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S U P E R S Y M M E T R Y A N D S T R I N G T H E O R Y
Beyond the Standard Model

The past decade has witnessed some dramatic developments in the field of theoret-
ical physics, including advancements in supersymmetry and string theory. There
have also been spectacular discoveries in astrophysics and cosmology. The next
few years will be an exciting time in particle physics with the start of the Large
Hadron Collider at CERN.

This book is a comprehensive introduction to these recent developments, and
provides the tools necessary to develop models of phenomena important in both
accelerators and cosmology. It contains a review of the Standard Model, covering
non-perturbative topics, and a discussion of grand unified theories and magnetic
monopoles. The book focuses on three principal areas: supersymmetry, string the-
ory, and astrophysics and cosmology. The chapters on supersymmetry introduce the
basics of supersymmetry and its phenomenology, and cover dynamics, dynamical
supersymmetry breaking, and electric–magnetic duality. The book then introduces
general relativity and the big bang theory, and the basic issues in inflationary cos-
mologies. The section on string theory discusses the spectra of known string theo-
ries, and the features of their interactions. The compactification of string theories is
treated extensively. The book also includes brief introductions to technicolor, large
extra dimensions, and the Randall–Sundrum theory of warped spaces.

Supersymmetry and String Theory will enable readers to develop models for
new physics, and to consider their implications for accelerator experiments. This
will be of great interest to graduates and researchers in the fields of parti-
cle theory, string theory, astrophysics, and cosmology. The book contains sev-
eral problems and password-protected solutions will be available to lecturers at
www.cambridge.org/9780521858410.

Michael Dine is Professor of Physics at the University of California, Santa
Cruz. He is an A. P. Sloan Foundation Fellow, a Fellow of the American Physical
Society, and a Guggenheim Fellow. Prior to this Professor Dine was a research
associate at the Stanford Linear Accelerator Center, a long-term member of the
institute for Advanced Study, and Henry Semat Professor at the City College of the
City University of New York.



“An excellent and timely introduction to a wide range of topics con-
cerning physics beyond the standard model, by one of the most dynamic
researchers in the field. Dine has a gift for explaining difficult concepts
in a transparent way. The book has wonderful insights to offer beginning
graduate students and experienced researchers alike.”

Nima Arkani-Hamed, Harvard University

“How many times did you need to find the answer to a basic question about
the formalism and especially the phenomenology of general relativity,
the Standard Model, its supersymmetric and grand unified extensions,
and other serious models of new physics, as well as the most important
experimental constraints and the realization of the key models within
string theory? Dine’s book will solve most of these problems for you and
give you much more, namely the state-of-the-art picture of reality as seen
by a leading superstring phenomenologist.”

Lubos Motl, Harvard University

“This book gives a broad overview of most of the current issues in theo-
retical high energy physics. It introduces and discusses a wide range of
topics from a pragmatic point of view. Although some of these topics are
addressed in other books, this one gives a uniform and self-contained ex-
position of all of them. The book can be used as an excellent text in various
advanced graduate courses. It is also an extremely useful reference book
for researchers in the field, both for graduate students and established
senior faculty. Dine’s deep insights and broad perspective make this book
an essential text. I am sure it will become a classic. Many physicists ex-
pect that with the advent of the LHC a revival of model building will take
place. This book is the best tool kit a modern model builder will need.”

Nathan Seiberg, Institute for Advanced Study, Princeton
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Preface

As this is being written, particle physics stands on the threshold of a new era, with
the commissioning of the Large Hadron Collider (LHC) not even two years away.
In writing this book, I hope to help prepare graduate students and postdoctoral
researchers for what will hopefully be a period rich in new data and surprising
phenomena.

The Standard Model has reigned triumphant for three decades. For just as long,
theorists and experimentalists have speculated about what might lie beyond. Many
of these speculations point to a particular energy scale, the teraelectronvolt (TeV)
scale which will be probed for the first time at the LHC. The stimulus for these
studies arises from the most mysterious – and still missing – piece of the Standard
Model: the Higgs boson. Precision electroweak measurements strongly suggest that
this particle is elementary (in that any structure is likely far smaller than its Compton
wavelength), and that it should be in a mass range where it will be discovered at the
LHC. But the existence of fundamental scalars is puzzling in quantum field theory,
and strongly suggests new physics at the TeV scale. Among the most prominent
proposals for this physics is a hypothetical new symmetry of nature, supersymmetry,
which is the focus of much of this text. Others, such as technicolor, and large or
warped extra dimensions, are also treated here.

Even as they await evidence for such new phenomena, physicists have become
more ambitious, attacking fundamental problems of quantum gravity, and specu-
lating on possible final formulations of the laws of nature. This ambition has been
fueled by string theory, which seems to provide a complete framework for the
quantum mechanics of gauge theory and gravity. Such a structure is necessary to
give a framework to many speculations about beyond the Standard Model physics.
Most models of supersymmetry breaking, theories of large extra dimensions, and
warped spaces cannot be discussed in a consistent way otherwise.

It seems, then, quite likely that a twentyfirst-century particle physicist will re-
quire a working knowledge of supersymmetry and string theory, and in writing this

xv



xvi Preface

text I hope to provide this. The first part of the text is a review of the Standard Model.
It is meant to complement existing books, providing an introduction to perturbative
and phenomenological aspects of the theory, but with a lengthy introduction to
non-perturbative issues, especially in the strong interactions. The goal is to provide
an understanding of chiral symmetry breaking, anomalies and instantons, suitable
for thinking about possible strong dynamics, and about dynamical issues in super-
symmetric theories. The first part also introduces grand unification and magnetic
monopoles.

The second part of the book focuses on supersymmetry. In addition to global su-
persymmetry in superspace, there is a study of the supersymmetry currents, which
are important for understanding dynamics, and also for understanding the BPS con-
ditions which play an important role in field theory and string theory dualities. The
MSSM is developed in detail, as well as the basics of supergravity and supersym-
metry breaking. Several chapters deal with supersymmetry dynamics, including
dynamical supersymmetry breaking, Seiberg dualities and Seiberg–Witten theory.
The goal is to introduce phenomenological issues (such as dynamical supersymme-
try breaking in hidden sectors and its possible consequences), and also to illustrate
the control that supersymmetry provides over dynamics.

I then turn to another critical element of beyond the Standard Model physics:
general relativity, cosmology and astrophysics. The chapter on general relativity is
meant as a brief primer. The approach is more field theoretic than geometrical, and
the uninitiated reader will learn the basics of curvature, the Einstein Lagrangian,
the stress tensor and equations of motion, and will encounter the Schwarzschild
solution and its features. The subsequent two chapters introduce the basic features
of the FRW cosmology, and then very early universe cosmology: cosmic history,
inflation, structure formation, dark matter and dark energy. Supersymmetric dark
matter and axion dark matter, and mechanisms for baryogenesis, are all considered.

The third part of the book is an introduction to string theory. My hope, here, is to
be reasonably comprehensive while not being excessively technical. These chapters
introduce the various string theories, and quickly compute their spectra and basic
features of their interactions. Heavy use is made of light cone methods. The full
machinery of conformal and superconformal ghosts is described but not developed
in detail, but conformal field theory techniques are used in the discussion of string
interactions. Heavy use is also made of effective field theory techniques, both at
weak and strong coupling. Here, the experience in the first half of the text with
supersymmetry is invaluable; again supersymmetry provides a powerful tool to
constrain and understand the underlying dynamics. Two lengthy chapters deal with
string compactifications; one is devoted to toroidal and orbifold compactifications,
which are described by essentially free strings; the other introduces the basics of
Calabi–Yau compactification. Four appendices make up the final part of this book.
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The emphasis in all of this discussion is on providing tools with which to consider
how string theory might be related to observed phenomena. The obstacles are made
clear, but promising directions are introduced and explored. I also attempt to stress
how string theory can be used as a testing ground for theoretical speculations. I
have not attempted a complete bibliography. The suggested reading in each chapter
directs the reader to a sample of reviews and texts.

