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I. INTRODUCTION

Physics on AdS has become particularly relevant in theoretical physics in the context

of AdS/CFT correspondence. Before the advent of the correspondence, physics on AdS

was studied in the context of gauge supergravities, since the maximally (super)symmetric

solution of some of these theories correspond to AdS spacetime, de�ning the vacuum of the

theory. These notes contain certain aspects of physics in AdS. Homeworks are written

with bold.

II. ADS

A maximally symmetric spacetime, is a spacetime with the maximum number of Killing

vectors (globally de�ne), i.e. it has D(D+1)
2

, independent solutions of

L�g�� = 0 = ��@�g�� + g��@��
� + g��@��

� : (1)

These spacetime are necessarily of constant curvature, i.e. they have the following Rie-

mann tensor

R��
�� = c

�
����

�
� � ��� �

�
�

�
= c����� ; (2)

which implies that the Ricci tensor and the Ricci scalar are

R�
� = c (D � 1) ��� , R = cD (D � 1) : (3)

The constant c is the curvature of the spacetime, and l with l2 = 1=jcj is the curvature
radius of the spacetime.

Constant curvature spacetimes are necessarily conformally �at, which leads to a vanishing

Weyl tensor C��
�� = 0 in D > 3 and a vanishing Cotton tensor in C�� = 0 in D = 3.

Einstein equations with a cosmological constant

G�� + �g�� = 0 ; (4)

admit a constant curvature solution, provided the curvature of the latter is �xed in terms

of the cosmological constant as

c = Homework (5)
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AdSD is the solution of these equations with
D(D+1)

2
Killing vectors in the case of negative

c = � 1
l2
.

This spacetime can be obtained as follows. Consider a �at, pseudo-Riemannian space,

with the following metric in dimension D + 1 (notice the absence of xD just for notational

simplicity)

ds2 = �dx20 + dx21 + :::+ dx2D�1 � dx2D+1 : (6)

Now, AdSD is de�ned as the surface

�x20 + x21 + :::+ x2D�1 � x2D+1 = �l2 ; (7)

in the spacetime (6). From these equations it is clear the structure of the Killing vectors of

the obtained spacetime, since both the ambient metric (6) as well as the constraint de�ning

the surface (7) are invariant under (i; j run from 1 to D � 1)

rotations 1: xi
@

@xj
� xj

@

@xi
there are

0@ D � 1
2

1A
rotation 2: x0

@

@xD+1
� xD+1

@

@x0
there is 1

boosts 1: x0
@

@xi
+ xi

@

@x0
there are D � 1

boost 2: xD+1
@

@xi
+ xi

@

@xD+1
there are D � 1

There is a total of D(D+1)
2

Killing vectors, which can naturally be organized as LAB, with

A;B = 0; 1; :::; D�1; D+1, and in terms of this, the algebra of the Killing vectors (isometry
algebra) reads

[LAB; LCD] = �ADLBC � �BDLCA + �CALBD � �CBLDA : (8)

This is the algebra of the group SO (D � 1; 2), with � =diag(�1;+1; :::;+1;�1).

The constraint (7) is one relation between D + 1 variables, therefore it can be solve

introducingD parameters. Substituting a parametrization of the constraint (7) in the metric

(6) we �nd the induced metric on the surface. Di¤erent parametrizations will lead to di¤erent

induced metrics which are related by changes of coordinates. Some of the parametrizations

will be global, while other will cover only part of the spacetime. Let us see some particular

parametrizations for AdS3.
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Poincare patch parametrization: (t; z; x)

x0 =
z

2

�
1 +

(1 + x2 � t2)

z2

�
, x1 =

t

z
, x2 =

x

z
; xD+1 =

z

2

�
1� (1� x2 + t2)

z2

�
: (9)

This is a rational parametrization (since the functions are quotients of polynomials), and

therefore AdSD is a rational manifold (not every surface admits a rational parametrization).

The induced metric (homework) reads

ds2 =
1

z2
�
�dt2 + dz2 + dx2

�
: (10)

This metric is manifestly conformally �at, and these coordinates do not cover the whole

spacetime (one can study analytic extensions as in Schwarzschild black hole).

