AN ANALYTICAL TREATMENT FOR THREE NEUTRINO OSCILLATIONS IN THE EARTH

A. Aguilar-Arévalo, J.C. D'Olivo, and A.D. Supanitsky, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

SUMMARY: The Magnus expansion for the evolution operator provides a convenient formalism to find approximate solutions to the problem of three neutrino oscillations in a medium with an arbitrarily varying density. This method allows us to incorporate in a simple way the Earth matter effects on the transition probabilities for neutrinos with a wide interval of energies, making possible an accurate description of such effects in the case of solar, accelerator, and atmospheric neutrinos.

INTRODUCTION

Evolution operator of a system with Hamiltonian \mathcal{H} : $i \hbar \partial \mathcal{U}\left(t, t_{0}\right) / \partial t=\mathcal{H} \mathcal{U}\left(t, t_{0}\right), \quad \mathcal{U}\left(t_{0}, t_{0}\right)=I$
Magnus exponential expansion [1]:

$$
\mathcal{U}\left(t, t_{0}\right)=\exp \left(\Omega\left(t, t_{0}\right)\right), \Omega=\sum_{n=1}^{\infty} \Omega_{n}
$$

The first two terms of the series are:

$$
\Omega_{1}\left(t, t_{0}\right)=-\frac{i}{\hbar} \int_{t_{0}}^{t} d t_{1} H\left(t_{1}\right)
$$

$$
\Omega_{2}\left(t, t_{0}\right)=-\frac{1}{2 \hbar^{2}} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2}\left[H\left(t_{1}\right), H\left(t_{2}\right)\right]
$$

The Ω_{n} are anti-Hermitian, thus truncating the series at any order yields a unitary approximation for $\mathcal{U}\left(t, t_{0}\right)$.

Neutrino Mixing

PMNS mixing matrix: $U=\mathcal{O}_{23} \Gamma \mathcal{O}_{13} \Gamma^{*} \mathcal{O}_{12}$, with $\mathcal{O}_{i j}$ a rotation in the $i j$ plane by the angle $\theta_{i j}$, and the diagonal matrix $\Gamma=\operatorname{diag}\left(1,1, e^{i \delta}\right)$ contains the CP phase δ.

$$
\psi_{\alpha}(t)=\sum_{i=1}^{3} U_{\alpha i} \psi_{i}(t), \quad \psi_{\alpha}(t), \alpha=e, \mu, \tau
$$

Matter Evolution

In a medium the MSW Hamiltonian in the flavor basis is

$$
\mathcal{H}(t)=U H_{0} U^{\dagger}+V(t) Y, \quad V(t)=\sqrt{2} G_{F} N_{e}(t)
$$

$$
H_{0}=\operatorname{diag}\left(0, \Delta_{21}, \Delta_{31}\right), Y=\operatorname{diag}(1,0,0), \Delta_{i j}=\Delta m_{i j}^{2} / 2 E,
$$

Diagonalization of $\mathcal{H}(t)$ defines the adiabatic basis $\left\{\left|\nu_{1 m}(t)\right\rangle,\left|\nu_{2 m}(t)\right\rangle,\left|\nu_{3 m}(t)\right\rangle\right\}$, in which the evolution operator satisfies

$$
i \hbar \frac{\partial}{\partial t} \mathcal{U}\left(t, t_{0}\right)=\left[\mathcal{H}_{D}(t)-i \hbar U_{m}^{\dagger}(t) \frac{\partial U_{m}(t)}{\partial t}\right] \mathcal{U}\left(t, t_{0}\right),
$$

$$
\mathcal{H}_{D}(t)=U_{m}(t)^{\dagger} \mathcal{H}(t) U_{m}(t)=\operatorname{diag}\left(E_{1}(t), E_{2}(t), E_{3}(t)\right)
$$

$U_{m}(t)$ is the mixing matrix in matter at time t.

$$
\psi_{\alpha}(t)=\sum_{i=1}^{3}\left(U_{m}\right)_{\alpha i}(t) \psi_{i m}(t)
$$

Parameters

$$
\begin{aligned}
& \theta_{12}=34.4^{\circ}, \theta_{13}=7.9^{\circ}, \theta_{23}=42.3^{\circ}, \\
& \Delta m_{21}^{2}=7.67 \times 10^{-5} \mathrm{eV}^{2}, \Delta m_{31}^{2}=2.46 \times 10^{-3} \mathrm{eV}^{2} .
\end{aligned}
$$

