potentials should be deep enough such that only one
level (or isolated resonance) well below the surface contributes to the
dynamics.

o -
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One dimensional model

fA lattice consisting of two periodic sublattices is considered. They have T
the same period and are denoted as type A and type B. Each sublattice
point can be labeled by an integer n according to its position on the line,
i.e.z,. The energy of the single level to be considered in the well is
denoted by « for type A and S for type B. The state corresponding to a
particle in site n of lattice A is denoted by |n) 4 and the corresponding
localized wave function is given by £4(x — x,,) = (z|n)a. The same

applies for B. The probability amplitude A (or overlap) between nearest
neighbors is taken as a real constant.

H H
7 _ AA AB (%)

Hpa Hpp

o -
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One dimensional model

Configuration of potential wells (or resonators) on a chain. a) The periodicT
case. b) General deformation. c) Dimer deformation.

A B A B A B A B

Xn-1 yn-1 Xn yn xn+1 yn+1 xn+2 yn+2

b) A+dig A+tdaq A+d,  A+d,

| |

A B A B A B
=+ Xn1  Yna Xn ¥n Xnst Yneq ===
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Resonators in a one dimensional lattice. The plot above gives a

One dimensional model

representation of resonators as a function of the x-coordinate, while the
plot below shows an idealization of the corresponding potential (wells) and
the wave functions of resonances. These functions may leak outside the

wells.
A V/\7son.at4c:rr
A=1 B=1 -
/ Potential
ﬂ Wave function
/—'
| - N
.. =

O\);\rjlap

-
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One dimensional model

o

ensity plot of coupling between resonators. Exponential decay.
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The free case

The hamiltonian can be cast in terms of Pauli matrices
03,04 = 01 +1092,0_ = 01 by defining

II = (5)

and setting M = (a — 3)/2, Ey = (o + 3)/2. We have

H=Ey+osM+ o, I+ c_II' (6)
Ll'his IS a general structure which explains the appearance of pseudospin. J
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- B

t is left to show that there is a region where the spectrum is linear (Dirac).
The spectrum is computed by squaring H.

(H — Ey)? = M? + 1111 (7)

Bloch's theorem enters in the form

H¢k _ A(l _|_6i27r>\k)¢k7 HHT¢]€ _ A2|1 _|_6i27'r>\k|2¢k (8)

o -
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-

he energies and eigenfunctions of H are

E(k) :Eoi\/A2|1—|—ei27T>‘k|2—|—M2 (9)
+ ¢k
ypr=N +E(k)—Eo—M ’ (10)
A(1+ei2m k) ¢k

Around points where the inter-band distance is minimal, we have the
usual relativistic formula

E(k) :Eoi\/A2m2—|—M2, (11)

o -
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fThe amplitudes are proportional to the overlap between neighboring sites T

and decay exponentially as a function of the separation distance between
resonators, i.e.

Appgr = Ae™ /A (12)

where d,, + X is the separation distance between resonators of type A and
B in the n-th position. When d,, = 0, the periodic configuration is
recovered. The length A has been introduced for phenomenological

reasons: The decay law might be given by a multipole law, but we fit it to
an exponential decay by adjusting A.

o -
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With all this, it is natural to expect a modification in the operators II, IT'.
We use a,a’ and impose [a, a'] = w = constant (The limit w = 0 recovers
Bloch’s theorem). One finds the conditions

-

_ 2 2
An,n — Aa An—l—l,n—l—Q —A

n,n-+

] =W (13)

Therefore the distance formula for the resonators is

AQ
aln:Alog(AZ_nw)7 0<n < Nmaz (14)

With nmae = |22 ]].

o -
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One dimensional Dirac oscillator

.

inally, we have the hamiltonian

H=Fy+osM +ora-+ o_al (15)

with energies and wave functions

E(n) =Ey+ Vwn+ M2,  0>n>A%/uw (16)
n ¢n—|—1
Y- =N (B B) My |
vw(n+1) "

o -
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Wavefunctions

fGround state as a function of site number. The ground state wavefunction
IS obtained by multiplying the values given in the ordinate by the individual
resonant wavefunctions. These are considered to be highly peaked at
each site. The signs alternate from site to site.

@ Ground State

K/\\/AVAW I,

o -
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Wavefunctions

fGround state density as a function of site number. The probability density
IS obtained by multiplying the values in the ordinate by the individual
resonant wavefunctions, which are considered to be highly peaked at
each site. The density does not exhibit nodes.

¢ Ground State Density
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Two dimensional lattice

fThe concepts given in the last sections are now extended to produce an T
emulation of graphene. We shall use the same algabraic strategy to
derive spectra and a possible extension through deformations, namely the
two dimensional Dirac oscillator.
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Two dimensional lattice

o

eformations

VERTICAL LINES HAVE

CONSTANT LENGTH
OPPOSITE SIDES -

HAVE EQUAL LENGTHS
, o2
7
P
2
ﬁ 50
.ﬁ /
~ )
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REGULAR
SEED
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Two dimensional lattice

e s

%

-
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The free case in 2D

w

e start with the tight binding hamiltonian
H = a) |AYA|+8) |A+bi)(A+b (17)
A A

+ ) A(JAYA+Dbi|+]A+Db)A])
Ai=1,2.3

The usual Pauli operators are constructed through the definitions

oy =Y [A)A+bi, o_=0] (18)
A

o3 =) |A){A|—]A +by)(A+ by, (19)
o 2 -
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-

while the kinetic operators II, II" are defined as

I=) A(JAYA+b; —bi|+|A+by)(A+by). (20)
Ai

The spectrum and eigenfunctions are obtained again by squaring H. With
M and Ej given as before, we obtain