Global coordinates: (�; �; �)

x0 = cosh � cos � , x1 = sinh � cos�, x2 = sinh � sin�, xD+1 = cosh � sin � : (11)

The induced metric reads (homework)

ds2 = l2
�
� cosh2 �d� 2 + d�2 + sinh2 �d�2

�
: (12)

Notice that in this parametrization � is periodic, while considering � periodic on the metric

(12) leads to closed timelike curves! Nevertheless, since the metric (12) is well-de�ned in

the range �1 < � < +1 we are allowed to consider that � takes values on the whole real

line. The obtained spacetime is know as the covering space of AdS, but as usual, hereafter

we call this spacetime AdS.

Notice also that the metric near � = 0 is that of Minkowski3.

AdS in Schwarzschild-like coordinates: (t; r; �)

This is obtained by setting r = l sinh � in the previous parametrization and leads to the

following induced metric (homework)

ds2 = �
�
r2

l2
+ 1

�
dt2 +

dr2�
r2

l2
+ 1
� + r2d�2 : (13)

All these can be extended to AdSD to

ds2 =
1

z2
�
�dt2 + dz2 + d~x2

�
;

ds2 = l2
�
� cosh2 �d� 2 + d�2 + sinh2 �d
2D�2

�
;

ds2 = �
�
r2

l2
+ 1

�
dt2 +

dr2�
r2

l2
+ 1
� + r2d
2D�2 ;
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where 
D�2 is the line element of the SD�2 (round) sphere. The �rst parametrization is

usually called planar AdS, or AdS in the Poincare patch and does not cover the whole

spacetime, while the latter two are referred to as global AdS.

Global structure and Penrose diagrams

The idea behind Penrose diagrams can be understood from the following, simple example.

First, the metric of the two-sphere can be written as

ds2 = d�2 + sin2 �d�2 =
dx2 + dy2�
1 + x2+y2

4

�2 : (14)

(homework: �nd x = x (�; �) and y = y (�; �) and extend to sphere of arbitrary

radius). From this we can obtain

dx2 + dy2 =

�
1 +

x2 (�; �) + y2 (�; �)

4

�2 �
d�2 + sin2 �d�2

�
: (15)

This shows that the metric of the plane is conformal to the metric of the sphere, but notice

that the conformal factor blows up as x2 + y2 ! +1. The relations x = x (�; �) and

y = y (�; �) are the ones obtained by the stereographic projection, where we know that the

north pole is associated with all the points of the circle of radius R with R!1. Now if we
add the north pole we will obtain the sphere, and since the latter is compact, we say that

the sphere is the conformal compacti�cation of the plane.

For a spacetime the conformal compacti�cation is constructed in a similar manner, taking

care of the fact that there are di¤erent types of in�nities: the in�nite where all the timelike

curves end, the in�nity where all the null line end and so on.

To study this problem in AdS, lets perform the change of coordinates r = l tan x in the

metric in Schwarzschild-like coordinates, which maps 0 < r < +1 to 0 < x < �
2
, leading to

the metric

ds2AdS4 =
l2

cos2 x

�
�dt2 + dx2 + sin2 xd
22

�
: (16)

This establishes the fact that AdS4 is conformal to half the Einstein Universe1. Consequently

AdS has the topology of a solid cylinder, where the axis is located at x = 0 and the boundary

1 EEU is the metric within the brackets in (16) with 0 < x < �, which is globally R � S3, namely a static
cosmology and is solution of Einstein equations with a positive cosmological constant and dust, whose

energy density is �xed in terms of the cosmological constant (homework: prove this).
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at x! �
2
, while time t runs along the vertical direction, and the surfaces at constant t and

constant x are two-spheres S2. Including x = �
2
leads to the conformal compacti�cation of

the spacetime and now we have a solid cylinder with the boundary included. From this we

obtain the Penrose diagram in Figure 1. Notice that the conformal boundary (the mantle

of the cylinder) is a timelike surface.

***********************

PENROSE DIAGRAM ADS

***********************

To study a gravitational �eld (a spacetime) as for a electromagnetic �eld, it is useful to

study probe objects that feel the �eld. The simplest objects on a spacetime are free test

particles which solve the geodesic equation. AdS spacetime has enough symmetries as to

lead to a completely solvable geodesic problem. Let us use Schwarzschild-like coordinates to

study a particular geodesic. Notice that the coordinate t coincides with the proper time of an

observer located at r = 0 for all times. Such observer turns out to be geodesic (homework:

prove this). According to this observer the time it takes for a photon to go from the origin

to in�nity is

�t =

Z +1

0

dr
r2

l2
+ 1

=
�l

2
: (17)

Therefore some extra information must be provided for continuing the history of the photon.