What I know in field theory and string theory is the result of many wonder-
ful colleagues. It is impossible to name all of them, but Tom Appelquist, Nima
Arkani-Hamed, Tom Banks, Savas Dimopoulos, Willy Fischler, Michael Green,
David Gross, Howard Haber, Jeff Harvey, Shamit Kachru, Andre Linde, Lubos
Motl, Ann Nelson, Yossi Nir, Michael Peskin, Joe Polchinski, Pierre Ramond, Lisa
Randall, John Schwarz, Nathan Seiberg, Eva Silverstein, Bunji Sakita, Steve
Shenker, Leonard Susskind, Scott Thomas, Steven Weinberg, Frank Wilczek, Mark
Wise and Edward Witten have all profoundly influenced me, and this influence is re-
flected in this text. Several of them offered comments on the text or provided specific
advice and explanations, for which I am grateful. I particularly wish to thank Lubos
Motl for reading the entire manuscript and correcting numerous errors. Needless
to say, none of them are responsible for the errors which have inevitably crept into
this book.

Some of the material, especially on anomalies and aspects of supersymmetry
phenomenology, has been adapted from lectures given at the Theoretical Advanced
Study Institute, held in Boulder, Colorado. I am grateful to K. T. Manahathapa for
his help during these schools, and to World Scientific for allowing me to publish
these excerpts. The lectures “Supersymmetry Phenomenology with a Broad Brush”
appeared in Fields, Strings and Duality, ed. C. Efthimiou and B. Greene (Singapore:
World Scientific, 1997); “TASI Lectures on M Theory Phenomenology” appeared
in Strings, Branes and Duality, ed. C. Efthimiou and B. Greene (Singapore: World
Scientific, 2001); and “The Strong CP Problem” in Flavor Physics for the Millen-
nium: TASI 2000, ed. J. L. Rosner (Singapore: World Scientific, 2000).

I have used much of the material in this book as the basis for courses, and I am
also grateful to students and postdocs (especially Patrick Fox, Assaf Shomer, Sean
Echols, Jeff Jones, John Mason, Alex Morisse, Deva O’Neil, and Zheng Sun) at
Santa Cruz who have patiently suffered through much of this material as it was
developed. They have made important comments on the text and in the lectures,
often filling in missing details. As teachers, few of us have the luxury of devoting
a full year to topics such as this. My intention is that the separate supersymmetry
or string parts are suitable for a one-quarter or one-semester special topics course.

Finally, I wish to thank Aviva, Jeremy, Shifrah, and Melanie for their love and
support.



A note on choice of metric

There are two popular choices for the metric of flat Minkowski space. One, often
referred to as the “West Coast Metric,” is particularly convenient for particle physics
applications. Here,

ds2 = dt2 − d�x2 = ηµνdxµdxν (0.1)

This has the virtue that p2 = E2 − �p2 = m2. It is the metric of many standard texts
in quantum field theory. But it has the annoying feature that ordinary, space-like
intervals – conventional lengths – are treated with a minus sign. So in most general
relativity textbooks, as well as string theory textbooks, the “East Coast Metric” is
standard:

ds2 = −dt2 + d�x2. (0.2)

Many physicists, especially theorists, become so wedded to one form or another
that they resist – or even have difficulty – switching back and forth. This is a text,
however, meant to deal both with particle physics and with general relativity and
string theory. So, in the first half of the book, which deals mostly with particle
physics and quantum field theory, we will use the “West Coast” convention. In the
second half, dealing principally with general relativity and string theory, we will
switch to the “East Coast” convention. For both the author and the readers, this
may be somewhat disconcerting. While I have endeavored to avoid errors from this
somewhat schizophrenic approach, some have surely slipped by. But I believe that
this freedom to move back and forth between the two conventions will be both
convenient and healthy. If nothing else, this is probably the first textbook in physics
in which the author has deliberately used both conventions (many have done so
inadvertently).

At a serious level, the researcher must always be careful in computations to be
consistent. It is particularly important to be careful in borrowing formulas from
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papers and texts, and especially in downloading computer programs, to make sure
one has adequate checks on such matters of signs. I will appreciate being informed
of any such inconsistencies, as well as of other errors, both serious and minor,
which have crept into this text.



Text website

Even as this book was going to press, there were important developments in a
number of these subjects. The website http://scipp.ucsc.edu/∼dine/book/book.html
will contain

(1) updates,
(2) errata,
(3) solutions of selected problems, and
(4) additional selected reading.

xx



Part 1

Effective field theory: the Standard Model,
supersymmetry, unification





1

Before the Standard Model

Two of the most profound scientific discoveries of the early twentieth century were
special relativity and quantum mechanics. With special (and general) relativity came
the notion that physics should be local. Interactions should be carried by dynamical
fields in space-time. Quantum mechanics altered the questions which physicists
asked about phenomena; the rules governing microscopic (and some macroscopic)
phenomena were not those of classical mechanics. When these ideas are combined,
they take on their full force, in the form of quantum field theory. Particles themselves
are localized, finite-energy excitations of fields. Otherwise mysterious phenomena
such as the connection of spin and statistics are immediate consequences of this
marriage. But quantum field theory does pose a serious challenge. The Schrödinger
equation seems to single out time, making a manifestly relativistic description diffi-
cult. More serious, but closely related, the number of degrees of freedom is infinite.
In the 1920s and 1930s, physicists performed conventional perturbation theory cal-
culations in the quantum theory of electrodynamics, quantum electrodynamics or
QED, and obtained expressions which were neither Lorentz invariant nor finite.
Until the late 1940s, these problems stymied any quantitative progress, and there
was serious doubt whether quantum field theory was a sensible framework for
physics.

Despite these concerns, quantum field theory proved a valuable tool with which
to consider problems of fundamental interactions. Yukawa proposed a field theory
of the nuclear force, in which the basic quanta were mesons. The corresponding
particle was discovered shortly after the Second World War. Fermi was aware
of Yukawa’s theory, and proposed that the weak interactions arose through the
exchange of some massive particle – essentially the W ± bosons which were finally
discovered in the 1980s. The large mass of the particle accounted for both the
short range and the strength of the weak force. Because of the very short range
of the force, one could describe it in terms of four fields interacting at a point. In
the early days of the theory, these were the proton, neutron, electron and neutrino.

3



4 1 Before the Standard Model

Viewed as a theory of four-fermion interactions, Fermi’s theory was very successful,
accounting for all experimental weak interaction results until well into the 1970s.
Yet the theory raised even more severe conceptual problems than QED. At high
energies, the amplitudes computed in the leading approximation violated unitarity,
and higher-order terms in perturbation theory were very divergent.

The difficulties of QED were overcome in the late 1940s, by Bethe, Dyson,
Feynman, Schwinger, Tomanaga and others, as experiments in atomic physics de-
manded high-precision QED calculations. As a result of their work, it was now pos-
sible to perform perturbative calculations in a manifestly Lorentz invariant fashion.
Exploiting the covariance, the infinities could be controlled and, over time, their
significance came to be understood. Quantum electrodynamics achieved extraor-
dinary successes, explaining the magnetic moment of the electron to extraordinary
precision, as well as the Lamb shift in hydrogen and other phenomena. One now,
for the first time, had an example of a system of physical law, consistent both with
Einstein’s principles of relativity and with quantum mechanics.