NEUTRINOS THROUGH THE EARTH

Mantle-Core-Mantle model, densities $V_{(M, C)}=(2.48,5.95)$ $N_{A} \mathrm{~cm}^{-3}$

Fig. 2 Matter mixing angles, energy eigenvalues, and \% residues wrt. exact $E^{\prime \prime}$ s as a function of the E_{v}, in the core

APPROXIMATE DIAGONALIZATION

The smallness of $\Delta m_{21}^{2} / \Delta m_{31}^{2} \simeq 1 / 32$, defines two well separated regimes for propagation:

$$
\text { Low } E: V_{M, C} \simeq \Delta_{21}, \quad \text { High } E: V_{M, C} \simeq \Delta_{31}
$$

$U_{m}(t)$ takes the approximate form:

$$
U_{m}(t) \simeq \mathcal{O}_{23} \Gamma \mathcal{O}_{13}\left(\theta_{13}^{m}(t)\right) \Gamma^{*} \mathcal{O}_{12}\left(\theta_{12}^{m}(t)\right)
$$

The matter angles $\theta_{12}^{m}(t)$ and $\theta_{13}^{m}(t)$ arise from diagonalizing \mathcal{H} in each regime, where it reduces to that of a twostate problem. The approximate eigenvalues (Fig. 2) work well for all energies.

The transformation $\mathcal{U}\left(t, t_{0}\right)=\Gamma P\left(t, t_{0}\right) \mathcal{U}_{P}\left(t, t_{0}\right) \Gamma^{*}$, with $P\left(t, t_{0}\right)=\operatorname{diag}\left(e^{-i \alpha_{1}}, e^{-i \alpha_{2}}, e^{-i \alpha_{3}}\right)$, and the phases $\alpha_{k}(t)=\frac{1}{\hbar} \int_{t_{0}}^{t} d t^{\prime} E_{k}(t)$, removes \mathcal{H}_{D} leading to $i \hbar \partial \mathcal{U}_{P} / \partial t=\mathcal{H}_{P} \mathcal{U}_{P}$
where
$\mathcal{H}_{P}(t)=\left[\begin{array}{ccc}0 & h_{a} & 0 \\ h_{a}^{*} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & h_{b} \\ 0 & 0 & h_{c} \\ h_{b}^{*} & h_{c}^{*} & 0\end{array}\right]=\mathcal{H}_{l}(t)+\mathcal{H}_{h}(t)$,

$$
h_{a}(t)=-i \hbar \dot{\theta}_{12}^{m} \exp -i\left[\alpha_{2}-\alpha_{1}\right],
$$

$$
h_{b}(t)=-i \hbar \dot{\theta}_{13}^{m} c_{12}^{m} \exp -i\left[\alpha_{3}-\alpha_{1}\right]
$$

$$
h_{c}(t)=-i \hbar \dot{\theta}_{13}^{m} s_{12}^{m} \exp -i\left[\alpha_{3}-\alpha_{2}\right],
$$

FACTORIZED SOLUTION

Due to the separation of the two regimes
$\left[\mathcal{U}_{l}\left(t, t_{0}\right), \mathcal{H}_{h}(t)\right] \simeq 0 \quad \forall t$,
$\Rightarrow \mathcal{U}_{\mathcal{P}}\left(t_{f}, t_{0}\right)=\mathcal{U}_{l}\left(t_{f}, t_{0}\right) \times \mathcal{U}_{h}\left(t_{f}, t_{0}\right)$
We solve for $\mathcal{U}_{l, h}\left(t, t_{0}\right)$ using the Magnus approximation up to $2^{n d}$ order as in [2]. By taking $h_{b}(t) \approx 0$, we find

$\mathcal{U}_{P}=$	

$$
v_{11}=\left(\cos \xi^{h}-i \sin \xi^{h} \frac{\xi^{\frac{\xi^{h}}{(2)}} \epsilon^{h}}{\xi^{h}} e^{i \phi_{32}^{\tau-t_{f}}}, v_{12}=i \sin \xi^{h} \frac{\xi_{\frac{112}{h}}^{\xi^{h}}}{} e^{-i \delta}\right.
$$