One can show (homework) that the massive geodesics travelling radially on this spacetime,

will return to r = 0 in a time �l, regardless the initial radial velocity (as for the harmonic

oscillator where the period does not depend of the amplitude). As we increase the initial

velocity or decrease the mass, the particle will explore larger distances in AdS, but it will

always come back to r = 0 in a time �t = �l. Therefore as a natural continuation of

the massive case, we can impose on the massless case that the photon gets re�ected when

arriving to the boundary and therefore it will return to r = 0 in a time �l. This is a re�ective

boundary condition at in�nity for the trajectory of the photon.

Let us now consider a probe �eld propagating on AdS, and assume for simplicity that

the dynamics of the �eld is that of a massless scalar, i.e. �� = 0. To solve this problem we
must provide initial data on a spacelike surface �, which can be seen as the surface t = t�

for some timelike coordinate t. In �at spacetime, this surface can be choose such that the

state of the �eld � at any time later t = t� is completely determined by the state of the

6



�eld (� and _�) on the surface �. On AdS (see �gure) since the conformal boundary is

timelike, we must provide further information as a boundary condition for the �eld, since

the boundary is connected with the bulk. The initial value problem on AdS is actually an

initial-boundary-value problem.

***********

CAUCHY PROBLEM ON AdS

***********

Until now we have considered probe objects on AdS. Now we will make this problem to

appear in a perturbative framework of a fully backreackting scenario. Consider for example

the Einstein-Klein-Gordon system

G�� �
3

l2
g�� = @��@���

1

2
g��@��@

�� ; (18)

�� = 0 : (19)

This theory has an obvious solution which is g�� = gAdS�� and � = 0. If we perturb this

solution by g�� = gAdS�� + �h�� and � = 0 + ��, at the leading order in perturbations we

obtain the equation

�AdS� = 0 : (20)

So we have returned to the previous problem of the probe �eld on AdS. Let�s now move a

to a more involved setup, that leads to a similar history in the context of 11D SUGRA.

III. REVIEW OF 11D SUGRA AND SOLUTIONS

11D SUGRA is a �eld theory with the following �eld content: gMN (the metric),

AMNP = A[MNP ] (an Abelian gauge three-form) and a single Majorana spin 3/2 �eld  M;�

where the index M transforms as a Lorentz vector while the index � is a Lorentz spinorial

Majorana index. The Cli¤ord algebra
�
�a;�b

	
= 2�ab in 11 dimensions has a real, Majorana

representation with matrices of 32� 32
�
�b
��

�
. These permit to de�ne a representation of

the Lorentz group, which acts on the index � of the spin 3/2 �eld. There is a match of

on-shell degrees of freedom, as required by supergravity, in terms of bosons and fermions

(see Appendix I).
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The bosonic �eld equations are

RA
B =

1

3
FACDEFBCDE �

1

36
�ABF

2 ; (21)

rAF
ABCD = � 1

576
�BCDM1:::M8FM1:::M4FM5:::M8 : (22)

Notice that the Einstein equations have been traced, from where one solves the Ricci tensor

and replace it back on Einstein equations. Notice also that since the fundamental �eld

is A[3], if we provide an ansatz for F[4], we must ensure that dF[4] = 0 which implies the

existence of A[3]. Via dimensional reduction on T 7 = S1� :::�S1, using indicesM = f�; ig,
from the point of view of four-dimensional di¤eomorphisms we have

gMN ! fg�� ; g�i; gijg =
�
metric,7 vectors,

7� 8
2

= 28 scalars
�

AMNP ! fA���; A��i; A�ij; Aijkg =

8<:one 3-form,seven 2-forms,7� 62 = 21 vectors,

0@ 7
3

1A = 35 scalars

9=;
The single 3-form has a �eld strength that is a 4-form which must be an arbitrary function

times the volume form of the four-dimensional spacetime. Maxwell equation then implies

that the function must be a constant, and therefore there are no dynamical degrees of

freedom coming from A��� in four dimensions. On the other hand the seven 2-forms, can

be dualized to scalars as follows

dA[2] = F[3] = �F[1] = �
�
dA[0]

�
; (23)

where A[0] are seven scalars. Therefore in total, the dimensional reduction of 11D SUGRA

on T 7 leads to a 1 metric, 70 scalars and 28 vectors, as bosonic degrees of freedom.