There were, however, many obstacles to extending this understanding to the
strong and weak interactions, and at times it seemed that some other framework
might be required. The difficulties came in various types. The infinities of Fermi’s
theory could not be controlled as in electrodynamics. Even postulating the exis-
tence of massive particles to mediate the force did not solve the problems. But the
most severe difficulties came in the case of the strong interactions. The 1950s and
1960s witnessed the discovery of hundreds of hadronic resonances. It was hard to
imagine that each of these should be described by still another fundamental field.
Some theorists pronounced field theory dead, and sought alternative formulations
(among the outgrowths of these explorations was string theory, which has emerged
as the most promising setting for a quantum theory of gravitation). Gell-Mann
and Zweig realized that quarks could serve as an organizing principle. Originally,
there were only three, u, d, and s, with baryon number 1/3 and charges 2/3, −1/3
and −1/3 respectively. All of the known hadrons could be understood as bound
states of objects with these quantum numbers. Still, there remained difficulties.
First, the quarks were strongly interacting, and there were no successful ideas for
treating strongly interacting fields. Second, searches for quarks came up empty
handed.

In the late 1960s, a dramatic series of experiments at SLAC, and a set of theoret-
ical ideas due to Feynman and Bjorken, changed the situation again. Feynman had
argued that one should take seriously the idea of quarks as dynamical entities (for a
variety of reasons, he hesitated to call them quarks, referring to them as “partons”).
He conjectured that these partons would behave as nearly free particles in situations
where momentum transfers were large. He and Bjorken realized that this picture
implied scaling in deep inelastic scattering phenomena. The experiments at SLAC



1 Before the Standard Model 5

exhibited just this phenomenon and showed that the partons carried the electric
charges of the u and d quarks.

But this situation was still puzzling. Known field theories did not behave in the
fashion conjectured by Feynman and Bjorken. The interactions of particles typically
became stronger as the energies and momentum transfers grew. This is the case, for
example, in quantum electrodynamics, and a simple quantum mechanical argument,
based on unitarity and relativity, would seem to suggest it is general. But there turned
out to be an important class of theories with the opposite property.

In 1954, Yang and Mills wrote down a generalization of electrodynamics, where
the U (1) symmetry group is enlarged to a non-Abelian group. While mathemati-
cally quite beautiful, these non-Abelian gauge theories remained oddities for some
time. First, their possible place in the scheme of things was not known (Yang and
Mills themselves suggested that perhaps their vector particles were the ρ mesons).
Moreover, their quantization was significantly more challenging than that of electro-
dynamics. It was not at all clear that these theories really made sense at the quantum
level, respecting both the principles of Lorentz invariance and unitarity. The first
serious effort to quantize Yang–Mills theories was probably due to Schwinger, who
chose a non-covariant but manifestly unitary gauge, and carefully verified that the
Poincaré algebra is satisfied. The non-covariant gauge, however, was exceptionally
awkward. Real progress in formulating a covariant perturbation expansion was due
to Feynman, who noted that naive Feynman rules for these theories were not uni-
tary, but that this could be fixed, at least in low orders, by adding a set of fictitious
fields (“ghosts”). A general formulation was provided by Faddeev and Popov, who
derived Feynman’s covariant rules in a path integral formulation, and showed their
formal equivalence to Schwinger’s manifestly unitary formulation. A convincing
demonstration that these theories were unitary, covariant and renormalizable was
finally given in the early 1970s by ’t Hooft and Veltman, who developed elegant
and powerful techniques for doing real calculations as well as formal proofs.

In the original Yang–Mills theories, the vector bosons were massless and their
possible connections to known phenomena obscure. However, Peter Higgs dis-
covered a mechanism by which these particles could become massive. In 1967,
Weinberg and Salam wrote down a Yang–Mills theory of the weak interactions
based on the Higgs mechanism. This finally realized Fermi’s idea that the weak
interactions arise from the exchange of a very massive particle. To a large degree
this work was ignored, until ’t Hooft and Veltman proved the unitarity and renor-
malizability of these theories. At this point the race to find precisely the correct
theory and study its experimental consequences was on; Weinberg and Salam’s first
guess turned out to be correct.

The possible role of Yang–Mills fields in strong interactions was, at first sight,
even more obscure. To complete the story required another important fact of
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hadronic physics. While the quark model was very successful, it was also puz-
zling. The quarks were spin 1/2 particles, yet models of the hadrons seemed to
require that the hadronic wave functions were symmetric under interchange of
quark quantum numbers. A possible resolution, suggested by Greenberg, was that
the quarks carried an additional quantum number, called color, coming in three
possible types. The statistics puzzle was solved if the hadron wave functions were
totally antisymmetric in color. This hypothesis required that the color symmetry,
unlike, say, isospin, would be exact, and thus special. While seemingly contrived,
it explained two other facts: the width of the π0 meson (which was otherwise too
small by a factor of three) and the value of the e+e− cross section to hadrons.

To a number of researchers, the exactness of this symmetry suggested a possible
role for Yang–Mills theory. So, in retrospect, there was the obvious question: could
it be that an SU (3) Yang–Mills theory, describing the interactions of quarks, would
exhibit the property required to explain Bjorken scaling: the interactions become
weak at short distances? Of course, things were not quite so obvious at the time.The
requisite calculation had already been done by ’t Hooft, but the result seems not to
have been widely known or its significance appreciated. David Gross and his student
Frank Wilczek set out to prove that no field theory had the required scaling property,
while Sidney Coleman, apparently without any particular prejudice, assigned the
problem to his graduate student, David Politzer. All soon realized that Yang–Mills
theories do have the property of asymptotic freedom: the interactions become weak
at high-momentum transfers or at short distances.

Experiment and theory now entered a period of remarkable convergence. Alter-
natives to the Weinberg–Salam theory were quickly ruled out. The predictions of
QCD were difficult, at first, to verify in detail. The theory predicted small viola-
tions of Bjorken scaling, depending logarithmically on energy, and it took many
years to convincingly measure them. But there was another critical experimental
development which clinched the picture. The existence of a heavy quark beyond
the u, d and s, had been predicted by Glashow, Iliopoulos and Maiani, and was
a crucial part of the developing Standard Model. The mass of this charm quark
had been estimated by Gaillard and Lee. Appelquist and Politzer predicted, almost
immediately after the discovery of asymptotic freedom, that heavy quarks would
be bound in narrow vector resonances. In 1974 a narrow resonance was discovered
in e+e− annihilation, the J/ψ particle, which was quickly identified as a bound
state of a charmed quark and its antiparticle.

Over the next 25 years, this Standard Model was subjected to more and more
refined tests. One feature absent from the original Standard Model was CP (T)
violation. Kobiyashi and Maskawa pointed out that, if there were a third generation
of quarks and leptons, the theory could accommodate the observed CP violation
in the K meson system. Two more quarks and a lepton were discovered, and their
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interactions and behavior were as expected within the Standard Model. Jets of
particles which could be associated with gluons were seen in the late 1970s. The
W and Z particles were produced in accelerators in the early 1980s. At CERN
and SLAC, precision measurements of the Z mass and width provided stringent
tests of the weak-interaction part of the theory. Detailed measurements in deep
inelastic scattering and in jets provided precise confirmation of the logarithmic
scaling violations predicted by QCD. The Standard Model passed every test.

So why write a book about physics beyond the Standard Model? For all of its
simplicity and success in reproducing the interactions of elementary particles, the
Standard Model cannot represent a complete description of nature. In the first few
chapters of this book, we will review the Standard Model and its successes, and
then we will discuss some of the theory’s limitations. These include the hierarchy
problem, which, at its most primitive level, represents a failure of dimensional
analysis; the presence of a large number of parameters; the incompatibility of
quantum mechanics with Einstein’s theory of general relativity; the inability of the
theory to account for the small, non-zero value of the cosmological constant (an
even more colossal failure of dimensional analysis), and the failure of the theory to
account for basic features of our universe: the excess of baryons over anti-baryons,
the dark matter, and structure. Then we will set out on an exploration of possible
phenomena which might address these questions. These include supersymmetry,
technicolor and large or warped extra dimensions, as possible solutions to the
hierarchy problem; grand unification, as a partial solution to the overabundance
of parameters, and superstring theory, as a possible solution to the problem of
quantizing gravity, which incorporates many features of these other proposals.