with the phases $\phi_{i j}^{t_{1} \rightarrow t_{2}}=\int_{t_{1}}^{t_{2}} d t^{\prime}\left(E_{i}\left(t^{\prime}\right)-E_{j}\left(t^{\prime}\right)\right)$.
and $\xi^{l, h}=\sqrt{\left(\xi_{(1)}^{l, h}\right)^{2}+\left(\xi_{(2)}^{l, h}\right)^{2}}$. Calculation of the $\xi^{l, h}$ factors exploits the symmetry of the potential (Fig. 1):

$$
\begin{aligned}
& \xi_{(1)}=2 \int_{t}^{t_{f}} d t^{\prime} \dot{\theta}_{i j}^{m}\left(t^{\prime}\right) \sin \phi_{i j}^{\bar{t} \rightarrow t^{\prime}}, \\
& \xi_{(2)}=\int_{t_{0}}^{t_{f}} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \dot{\theta}_{i j}^{m}\left(t^{\prime}\right) \dot{\theta}_{i j}^{m}\left(t^{\prime \prime}\right) \sin \phi_{i j}^{t_{i j}^{\prime} \rightarrow t^{\prime \prime}}
\end{aligned}
$$

Oscillation Probability $\boldsymbol{P}\left(\mathrm{v}_{\mu} \rightarrow \mathrm{v}_{e}\right)$
Applying the evolution operator to a v_{μ} entering the Earth we compute $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\psi_{\mu \rightarrow e}\right|^{2}$ with the amplitude

$$
\begin{aligned}
& { }^{-i I_{1}} U_{e 1}^{m}\left(t_{0}\right) \\
& {\left[U_{\mu 1}^{m *}\left(t_{0}\right) u_{11}+\left(U_{\mu 2}^{m *}\left(t_{0}\right) v_{11}+U_{\mu 3}^{m *}\left(t_{0}\right) v_{12}\right) u_{12} e^{-i \phi_{32}^{\tau} t_{f}}\right]} \\
& +e^{-i I_{2}} U_{e 2}^{m}\left(t_{0}\right) \\
& {\left[-U_{\mu 1}^{m *}\left(t_{0}\right) u_{12}^{*} e^{i \phi_{32}^{\tau \tau}+t_{f}}+\left(U_{\mu 2}^{m *}\left(t_{0}\right) v_{11}+U_{\mu 3}^{m *}\left(t_{0}\right) v_{12}\right) u_{11}^{*}\right]} \\
& +e^{-i I_{3}} U_{e 3}^{m}\left(t_{0}\right) \\
& \left(-U_{\mu 2}^{m *}\left(t_{0}\right) v_{12}^{*}+U_{\mu 3}^{m *}\left(t_{0}\right) v_{11}^{*}\right)
\end{aligned}
$$

where $I_{1}=\alpha_{1}+\phi_{21}^{\bar{t} \rightarrow t_{f}}, I_{2}=\alpha_{2}+\left(\phi_{32}^{\bar{t} \rightarrow t_{f}}-\phi_{21}^{\bar{\tau} \rightarrow t_{f}}\right)$, and $I_{3}=\alpha_{3}-\phi_{32}^{\bar{t}-t_{f}}$

Regeneration Factor

We can also calculate the regeneration factor

$$
F_{\text {reg }}=P\left(\nu_{2} \rightarrow \nu_{e}\right)-P^{(0)}\left(\nu_{2} \rightarrow \nu_{e}\right)
$$

evolving a ν_{2} from t_{0} to t_{f}, projecting it onto a v_{e}, and subtracting the vacuum $2 \rightarrow e$ transition probability.

CONCLUSIONS

The Magnus expansion for the evolution operator implemented in the adiabatic basis gives an elegant and efficient formalism to describe three neutrino oscillations in a medium with varying density.

We have shown that the product of the solutions for the low and high energy regimes found with this method, renders simple semi-analytical formulas for the transition probabilities. When these formulas are applied to neutrinos traversing the Earth, they agree well with numerical calculations.

Finally, the Earth matter effects on low energy neutrinos can be accurately described by an effective three neutrino model where the two neutrino component is calculated using a $2^{\text {nil }}$ order Magnus approximation.

Acknowledgements

This work has been supported by CONACYT and PAPIIT-DGAPA (UNAM).

References

[1] W. Magnus, Commun.Pure Appl.Math. 7, 649, (1954)
[2] Supanitsky, D'Olivo and M-Tanco, Phys.Rev. D 78, 045024 (2008); Ioannisian and Smirnov, Nucl.Phys. B916, 94 (2009)
[3] E. Akhmedov et al., JHEP05 (2004) 057