There is a solution of 11D SUGRA that will be particularly relevant in what follows. The

extremal M2-brane:

ds2 = U�2=3
�
�dt2 + dx21 + dx22

�
+ U1=3

�
dr2 + r2dS27

�
; (24)

F[4] = dt ^ dx1 ^ dx2 ^ dU�1 ;

and U = U (r) = 1+ q6

r6
is a solution of the equations of 11D SUGRA. Notice that the Chern-

Simons term F[4] ^ F[4] identically vanishes. This metric has isometries ISO (2; 1)� SO (8),
which gets enhanced in the solution obtained by taking the near horizon geometry (r ! 0)

to SO (3; 2)� SO (8), since the near horizon geometry reads

ds2 =
r4

q4
�
�dt2 + dx21 + dx22

�
+
q2

r2
dr2 + q2dS27 ; (25)
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and the submanifold spanned by the coordinates (t; x1; x2; r) is AdS4 of radius q. Of course

one has to take also the near horizon geometry in F[4] which turns out to be proportional to

the volume form of AdS4.

This is analogue to what happens in the Majumdar-Papapetrou (1947) solution (that can

be though of as a charged 0�brane) of the Einstein-Maxwell system

ds2 = �U (~x)�2 dt2 + U (~x)2 d~x2; A� = U (~x)�1 �t�; (26)

which is indeed a solution provided ~r2U (~x) = 0. Notice that one can superimpose solutions

here, which is quite remarkable since the original system is non-linear! If we rewrite d~x2 =

dr2+r2dS22 and assume U (r), one gets U (r) = 1+
q
r
. The obtained con�guration in this case

is actually extremal (M = Q) RN solution written in isotropic coordinates (homework:

change the metric to Schwarzschild-like coordinates f (~r) =
�
1� M

r

�2
). In this

isotropic coordinates the horizon is approached as r ! 0, and the near horizon geometry of

this extremal black hole (as usual with extremal black holes) is AdS2 � S2. Even though

this metric appears as a near horizon geometry, it de�nes a con�gurations that is a global

solution of the Einstein-Maxwell system, known as the Bertotti-Robinson spacetime.

Coming back to 11DSUGRA, we can also construct an extremal M5-brane

ds2 = U�1=3
�
�dt2 + dx21 + :::+ dx25

�
+ U2=3

�
dr2 + r2dS24

�
; (27)

F[4] = �
�
dt ^ dx1 ^ ::: ^ dx5 ^ dU�1

�
and U = 1 +

q3

r3
: (28)

Homework: Isometries of this solutions? What is the geometry on the near

horizon (r ! 0) region? What�s the contribution of the Chern-Simons term

F[4] ^ F[4] to the �eld equations?

In the context of the 11DSUGRA the solution (25) is a supersymmetric background. We

can de�ne another supersymmetric solution by squashing the S7 sphere. One can therefore

looks for a correlation between the stability properties of the con�gurations ensured by

their supersymmetric nature, and the perturbative stability. The problem of gravitational

perturbation is a complex one, and some geometric insight is usually required to simplify,

or classify, the perturbations that lead to a tractable set of linearized equations. Using two

sets of left-invariants forms of su (2) (see Appendix II) f�1; �2; �3g and f�1;�2;�3g and
their linear combinations �i = �i + �i and !i = �i � �i, let�s propose the following ansatz
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that depends on two-functions u (x�) and v (x�) which are scalars from the four-dimensional

point of view with coordinates x�, namely

ds2 = e�7u(x)g��dx
�dx�+e2u(x)+3v(x)R20

�
d�2

4
+
1

16
sin2 �!2i +

e�7v(x)

16
(�i + cos�!i)

2

�
: (29)

When v (x) = 0 the metric within the brackets is that of the round unit S7 (homework:

compute the Riemann tensor). Choosing e�7v(x) =
p
5
5
leads to metric within the

brackets that describes a space that is topologically a S7 but it is geometrically deformed

(homework: compute the Riemann and compare it with that of the case v = 0).