Suggested reading

A complete bibliography of the Standard Model would require a book by itself.
A good deal of the history of special relativity, quantum mechanics and quantum
field theory can be found in Inward Bound, by Abraham Pais (1986), which also
includes an extensive bibliography. The development of the Standard Model is also
documented in this very readable book. As a minor historical note, I would add that
the earliest reference where I have heard the observation that a Yang–Mills theory
might underly the strong interactions is due to Feynman, c. 1963 (Roger Dashen,
personal communication, 1981), who pointed out that, in an SU (3) Yang–Mills
theory, three quarks would be bound together, as well as quark–antiquark pairs.





2

The Standard Model

The interactions of the Standard Model give rise to the phenomena of our day to
day experience. They explain virtually all of the particles and interactions which
have been observed in accelerators. Yet the underlying laws can be summarized
in a few lines. In this chapter, we describe the ingredients of this theory and some
of its important features. Many dynamical questions will be studied in subsequent
chapters. For detailed comparison of theory and experiment, there are a number of
excellent texts, described in the suggested reading at the end of the chapter.

2.1 Yang–Mills theory

By the early 1950s, physicists were familiar with approximate global symmetries
like isospin. Yang and Mills argued that the lesson of Einstein’s general theory
was that symmetries, if fundamental, should be local. In ordinary electrodynamics,
the gauge symmetry is a local, Abelian symmetry. Yang and Mills explained how
to generalize this to a non-Abelian symmetry group. Let’s first review the case of
electrodynamics. The electron field, ψ(x), transforms under a gauge transformation
as:

ψ(x) → eiα(x)ψ(x) = gα(x)ψ(x). (2.1)

We can think of gα(x) = eiα(x) as a group element in the group U (1). The group is
Abelian, gαgβ = gβgα = gα+β. Quantities like ψ̄ψ are gauge invariant, but deriva-
tive terms, like iψ̄ �∂ψ , are not. In order to write derivative terms in an action or
equations of motion, one needs to introduce a gauge field, Aµ, transforming under
the symmetry transformation as:

Aµ → Aµ + ∂µα

= Aµ + ig(x)∂µg†(x). (2.2)

9
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This second form allows generalization more immediately to the non-Abelian case.
Given Aµ and its transformation properties, we can define a covariant derivative:

Dµψ = (∂µ − i Aµ)ψ. (2.3)

This derivative has the property that it transforms like ψ itself under the symmetry:

Dµψ → g(x)Dµψ. (2.4)

We can also form a gauge-invariant object out of the gauge fields, Aµ, themselves.
A simple way to do this is to construct the commutator of two covariant derivatives:

Fµν = i[Dµ, Dν] = ∂µ Aν − ∂ν Aµ. (2.5)

This form of the gauge transformations may be somewhat unfamiliar. Note, in
particular, that the charge of the electron, e (the gauge coupling) does not appear
in the transformation laws. Instead, the gauge coupling appears when we write a
gauge-invariant Lagrangian:

L = iψ̄ �Dψ − mψ̄ψ − 1

4e2
F2

µν. (2.6)

The more familiar formulation is obtained if we make the replacement:

Aµ → eAµ. (2.7)

In terms of this new field, the gauge transformation law is:

Aµ → Aµ + 1

e
∂µα (2.8)

and the covariant derivative is:

Dµψ = (∂µ − ieAµ)ψ. (2.9)

We can generalize this to a non-Abelian group, G, by taking ψ to be a field
(fermion or boson) in some representation of the group. g(x) is then a matrix
which describes a group transformation acting in this representation. Formally, the
transformation law is the same as before:

ψ → g(x)ψ(x), (2.10)

but the group composition law is more complicated,

gαgβ �= gβgα. (2.11)

The gauge field, Aµ is now a matrix-valued field, transforming in the adjoint rep-
resentation of the gauge group:

Aµ → g Aµg† + ig(x)∂µg†(x). (2.12)
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The covariant derivative also, formally, looks exactly as before:

Dµψ = (∂µ − i Aµ)ψ ; Dµψ → g(x)Dµψ. (2.13)

Like Aµ, the field strength is a matrix-valued field:

Fµν = i[Dµ, Dν] = ∂µ Aν − ∂ν Aµ − i[Aµ, Aν]. (2.14)

Note that Fµν is not gauge invariant, but rather covariant:

Fµν → gFµνg†, (2.15)

i.e. it transforms like a field in the adjoint representation, with no inhomogeneous
term.

The gauge-invariant action is formally almost identical to that of the U (1) theory:

L = iψ̄ �Dψ − mψ̄ψ − 1

2g2
Tr F2

µν. (2.16)

Here we have changed the letter we use to denote the coupling constant; we will
usually reserve e for the electron charge, using g for a generic gauge coupling. Note
also that it is necessary to take a trace of F2 to obtain a gauge-invariant expression.

The matrix form for the fields may be unfamiliar, but it is very powerful. One
can recover expressions in terms of more conventional fields by defining

Aµ = Aa
µTa, (2.17)

where Ta are the group generators in representation appropriate to ψ . Then for
SU (N ), for example, if the Tas are in the fundamental representation,

Tr(TaTb) = 1

2
δab; [T a, T b] = i f abcT c, (2.18)

where f abc are the structure constants of the group, and

Aa
µ = 2Tr(Ta Aµ); Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ + fabc Aa
µ Ab

ν. (2.19)

While formally almost identical, there are great differences between the Abelian
and non-Abelian theories. Perhaps the most striking is that the equations for the Aµs
are non-linear in non-Abelian theories. This behavior means that, unlike the case of
Abelian gauge fields, a theory of non-Abelian fields without matter is a non-trivial,
interacting theory with interesting properties. With and without matter fields, this
will lead to much richer behavior even classically. For example, we will see that
non-Abelian theories sometimes contain solitons, localized finite-energy solutions
of the classical equations. The most interesting of these are magnetic monopoles.
At the quantum level, these non-linearities lead to properties such as asymptotic
freedom and confinement.
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As we have written the action, the matter fields ψ can appear in any representation
of the group; one just needs to choose the appropriate matrices T a . We can also
consider scalars, as well as fermions. For a scalar field, φ, we define the covariant
derivative, Dµφ as before, and add to the action a term |Dµφ|2 for a complex field,
or (1/2)(Dµφ)2 for a real field.

2.2 Realizations of symmetry in quantum field theory

The most primitive exercise we can do with the Yang–Mills Lagrangian is set
g = 0 and examine the equations of motion for the fields Aµ. If we choose the
gauge ∂µ Aµa = 0, all of the gauge fields obey

∂2 Aa
µ = 0. (2.20)

So, like the photon, all of the gauge fields, Aa
µ, of the Yang–Mills theory are

massless. At first sight, there is no obvious place for these fields in either the strong
or the weak interactions. But it turns out that in non-Abelian theories, the possible
ways in which the symmetry may be realized are quite rich. The symmetry can be
realized in terms of massless gauge bosons; this is known as the Coulomb phase.
This possibility is not relevant to the Standard Model, but will appear in some of
our more theoretical considerations later. A second is known as the Higgs phase.
In this phase, the gauge bosons are massive. In the third, the confinement phase,
there are no physical states with the quantum numbers of isolated quarks (particles
in the fundamental representation), and the gauge bosons are also massive. The
second phase is relevant to the weak interactions; the third, confinement phase, to
the strong interactions.1

2.2.1 The Goldstone phenomenon

Before introducing the Higgs phase, it is useful to discuss global symmetries.
While we will frequently argue, like Yang and Mills, that global symmetries are less
fundamental than local ones, they are important in nature. Examples are isospin, the
chiral symmetries of the strong interactions, and baryon number. We can represent
the action of such a symmetry much as we represented the symmetry action in
Yang–Mills theory:

� → gα� (2.21)

1 The differences between the confinement and Higgs phases are subtle, as first stressed by Fradkin, Shenker and
’t Hooft. But we now know that the Standard Model is well described by a weakly coupled field theory in the
Higgs phase.
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V

φ

Fig. 2.1. Scalar potential with negative mass-squared. The stable minimum leads
to broken symmetry.

where � is some set of fields and g is now a constant matrix, independent of space.
Such symmetries are typically accidents of the low-energy theory. Isospin, for ex-
ample, arises as we will see because the masses of the u and d quarks are small com-
pared with other hadronic scales of quantum chromodynamics. Then g is the matrix:

g�α = ei �α·�σ
2 (2.22)

acting on the u and d quark doublet. Note that �α is not a function of space, but it is
a continuous parameter, so we will refer to such symmetries as continuous global
symmetries. In the case of isospin, it is also important that the electromagnetic
and weak interactions, which violate this symmetry, are small perturbations on the
strong interactions.