H=FEy+Mos+ o, I+ o0 _II (21)

and

L (H — Ey)? = M? + 1IIT7 (ZZ)J
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The Dirac points

e

nergy surfaces (taken from Novoselov et al.)

o -
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The Dirac points

-

he spectrum and eigenfunctions are then

E(k) = Ey + \/N Y eizmabik|2 g 2 (23)

+(B(k) — Eo) — M
A(Y, ei2mAbik)

v =C ¢y + DGR, CF = D* (24)

It is well known that the degeneracy points of the spectrum for the
massless case are ko = £55 (1, —v/3). Around such points one finds

E(k — ko) — Ey = £/ A2k2 + M? (25)

o -
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The Dirac oscillator in 2D

fWe deform the lattice through an extension of the kinetic operators, just as
In the one dimensional case. Let us consider site dependent transition
amplitudes A(A, A + by) connecting the sites labeled by A, A + b;.
Again, these are related to distances d(A, A + b;) between resonators as
A(A,A+Db;) =Aexp(—d(A,A +Db;)/A). Now we define the ladder
operator

ar =Y A(A,A+b;)(JA){A+Db;—bi|+|A+bi)(A+bi])  (26)
A

and impose [ag, al,] = w.

o -
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fter some algebra, one can prove that this leads to recurrence relations

A

A(A,A+Db;) =A, (27)

A%(A,A +by)+ A%(A +by, A+ by —b3)=  (29)
A*(A+b;,A+b; +by)+A*(A+by+b;,A+b; +by—bs),

A*(A, A +by) + A*(A, A +b3) = (29)
A?(A+bi,A+b; —b3)+A?(A+b;,A+b; —by) +w.

Complicated, but one can use a program to generate all lattice points !!
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Deformed lattices

o

eformations
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Deformed lattices

-

Lattices produced with our recurrence relation. A regular hexagonal cell is
used as a seed. A choice of deformation angle may produce periodicity in

one direction (trivial case)
30;

25;
20+
15¢

10+

o -
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Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is

used as a seed. No periodicity.
30,

25;
20+
15}

10}

o -
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Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is

used as a seed. No periodicity.
30,

25;
20+
15}

10}

o -

UNAM and Uni-Ulm Julv 29. 2010 — p. 35/¢



Deformed lattices

Lattices produced with our recurrence relation. A regular hexagonal cell is

used as a seed. No periodicity.
30,

25;
20+
15}

10}

o -
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Final result

-

he resulting hamiltonian of this problem is

H=FEy+03M+o,ar+o_al, (30)

with eigenvalues

E(Ng) = Ey+ Jw(Ng + 1) + M2, 0< Nr < A?/w (31)

o -
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Reflection

Preliminary experimental results. The blue line indicates the Dirac point.
The equally spaced spectrum appears due to the deformation. The gap
Indicates the zero point energy of the oscillator
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Transmission

-

he equally spaced spectrum appears due to the deformation. The gap

indicates the zero point energy of the oscillator
Graphen (casel) S11

o -
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The importance of tight binding

fWe claim that rotational symmetry around degeneracy points is a direct T
consequence of the tight binding approximation, as we shall see. It is well
known that rotational symmetry in the Dirac equation demands a
transformation of both orbital and spinorial degrees of freedom. It is in the
orbital part that we shall concentrate by studying the energy surfaces
around degeneracy points beyond the tight binding model. In our study, it
will suffice to look inside the first Brillouin zone since the rest of the
reciprocal lattice can be obtained by periodicity. Small deviations from
degeneracy points (denoted by k() in the form k = ky + k give the energy

E=A]) exp(iA(ko + k) - b;)| ~ A)|k], (32)

which is rotationally invariant in k.
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fA second-neighbor interaction of strength A’ modifies the kinetic operator
IT as

=AY Tp, +A > To+Ta, (33)

i=1,2,3 i=1,2,3

where the vectors a; have now appeared, connecting a point with its six
second neighbors. The energy equation becomes

E=|A) exp(iXk-b;) + A" 2cos (Ak - a;)|. (34)

o -
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fWe expect a deviation of degeneracy points kg, for which k = kj + k.
Upon linearization of the exponentials in k we find the energy

E~+(k-u)?+(k-v)2 (35)

where the vectors are given by

u=AA» cos(Akj - b;)b; (36)

v =AA) sin(Akj - bi)b; +20A" ) sin(Ak; - a;)a, (37)

o -
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Energy contours

-

First neighbour interaction, circular contours
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Energy contours

s

econd neighbour interaction, elliptic contours
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® The presence of A’ gives the energy surfaces as cones with T
elliptic sections whenever « is inside the first Brillouin zone.
Regardless of how we complete the energy contours to recover
periodicity, it is evident that the resulting surfaces are not invariant
under rotations around degeneracy points. The circular case Is
recovered only when A’ = 0, leading to k{, = kg. In this case, the
vectors reduce to v = (1,0),u = (0, 1) when kg is the degeneracy
point at (1/2X,0).

® [n summary, extending the interactions to second neighbors has the
effect of breaking the isotropy of space AROUND DEGENERACY
POINTS, which is an essential property of the free Dirac theory.

o -
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Conclusions

We provide a useful description for a problem motivated

by graphene and its emulation in electromagnetic
billiards.

Spectra, eigenfunctions and Dirac points have been
reproduced.

We have developed a method to analyze deformations
through the algebraic properties of the system

The experimental realization of this well known
relativistic system is desirable.

-
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