This de�nes the squashed S7 which for this value of e�7v(x) =
p
5
5
leads to an Einstein metric.

This is the only value that leads to an Einstein metric on the squashed S7 (homework:

prove this). Of course the round S7, being a constant curvature space is also an Einstein

manifold (Ri
j = c�ij for some c). On top of (29) we must provide an ansatz for A[3], and we

propose

F[4] = Qe�21u(x)V ol (g��) ; (30)

and notice that dF[4] = 0 therefore there is and A[3]. Here Q is a constant. Assuming

g��dx
�dx� is AdS4(L) in Schwarzschild-like coordinates we have the following components

for F[4]

FMNPQ = Qe�21u(x)r2 sin � � 4!�t[M�rN��P �
�
Q] : (31)

If we �rst assume u = u0 and v = v0 we found two solutions for the equations of

11DSUGRA.

The round solution: v = u = 0, which requires

3

L2
=
4Q2

3
and

1

R20
=
Q2

9
(round S7) : (32)

The squashed solution: u = 0; v0 =
1
7
ln 5 (the squashed Einstein S7 we mentioned

before), which requires

3

L2
=
4Q2

3
and

1

R20
=
25

81

Q2

54=7
(squashed S7) : (33)

Perturbing around each of these solutions (u = u0+ �u1 and v = v0+ �v1) one obtains at

leading order that

Round:
�
�AdS �

18

L2

�
u1 = 0 =

�
�AdS �

4

L2

�
v1 ; (34)

Squashed:
�
�AdS �

18

L2

�
u1 = 0 =

�
�AdS +

20

9L2

�
v1 : (35)
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Notice that the squashing mode v1, of the squashed solution behaves as a scalar probe

on AdS4 with negative mass squared! Is this in con�ict with the supersymmetry of the

background?

A similar feature occurs in N = 4 gauged SUGRA in 4D. The bosonic �eld content of the

theory is a metric, 6 gauge �elds for SO (4), one scalar and a pseudo-scalar. The latter can

be conveniently packed into a single complex �eld z (x) = A (x)+ iB (x). The truncation to

a metric and scalars it is consistent (see Apendix III), leading to a Lagrangian

L = R� @�z@
��z

(1� z�z)2
� V (z; �z) ; (36)

with

V (z; �z) = �e2
�
3 +

2z�z

1� z�z

�
; (37)

where e is the gravitino charge. The kinetic term is that of a non-linear sigma model on the

coset SU (1; 1) =U(1), and the potential is invariant only under U (1). Here z�z < 1. Notice

that the potential is negative and has a maximum at z = �z = 0. When the scalar vanishes,

the �eld equations reduce to that of AdS with a negative cosmological constant (Home-

work: compute the �eld equations and prove the latter statement). Perturbations

around this solution lead to a scalar �eld mode propagating on the AdS background with

L2m2 = �2.

We need to study the problem of scalar probes on AdS from scratch.

Let us consider a probe scalar �eld on AdS4:

ds2 = �
�
r2

L2
+ 1

�
dt2 +

dr2

r2

L2
+ 1

+ r2 + d
22 ; (38)

with the action and equation

I [�] =

Z
d4x
p
�g
�
�1
2
(@�)2 � m2

2
�2 � �

2
�2R

�
: (39)

We have included a conformal coupling with the scalar curvature since the conformally

coupled case (m = 0 and � = 1
6
) has special properties. For these values of the constants

I [
2 (x) g�� ;

�1 (x) �] = I [g�� ;�]. The equation for the scalar �eld then reads�

�AdS �m2 � �R
�
� = 0 : (40)

11



Since the Ricci scalar in AdS is a constant, one can read an e¤ective mass m2
eff = m2 �

12�=L2. We can introduce a mode superposition

� (t; r; �; �) =
X
l;m

Z
d!e�i!tR (r)l;m;! Yl;m (�; �) ; (41)

with Yl;m (�; �) spherical harmonics. Here after we set R (r)l;m;! = R (r). One obtains a

second order ODE for the radial function, which has the following, possible, behavior at the

origin and near in�nity

R (r) = C1r
jlj (1 +O (r)) + C2r

�jl+1j (1 +O (r)) ; (42)

R (r) = D1r
��+ (1 +O (1=r)) +D2r

��� (1 +O (1=r)) ; (43)

with

�� =
3

2

0@1�
s
1 +

4m2
eff

9

1A : (44)

Regularity at the origin leads to C1 = 0, while for m2
eff > 0, regularity at in�nity requires

D2 = 0 since �� is negative in this case, and therefore leads to a non-normalizable solution.