The simplest model of a continuous global symmetry is provided by a complex
field transforming under a U (1) symmetry:

φ → eiαφ. (2.23)

We can take for the Lagrangian for this system:

L = |∂µφ|2 − m2|φ|2 − 1

2
λ|φ|4. (2.24)

If m2 > 0, and λ is small, this is just a theory of a weakly interacting, complex
scalar. The states of the theory can be organized as states of definite U (1) charge.
This is the unbroken phase. On the other hand, m2 is just a parameter, and we can
ask what happens if m2 = −µ2 < 0. In this case, the potential,

V (φ) = −µ2|φ|2 + λ|φ|4, (2.25)

looks as in Fig. 2.1. There is a set of degenerate minima,

〈φ〉α = µ√
2λ

eiα. (2.26)
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These classical ground states are obtained from one another by symmetry trans-
formations. Classically the theory has a set of degenerate ground states, labeled
by α; in somewhat more mathematical language, there is a manifold of vacuum
states. Quantum mechanically, it is necessary to choose a particular value of α. As
explained in the next section, if one chooses α, no local operator, e.g. no small
perturbation, will take the system into another state of different α. To simplify the
writing, take α = 0. Then we can parameterize:

φ = 1√
2

(v + σ (x))eiπ(x)/v ≈ 1√
2

(v + σ (x) + iπ (x)). (2.27)

Here v = µ/
√

λ is known as the “vacuum expectation value” of φ. In terms of σ

and π , the Lagrangian takes the form:

L = 1

2
[(∂µσ )2 + (∂µπ )2 − 2µ2σ 2 + O(σ, π)3]. (2.28)

So we see that σ is an ordinary, real scalar field of mass-squared 2µ2, while the
π field is massless. The fact that the π is massless is not a surprise: the mass
represents the energy cost of turning on a zero-momentum excitation of π , but such
an excitation is just a symmetry transformation of φ, v → veiπ(0). So there is no
energy cost.

The appearance of massless particles when a symmetry is broken is known as
the Nambu–Goldstone phenomenon, and π is called a Nambu–Goldstone boson.
In any theory with scalars, a choice of minimum may break some symmetry. This
means that there is a manifold of vacuum states. The broken symmetry generators
are those which transform the system from one point on this manifold to another.
Because there is no energy cost associated with such a transformation, there is a
massless particle associated with each broken symmetry generator. This result is
very general. Symmetries can be broken not only by expectation values of scalar
fields, but by expectation values of composite operators, and the theorem holds.
A proof of this result is provided in Appendix B. In nature, there are a number of
excitations which can be identified as Goldstone or almost Goldstone (“pseudo-
Goldstone”) bosons. These include spin waves in solids and the pi mesons. We will
have much more to say about the pions later.

2.2.2 Aside: choosing a vacuum

In quantum mechanics, there is no notion of a spontaneously broken symmetry. If
one has a set of degenerate classical configurations, the ground state will invariably
involve a superposition of these configurations. If we took σ and π to be functions
only of t , then the σ–π system would just be an ordinary quantum-mechanical
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Fig. 2.2. In a ferromagnet, the spins are aligned, but the direction is arbitrary.

system with two degrees of freedom. Here σ would correspond to an anharmonic
oscillator of frequency ω = √

2µ. Placing this particle in its ground state, one
would be left with the coordinate π . Note that π , in Eq. (2.27), is an angle, like
the azimuthal angle, φ, in ordinary quantum mechanics. We could call its conjugate
variable Lz . The lowest-lying state would be the zero-angular-momentum state, a
uniform superposition of all values of π . In field theory at finite volume, the situation
is similar. The zero-momentum mode of π is again an angular variable, and the
ground state is invariant under the symmetry. But at infinite volume, the situation
is different. One is forced to choose a value of π .

This issue is most easily understood by considering a different problem: ro-
tational invariance in a magnet. Consider Fig. 2.2, where we have sketched a
ferromagnet with spins aligned at an angle θ . We can ask: what is the overlap
of two states, one with θ = 0, one at θ , i.e. what is 〈θ |0〉? For a single site, the
overlap between the state |+〉 and the rotated state is:〈 + ∣∣eiτ1θ/2

∣∣ + 〉 = cos(θ/2). (2.29)

If there are N such sites, the overlap behaves as

〈θ |0〉 ∼ (cos(θ/2))N (2.30)

i.e. it vanishes exponentially rapidly with the “volume,” N .
For a continuum field theory, states with differing values of the order parameter,

v, also have no overlap in the infinite volume limit. This is illustrated by the theory
of a scalar field with Lagrangian:

L = 1

2
(∂µφ)2. (2.31)
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For this system, there is no potential, so the expectation value, φ = v, is not fixed.
The Lagrangian has a symmetry, φ → φ + δ, for which the charge is just

Q =
∫

d3x�(�x) (2.32)

where � is the canonical momentum. So we want to study

〈v|0〉 = 〈0|ei Q|0〉. (2.33)

We must be careful how we take the infinite-volume limit. We will insist that this
be done in a smooth fashion, so we will define:

Q =
∫

d3x∂0φe−�x2/V 2/3

= −i
∫

d3k

(2π )3

√
ωk

2

(
V 1/3

√
π

)3

e−�k2V 2/3/4[a(�k) − a†(�k)]. (2.34)

Now, one can evaluate the matrix element, using

eA+B = eAeBē(1/2)[A,B]

(provided that the commutator is a c-number), giving

〈0|ei Q|0〉 = e−cv2V 2/3
, (2.35)

where c is a numerical constant. So the overlap vanishes with the volume. You can
convince yourself that the same holds for matrix elements of local operators. This
result does not hold in 0 + 1 and 1 + 1 dimensions, because of the severe infrared
behavior of theories in low dimensions. This is known to particle physicists as
Coleman’s theorem, and to condensed matter theorists as the Mermin–Wagner
theorem. This theorem will make an intriguing appearance in string theory, where
it is the origin of energy–momentum conservation.

2.2.3 The Higgs mechanism

Suppose that the U (1) symmetry of the previous section is local. In this case, even a
spatially varying π (x) represents a symmetry transformation, and by a gauge choice
it can be eliminated. In other words, by a gauge transformation, we can bring φ to
the form:

φ = 1√
2

(v + σ (x)). (2.36)

In this gauge, the kinetic terms for φ take the form:

|Dµφ|2 = 1

2
(∂µσ )2 + 1

2
A2

µv2. (2.37)
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The last term is a mass term for the gauge field. To determine the actual value of
the mass, we need to examine the kinetic term for the gauge fields:

− 1

2g2
(∂µ Aν)2 + · · · . (2.38)

So the gauge field has a mass m2
A = g2v2.

This phenomenon, that the gauge boson becomes massive when the gauge sym-
metry is spontaneously broken, is known as the Higgs mechanism. While formally
quite similar to the Goldstone phenomenon, it is also quite different. The fact that
there is no massless particle associated with motion along the manifold of ground
states is not surprising – these states are all physically equivalent. Symmetry break-
ing, in fact, is a puzzling notion in gauge theories, since gauge transformations
describe entirely equivalent physics (gauge symmetry is often referred to as a re-
dundancy in the description of a system). Perhaps the most important lesson here
is that gauge invariance does not necessarily mean, as it does in electrodynamics,
that the gauge bosons are massless.

2.2.4 Goldstone and Higgs phenomena for non-Abelian symmetries

Both the Goldstone and Higgs phenomena generalize to non-Abelian symmetries.
In the case of global symmetries, for every generator of a broken global symmetry,
there is a massless particle. For local symmetries, each broken generator gives rise
to a massive gauge boson.

As an example, relevant both to the strong and the weak interactions, consider
a theory with a symmetry SU (2)L × SU (2)R. Take M to be a Hermitian, matrix
field,

M = σ + i �π · �σ . (2.39)

Under the symmetry, which we first take to be global, M transforms as

M → gL MgR (2.40)

with gL and gR SU (2) matrices. We can take the Lagrangian to be

L = Tr (∂µM†∂µM) − V (M†M). (2.41)

This Lagrangian respects the symmetry. If the curvature of the potential at the origin
is negative, M will acquire an expectation value. If we take:

〈M〉 = 〈σ 〉 (2.42)

then some of the symmetry is broken. However, the expectation value of M is invari-
ant under the subgroup of the full symmetry group with gL = gR. In other words,
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the unbroken symmetry is SU (2). Under this symmetry, the fields �π transform as a
vector. In the case of the strong interactions, this unbroken symmetry can be identi-
fied with isospin. In the case of the weak interactions, there is an approximate global
symmetry reflected in the masses of the W and Z particles, as we will discuss later.

2.2.5 Confinement

There is still another possible realization of gauge symmetry: confinement. This
is crucial to our understanding of the strong interactions. As we will see, Yang–
Mills theories, without too much matter, become weak at short distances. They
become strong at large distances. This is just what is required to understand the
qualitative features of the strong interactions: free quark and gluon behavior at very
large momentum transfers, but strong forces at larger distances, so that there are no
free quarks or gluons. As is the case in the Higgs mechanism, there are no massless
particles in the spectrum of hadrons: QCD is said to have a “mass gap.” These
features of strong interactions are supported by extensive numerical calculations,
but they are hard to understand through simple analytic or qualitative arguments
(indeed, if you can offer such an argument, you can win one of the Clay prizes of
$1 million). We will have more to say about the phenomenon of confinement when
we discuss lattice gauge theories.

One might wonder: what is the difference between the Higgs mechanism and
confinement? This question was first raised by Fradkin and Shenker and by ’t Hooft,
who also gave an answer: there is often no qualitative difference. The qualitative
features of a Higgs theory like the weak interactions can be reproduced by a con-
fined, strongly interacting theory. However, the detailed predictions of the weakly
interacting Weinberg–Salaam theory are in close agreement with experiment, and
those of the strongly interacting theory are not.

2.3 The quantization of Yang–Mills theories

In this book, we will encounter a number of interesting classical phenomena in
Yang–Mills theory but, in most of the situations in nature which concern us, we
are interested in the quantum behavior of the weak and strong interactions. Abelian
theories such as QED are already challenging. One can perform canonical quanti-
zation in a gauge, such as Coulomb gauge or a light cone gauge, in which unitarity
is manifest – all of the states have positive norm. But in such a gauge, the covariance
of the theory is hard to see. Or one can choose a gauge where Lorentz invariance
is manifest, but not unitarity. In QED it is not too difficult to show at the level of
Feynman diagrams that these gauge choices are equivalent. In non-Abelian theo-
ries, canonical quantization is still more challenging. Path integral methods provide
a much more powerful approach to the quantization of these theories.
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A brief review of path integration appears in Appendix C. Here we discuss gauge
fixing and derive the Feynman rules. We start with the gauge fields alone; adding
the matter fields – scalars or fermions – is not difficult. The basic path integral is:∫

[d Aµ]ei S. (2.43)

The problem is that this integral includes a huge redundancy: the gauge transfor-
mations. To deal with this, we want to make a gauge choice, for example:

Ga
(

Aa
µ

) = ∂µ Aµa = 0. (2.44)

We can’t simply insert this in the path integral without altering its value. Instead,
we insert 1 in the form:

1 =
∫

[dg]δ
(
G
(

Ag
µ

))
�[A]. (2.45)

Here we have reverted to our matrix notation: G is a general gauge fixing condition;
Ag

µ denotes the gauge transform of Aµ by g. The � is a functional determinant,
known as the Faddeev–Popov determinant. Note that � is gauge invariant, �[Ah] =
�[A]. This follows from the definition:∫

[dg]δ
(
G
(

Ahg′
µ

)) =
∫

[dg]δ
(
G
(

Ag′
µ

))
(2.46)

where, in the last step, we have made the change of variables g → h−1g. We can
write a more explicit expression for � as a determinant. To do this, we first need an
expression for the variation of the A under an infinitesimal gauge transformation.
Writing g = 1 + iω, and using the matrix form for the gauge field,

δAµ = ∂µω + i[ω, Aµ]. (2.47)

This can be written elegantly as a covariant derivative of ω, where ω is thought of
as a field in the adjoint representation:

δAµ = Dµω. (2.48)

If we make the specific choice G = ∂µ Aµ, to evaluate � we need to expand G
about the field Aµ for which G = 0:

G(A + δA) = ∂µ Dµω = ∂2ω + i[Aµ, ∂µω] (2.49)

or, in the index form:

G
(

Aa
µ

) = (∂2δac + f abc Aµ b∂µ)ωc. (2.50)

So

�[A] = det[∂2δac + f abc Aµ b∂µ]−1/2. (2.51)

We will discuss strategies to evaluate this determinant shortly.
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At this stage, we have reduced the path integral to:

Z =
∫

[d Aµ]δ(G(A))�[A]ei S (2.52)

and we can write down Feynman rules. The δ-function remains rather awkward
to deal with, though, and this expression can be simplified through the following
trick. Introduce a function, ω, and average over ω with a Gaussian weight factor:

Z =
∫

[dω]ei
∫

d4x(ω2/ξ )
∑∫

[d Aµ]δ(G(A) − ω)�[A]ei S. (2.53)

We can do the integral over the δ-function. The quadratic terms in the exponent are
now: ∫

d4x Aµa

[
−∂2ηµν + ∂µ∂ν

(
1 − 1

ξ

)]
Aνb. (2.54)

We can invert to find the propagator. In momentum space:

Dµν = −ηµν + (ξ − 1)kµkν/k2

k2 + iε
. (2.55)

To write explicit Feynman rules, we need also to deal with the Faddeev–Popov
determinant. Feynman long ago guessed that the unitarity problems of Yang–Mills
theories could be dealt with by introducing fictitious scalar fields with the wrong
statistics. Our expression for � can be reproduced by a functional integral for such
particles:

� =
∫

[dca][dca†]exp

(
i
∫

d4x(ca†(∂2δab + f abc Aµ c∂µ)cb)

)
. (2.56)

From here, we can read off the Feynman rules for Yang–Mills theories, including
matter fields. These are summarized in Fig. 2.3.