The equation of the scaled radial dependence R (r) = ~R (r) =r(D�2)=2, leads to the following

Schroedinger-like equation

� d
~R

dr2�
+
L2 + r2

L4r2
��
L2m2

eff + 2
�
r2 + l (l + 1)L2

�
~R = !2 ~R ; (45)

where r = r (r�) and r� is the �tortoise coordinate" and therefore

dr� =
dr

r2

L2
+ 1

: (46)

The coordinate r� for AdS runs in the range [0; �2 [. It is interesting to notice that when

the angular momentum of the scalar �eld vanishes (l = 0), the conformally coupled � = 1
6
,

massless scalar (m = 0), leads to the Schroedinger equation (45) for a free particle on the

domain [0; �
2
[. The conformal coupling lead to L2m2

eff = �2 and therefore the massm2 = �2
is referred to as the conformal mass.

Connecting the regular behaviours at the origin and nead in�nity, leads to the following

spectrum

L!p = 2p+�+ + l with p = 0; 1; 2; 3::: (47)

Notice that this spectrum is equispaced, which has important consequences when including

the self-interactions or backreaction on the geometry. Each of these modes, labeled by p

12



have an associated eigenmode ep. These are usually referred to as AdS oscillons, and as

expected from Sturm-Liouville theory it has p nodes. It is interesting that there is a one to

one relation beween eigenfunctions with level N = 2p + l and homogeneous polynomials of

degree N of the form PN (X
2
0 +X2

5 ; X
i), on the coordinates of the ambient space of AdS4

(see 1512.00349).

IV. APENDIX I: COUNTING ON-SHELL DEGREES OF FREEDOM

- Electro: Let�s remember �rst how to compute on-shell degrees of freedom in electro-

magnetism in arbitrary dimensions (we perform this analysis on �at space). Consider

AM (x) �
Z
dDpe�ip�x ~AM (p) ; (48)

and the Fourier transform of the vector �eld can be written as

~AM = apM + b�pM + ci"iM ; (49)

where pM = (p0; ~p), �pM = (p0;�~p) and "iM are (D � 2) spacelike vectors orthogonal to
both p and �p. The whole set fp; �p; "ig form a complete basis in momentum space. Two

gauge �elds that di¤er by a total derivative @M� are identi�ed (with a � that decays fast

enough at in�nity and regular). Clearly in momentum space @M�! pM ~�, and therefore the

longitudinal component along pM in (49) can be gauged away, i.e. we can set a = 0, and

therefore the o¤-shell number of DOFs is D � 1 encapsulated in the coe¢ cients b; ci. Now,
we impose Maxwell equations. The �eld strength reads FMN = 2@[MAN ] ! ~FMN � p[M ~AN ].

Maxwell equation @MFMN = 0, therefore leads to

pM [pM
�
b�pN + ci"iN

�
� pN

�
b�pM + ci"iM

�
] = 0

b
�
pMpM �pN � pM �pMpN

�
+ pMpMc

i"iN = 0 ; (50)

which due to linear independence leads to b = 0 and pMpM = 0. Therefore we have that the

only the (D � 2) model along the "iM directions are on-shell degrees of freedom.

- p-form on shell counting: Homework.

Hints: Consider an (Abelian) gauge q-form A[q] � A[q] + d�[q�1] with �[q�1] the gauge

parameter. The �eld strength is F[q+1] = dA[q] and Maxwell equations are r�F��1:::�q = 0.
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Consider Minkowski spacetime and Cartesian coordinates we can Fourier transform A[q] (x)

as

A[q] (x) = AM1:::Mq (x) �
Z
dDpe�ip�x ~AM1:::Mq (p) =

Z
dDpe�ip�x ~A[q] (p) : (51)

Given the basis pM = (p0; ~p), �pM = (p0;�~p) and the (D � 2) vectors "iM , one can de�ne the
one-forms p = pMdx

M ; �p = �pMdx
M and "i = "iMdx

M and write ~A[q] (p) in terms of the basis

in the space of q�forms, generated by the previous vectors, namely

~A[q] (p) = ai1:::iq�2dp ^ d�p ^ "i1 ^ ::: ^ "iq�2 + bi1:::iq�1dp ^ "i1 ^ ::: ^ "iq�1 (52)

+ ci1:::iq�1d�p ^ "i1 ^ ::: ^ "iq�1 + di1:::iq"
i1 ^ ::: ^ "iq ; (53)

Impose the gauge redundancy and Maxwell equations to obtain

0@ D � 2
q

1A independent

components.

- GR symmetric spin 2 �eld: A symmetric tensor hMN has
D(D+1)

2
components. Gauge

symmetries in this case are given by D di¤eomorphism generated by a vector �eld �M that

acts on hMN as hMN � hMN + @M�N + @N�M . We can therefore substract D components.

Consequently the o¤-shell degrees of freedom are D(D�1)
2

. Now, Einstein equations contain

D constraints, which are now dynamics equations but constraints (the Hamiltonian and the

Momentum constraints) on the initial data that will further relate the components of hMN .

We end up with D(D�3)
2

on-shell degrees of freedom.

- Gravitino: The dynamics of the spin 3=2, Rarita-Schwinger �eld is

�MNP@N P = 0 ; (54)

where  P is a Majorana vector-spinor. Writing explicitly the spinorial index we have  P;�,

and there are D� 2[D=2] independent components since the the vector index p = 0; :::; D� 1
and � = 1; :::; 2[D=2]. The equation (54) is invariant under  P �  P + @p� where � is

a spinorial parameter, and therefore, if one considers this gauge redundancy one obtains

(D � 1) � 2[D=2] o¤-shell DOFs.  P can be thought of as the gauge connection that allows
to promote rigid supersymmetry generated by a global � to local supersymmetry generated

by a local �.

In order to count the on-shell DOFs, let us proceed as follow (see Freedman & VanProyen

book). First impose a non-covariant gauge, that completely �xes the gauge freedom

�i i = 0 , (55)
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with i = 1; :::; D � 1. These are 2[D=2] equations and therefore we have, at the moment
(D � 1)� 2[D=2]. Now consider the following identities for the antisymmetrized products of
Dirac matrices (homework: prove the identities)

�M�
MNR = (D � 2) �NR; and �MNR = �M�NR � �MN�R + �MR�N : (56)

We can therefore obtain, from equation (54) and the identities the equation (homework:

prove this)

�M (@M N � @N M) = 0 : (57)

Studying the component N = 0 and using the gauge-�xing, we get

�i@i 0 = 0 ! �ij@i@j 0 = 0 : (58)

In order to obtain the last equation we have used the Cli¤ord algebra. The last equation

implies that  0 is harmonic in R3, and since it must be regular and vanishing at in�nity we

have  0 = 0. Remember that r2f (x) = 0 !
R
d3xr2f (x) = 0 !

R
d3x@if (x) @

if (x) +

BT = 0, and if the function f goes to zero su¢ ciently fast as j~xj ! 1 the boundary term

will vanish and therefore the norm (positive) of the Euclidean vector @if must vanish, namely

f has to be a constant. The equations  0 = 0 allows to substract 2[
D
2 ] extra components.

Inserting this information in the M = i components of (57) one obtains

�M@M i = 0 ; (59)

which are 2[
D
2 ] equations.

Therefore since the spinorial equation is of �rst order, we have

#onshellDOF =
�
#components-#gaugecondition-#( 0 = 0) -#

�
�M@M i = 0

��
; (60)

(D � 3)� 2[D=2]
2

=
D � 2[D=2] � 2[D=2] � 2[D=2] � 2[D=2]

2
: (61)

Notice that the gauge freedom plus the dynamics allows to probe @M
�
�M N

�
= 0, which

projects out the spin 1
2
combination �M N , which is consistent with the fact that Rarita-

Schwinger equation describe the dynamics of the irreducible spin 3
2
�eld.