2.3.1 Gauge fixing in theories with broken gauge symmetry

Gauge fixing in theories with broken gauge symmetries raise some new issues.
We consider first a U (1) gauge theory with a single charged scalar field, φ. We
suppose that the potential is such that 〈φ〉 = v/

√
2. We call e the gauge coupling

and take the conventional scaling for the gauge kinetic terms. We can, again, pa-
rameterize the field as:

φ = 1√
2

(v + σ (x))e(iπ)/v. (2.57)

Then we can again choose a gauge in which π (x) = 0. This gauge is known as
unitary gauge, since, as we have seen, in this gauge we have exactly the degrees of
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a b

k i j δij

p
p

i

a

p
a

c

b

b, µ

p2
iδab

=

= igg µt a

= g f abc [g µν(k − p)ρ + gνρ( p − q)µ + gρµ( q − k)ν]k
p

q

a, µ

=

=

−g f abcpµ=

ig2 [ f abef cde (gµρgνσ − gµσgνρ)

+  f acef bde (gµνgρσ − gµσg νρ)

+  f adef bce (gµνgρσ − gµρgνσ)

a, µ

b, ν

c, ρ

b, ν

d, σc, ρ

−igµv

k2 //

Fig. 2.3. Feynman rules for Yang–Mills theory.

freedom we expect physically: a massive gauge boson and a single real scalar. But
this gauge is not convenient for calculations. The gauge boson propagator in this
gauge is:

〈Aµ Aν〉 = − i

k2 − M2
V

(
ηµν − kµkν

M2
V

)
. (2.58)

Because of the factors of momentum in the second term, individual Feynman di-
agrams have bad high-energy behavior. A more convenient set of gauges, known
as Rξ gauges, avoids this difficulty, at the price of keeping the π field (sometimes
misleadingly called the Goldstone particle) in the Feynman rules. We take, in the
path integral, the gauge-fixing function:

G = 1√
ξ

(∂µ Aµξ − evπ (x)). (2.59)

The extra term has been judiciously chosen so that when we exponentiate, the
Aµ∂µπ terms in the action cancel. Explicitly, we have:

L = −1

2
Aµ

(
ηµν∂2 −

(
1 − 1

ξ

)
∂µ∂ν − (e2v2)ηµν

)
Aν (2.60)

+ 1

2
(∂µσ )2 − 1

2
m2

σ σ 2 + 1

2
(∂µπ )2 − ξ

2
(ev)2π2 + O(φ3).
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If we choose ξ = 1 (’t Hooft–Feynman gauge), the propagator for the gauge boson
is simply

〈Aµ Aν〉 = −i

k2 − M2
V

ηµν (2.61)

with M2 = e2v2, but we have also the field π explicitly in the Lagrangian, and it
has propagator:

〈ππ〉 = i

k2 − M2
V

. (2.62)

The mass here is just the mass of the vector boson (for other choices of ξ , this is
not true).

This gauge choice is readily extended to non-Abelian theories, with similar
results: the gauge bosons have simple propagators, like those of massive scalars
multiplied by ηµν . The Goldstone bosons appear explicitly in perturbation theory,
with propagators appropriate to massive fields. The Faddeev–Popov ghosts have
couplings to the scalar fields.

2.4 The particles and fields of the Standard Model

We are now in a position to write down the Standard Model. It is amazing that, at a
microscopic level, almost everything we know about nature is described by such a
simple structure. The gauge group is SU (3)c × SU (2)L × U (1)Y . The subscript c
denotes color, L means “left-handed” and Y is called hypercharge. Corresponding
to these different gauge groups, there are gauge bosons, Aa

µ, a = 1, . . . , 8, W i
µ,

i = 1, 2, 3, and Bµ.
One of the most striking features of the weak interactions is the violation of

parity. In terms of four-component fields, this means that factors of (1 − γ5) ap-
pear in the couplings of fermions to the gauge bosons. In such a situation, it is
more natural to work with two-component spinors. For the reader unfamiliar with
such spinors, a simple introduction appears in Appendix A. Such spinors are the
basic building blocks of the four-dimensional spinor representations of the Lorentz
group. All spinors can be described as two-component spinors, with various quan-
tum numbers. For example, quantum electrodynamics, which is parity invariant
with a massive fermion, can be described in terms of two left-handed fermions,
e and ē, with electric charge −e and +e, respectively. The Lagrangian takes the
form:

L = ieσµ Dµe∗ + i ēσµ Dµē∗ − mēe − mē∗e∗. (2.63)
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The covariant derivatives are those appropriate to fields of charge e and −e. Parity
is the symmetry �x → −�x , e ↔ ē∗, and �A → − �A.

We can specify the fermion content of the Standard Model by giving the gauge
quantum numbers of the left-handed spinors. So, for example, there are quark
doublets which are 3s of color and doublets of SU (2), with hypercharge 1/3:
Q = (3, 2)1/3. The appropriate covariant derivative is:

DµQ =
(

∂µ − igs Aa
µT a − igW i

µT i − i
g′

2

1

3
Bµ

)
Q. (2.64)

Here T i are the generators of SU (2), T i = σ i/2. These are normalized as

Tr(T i T j ) = 1

2
δi j . (2.65)

The T a are the generators of SU (3); in terms of Gell-Mann’s SU (3) matrices,
T a = λa/2. They are normalized like the SU (2) matrices, Tr T aT b = (1/2)δab.

We have followed the customary definition, in coupling Bµ to half the hyper-
charge current. We have also scaled the fields so that the couplings appear in the
covariant derivative, and labeled the SU (3)c, SU (2)L, and U (1)Y coupling constants
as gs, g and g′, respectively. Using matrix-valued fields, defined with the couplings
in front of the gauge kinetic terms, this covariant derivative can be written in a very
compact manner:

DµQ =
(

∂µ − i Aµ − iWµ − i

2
× 1

3
Bµ

)
Q. (2.66)

As another example, the Standard Model contains lepton fields, L , with no SU (3)
quantum numbers, but which are SU (2) doublets with hypercharge −1. The co-
variant derivative is:

DµL =
(

∂µ − igW i
µT i − g′

2
Bµ

)
L . (2.67)

Similarly for the Higgs doublet, φ.
So we can summarize the fermion contact in the Standard Model with the

following data:

SU (3) SU (2) U (1)Y

Q f 3 2 1/3
ū f 3̄ 1 −4/3
d̄ f 3̄ 1 2/3
L f 1 2 −1
ē f 1 1 2

(2.68)
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Here f labels the quark or lepton flavor, or generation number, f = 1, 2, 3. For
example,

L1 =
(

νe

e

)
L2 =

(
νµ

µ

)
L3 =

(
ντ

τ

)
. (2.69)

Why there is this repetitive structure, these three generations, is one of the great
puzzles of the Standard Model, to which we will return. In terms of these two-
component fields (indicated generically by ψi ), the gauge-invariant kinetic terms
have the form:

L f,k = −i
∑

i

ψi Dµσµψ∗
i (2.70)

where the covariant derivatives are those appropriate to the representation of the
gauge group.

Unlike QED (where, in two-component language, parity interchanges e and ē∗),
the model does not have a parity symmetry. The fields Q and ū, d̄ transform under
different representations of the gauge group. There is simply no discrete symmetry
one can find which is the analog of the parity symmetry of QED.

In order to account for the masses of the W and Z bosons and the quarks and
leptons, the simplest version of the Standard Model includes a scalar, φ, which
transforms as a (1, 2)1 of the Standard Model gauge group. This Higgs field pos-
sesses both self-couplings and Yukawa couplings to the fermions. Its kinetic term
is simply

Lφ,k = |Dµφ|2. (2.71)

The Higgs potential is similar to that of our toy model:

V (φ) = µ2|φ|2 + λ|φ|4. (2.72)

This is completely gauge invariant. But if µ2 is negative, the gauge symmetry
breaks as before. We will describe this breaking, and the mass matrix of the gauge
bosons, shortly. At this point, we have written the most general renormalizable
self-couplings of the scalar fields. Renormalizability and gauge invariance permit
one other set of couplings in the Standard Model: Yukawa couplings of the scalars
to the fermions. The most general such couplings are:

LYuk = yU
f, f ′ Q f ū f ′σ2φ

∗ + yD
f, f ′ Q f d̄ f ′φ + yL

f, f ′ L f ē f ′φ. (2.73)

Here yU , yD and yL are general matrices in the space of flavors.
We can simplify the Yukawa coupling matrices significantly by redefining fields.