V. APENDIX II: ON MAURER-CARTAN FORMS

A general parameter of SU (2) can be written as

g = e�J3e�J1e J3 ; (62)
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with 0 � � � 2�, 0 � � � � and 0 �  � 4�. This covers once the group manifold. Let�s
use the following representation for the generators

J1 =

0@ 0 � i
2

� i
2
0

1A ; J2 =

0@ 0 �1
2

1
2
0

1A ; J3 =

0@ � i
2
0

0 i
2

1A ; (63)

which commute as [Ji; Jj] = "ijkJk. These generators are anti-hermitian. The inverse of the

group element in this parametrization reads

g = e� J3e��J1e��J3 : (64)

The di¤erential of the group element g (�; �;  ) is de�ned as

dg =
@g

@�
d� +

@g

@�
d�+

@g

@ 
d ; (65)

and the combination g�1dg is a one-form, valued on the algebra, therefore

g�1dg = �iJi ; (66)

where �i are the Maurer-Cartan forms of SU (2). A direct computation (see worksheet)

leads to

�1 = cos d� + sin � sin d� ; (67)

�2 = cos sin �d�� sin d� ;

�3 = d + cos �d� : (68)

You may have seen this structure before, since the kinetic energy of a spinning object with

inertia momenta I1, I2 and I3 is

K = I1

�
cos 

d�

dt
+ sin � sin 

d�

dt

�2
+I2

�
cos sin �

d�

dt
� sin d�

dt

�2
+I3

�
d 

dt
+ cos �

d�

dt

�2
;

(69)

with (�; �;  ) the Euler angles (see Landau & Lifshitz V1).

The metric on the squashed three sphere reads

ds2 =
1

4

�
I1�

2
1 + I2�

2
2 + I3�

2
3

�
: (70)

This is a metric on a space that is topologically a three-sphere, but metrically squashed.

The isometry algebras are: su (2) for I1 6= I2 6= I3, su (2)� u (1) for I1 = I2 6= I3 and �nally

su (2)� su (2) � so (4) for I1 = I2 = I3. The 1
4
factor has been included to obtain the unit,

three sphere when all the Ii = 1.
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VI. APENDIX III: BASIC FACTS OF CONSISTENT TRUNCATIONS AND KK

REDUCTIONS

It is useful to have in mind the fact that when the action depends linearly in some of the

dynamical �elds, it is not consistent to set them to zero before computing variations of the

action. The reduced action in these cases will lead to equations that are di¤erent to that

of the full theory after setting the �eld to zero in the �eld equations (currents cannot be

turn-o¤ in the action). (Homework: consider the Lagrangian L = _q1
2
+ _q2

2
� q1q

2
2 and

study the consistency of setting q1 = 0 in the action).

The dimensional reduction of GR from dimensionD ! D�1 can be performed by setting
the D-dimensional metric as (as in Pope�s notes)

ĝMN =

0@ e2��(x;z)g�� (x; z) + e2��(x;z)A� (x; z)A� (x; z) e
2��(x;z)A�

e2��(x;z)A� e2��(x;z)

1A : (71)

We have split the coordinates as xM = fx�; zg. Assuming z is compact, we can introduce a
Fourier mode decomposition along that direction. In this case it is consistent to keep only the

zero-modes of the expansion, namely assume that the �eld g�� , A� and �, do not depend on

z. These �elds behave as a metric, a vector �eld and a scalar �eld, respectively, with respect

to D � 1-dimensional di¤eomorphisms. The dimensional reduction of the Einstein-Hilbert
action leads to

1

16�GD

Z
dDx

p
jĝjR̂ = L

16�GD

Z
dD�1x

p
jgj
�
R� 1

2
(@�)2 � 1

4
e�2(D�1)��F 2

�
; (72)

where we have chosen

�2 =
1

2 (D � 1) (D � 2) and � = � (D � 2)� : (73)

These latter choice allows to obtain a scalar �eld that is minimally coupled to gravity, i.e.

the D � 1-dimensional action turns out to be in the Einstein frame, and also the scalar
�eld has a canonical kinetic term. The coupling between the scalar and vector �eld A� is a

dilatonic coupling. For generic values of � this theory is known as Einstein-Dilaton-Maxwell

(Homework: Compute the �eld equations and show that it is inconsistent to set

the scalar �eld to zero, but it is consistent to set the vector �eld in the action)
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