Any 3 × 3 matrix can be diagonalized by separate left and right U (3) matrices. To
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see this, suppose one has some matrix, M , not necessarily Hermitian. The matrices:

A = M M† B = M†M (2.74)

are Hermitian matrices. A can be diagonalized by a unitary transformation, UL, say,
and B by a unitary transformation UR. Then the matrices:

UL MU †
R UR M†U †

L (2.75)

are diagonal. So by redefining fields, we can simplify the matrices yU , yD and
yL ; it is customary to take yU and yL diagonal. There is a conventional form
for yD (the Cabibbo–Kobayashi–Maskawa matrix) which we will describe in
Section 3.2.

To summarize, the entire Lagrangian of the Standard Model consists of the
following.

(1) Gauge-invariant kinetic terms for the gauge fields,

La = − 1

4g2
s

G2
µν − 1

4g2
W 2

µν − 1

4g′ 2
F2

µν (2.76)

(here we have returned to our scaling with the couplings in front; Gµν, Wµ,ν , and Fµν

are the SU (3), SU (2) and U (1) field strengths).
(2) Gauge-invariant kinetic terms for the fermion and Higgs fields, L f,k,Lφ,k .
(3) Yukawa couplings of the fermions to the Higgs field, LYuk.
(4) The potential for the Higgs field, V (φ).

If we require renormalizability, i.e. we require that all of the terms in the La-
grangian be of dimension four or less, this is all we can write. It is extraordinary
that this simple structure incorporates over a century of investigation of elementary
particles.

2.5 The gauge boson masses

The field φ has an expectation value, which we can take to have the form:

〈φ〉 = 1√
2

(
0
v

)
(2.77)

where v = µ/
√

λ. Expanding around this expectation value, the Higgs field can be
written as:

φ = ei �π (x)·�σ/2v 1√
2

(
0

v + σ (x)

)
. (2.78)
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By a gauge transformation, we can set �π = 0. Not all of the gauge symmetry is
broken by 〈φ〉. Note that 〈φ〉 is invariant under the U (1) symmetry generated by

Q = T3 + Y

2
. (2.79)

This is the electric charge. If we write:

L =
(

ν

e

)
Q =

(
u
d

)
(2.80)

then the ν has charge 0, and e has charge −1; u has charge 2/3, d charge −1/3.
The charges of the singlets also work out correctly.

With this gauge choice, we can examine the scalar kinetic terms in order to
determine the gauge boson masses. Keeping only terms quadratic in fluctuating
fields (σ and the gauge fields), these now have the form:

|Dµφ|2 = 1

2
(∂µσ 2) + (0 v)

(
igW i

µ

σ i

2
+ ig′

2
Bµ

)(
−igW µj σ

j

2
− ig′

2
Bµ

)(
0
v

)
.

(2.81)

It is convenient to define the complex fields:

W ±
µ = 1√

2

(
W 1

µ ± iW 2
µ

)
(2.82)

These are states of definite charge, since they carry zero hypercharge and T3 = ±1.
In terms of these fields, the gauge boson mass and kinetic terms take the form:

∂µW +
ν ∂µW ν− + 1

2
∂µW 3

ν ∂µW ν3 + 1

2
∂µ Bν∂

µ Bν

+ g 2v2W +
µ W µ− + 1

2
v2
(
gW 3

µ − g′ Bµ

)2
. (2.83)

Examining the terms involving the neutral fields, Bµ and W 3
µ, it is natural to redefine:

Aµ = cos(θw)Bµ + sin(θw)W 3
µ; Zµ = sin(θw)Bµ + cos(θw)W 3

µ (2.84)

where

sin(θw) = g′√
g2 + g′ 2

(2.85)

is known as the Weinberg angle. The field Aµ is massless, while the W s and Zs
have masses:

M2
W = g2v2 M2

Z = (g2 + g′ 2)v2 = M2
W / cos2(θw). (2.86)
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We can immediately see that Aµ couples to the current:

jµ
em = g′ cos(θw)

1

2
jY
µ + g sin(θw) j3

µ

= e

[
1

2
jY
µ + j3

µ

]
, (2.87)

where

e = gg′√
g2 + g′ 2

(2.88)

is the electric charge. So Aµ couples precisely as we expect the photon to couple.
W µ± couple to the charged currents of the four-fermi theory. The Z boson couples
to:

j Z
µ = −g′ sin(θw)

1

2
jY
µ + g cos(θw) j3

µ. (2.89)

2.6 Quark and lepton masses

Substituting the expectation value for the Higgs fields into the expression for the
quark and lepton Yukawa couplings, Eq. (2.73) leads directly to masses for the
quarks and leptons. The lepton masses and the masses for the up quarks are imme-
diate:

mU f = yU f
v√
2

mE f = yE f
v√
2
. (2.90)

So, for example, the Yukawa coupling of the electron is (me

√
2)/v.

But the masses for the d quarks are somewhat more complicated. Because yD is
not diagonal, we have a matrix, in flavor space, for the d quark masses:

(m D) f f ′ = (yD) f f ′
v√
2
. (2.91)

As we have seen, any matrix can be diagonalized by separate unitary transformations
acting on the left and the right. So we can diagonalize this by separate rotations of
the D quarks (within the quark doublets) and the D̄ quarks. The rotation of the D̄
quarks is just a simple redefinition of these fields. But the rotation of the D quarks is
more significant, since it does not commute with SU (2)L. In other words, the quark
masses are not diagonal in a basis in which the W boson couplings are diagonal.
The basis in which the mass matrix is diagonal is known as the mass basis (the
corresponding fields are often called “mass eigenstates”).

The unitary matrix acting on the D quarks is known as the Cabibbo–Kobayashi–
Maskawa, or CKM, matrix. In terms of this matrix, the coupling of the quarks to
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the W ± fields can be written:

W −
µ U f σ

µ D∗
f ′ V f f ′ + W +

µ D f σ
µU ∗

f ′ V ∗
f ′ f . (2.92)

There are a variety of parameterizations of V , which we will discuss shortly. One
interesting feature of the model is the Z couplings. Because V is unitary, these
are diagonal in flavor. This explains why Z bosons don’t mediate processes which
change flavor, such as KL → µ+µ−. The suppression of these flavor-changing
neutral currents was one of the early, and critical, successes of the Standard Model.

Suggested reading

There are a number of textbooks with good discussions of the Standard Model,
including those of Peskin and Schroeder (1995), Weinberg (1995), Cottingham and
Greenwood (1998), Donoghue et al. (1992) and Seiden (2005). We cannot give a full
bibliography of the Standard Model here, but the reader may want to examine some
of the original papers, including: Yang and Mills (1954), Salam and Ward (1964),
Weinberg (1967) and Glashow et al. (1970) on the weak interaction theory; ’t Hooft
(1971), Gross and Wilczek (1973) and Politzer (1973) on asymptotic freedom of
the strong interactions. For discussion of the phases of gauge theories, see ’t Hooft
(1980) and Fradkin and Shenker (1979).

Exercises

(1) Georgi–Glashow Model: consider a gauge theory based on SU (2), with Higgs field, �φ,
in the adjoint representation. Assuming that φ obtains an expectation value, determine
the gauge boson masses. Identify the photon and the W ± bosons. Is there a candidate
for the Z boson?

(2) Consider the Standard Model with two generations. Show that there is no CP violation,
and show that the KM matrices can be described in terms of a single angle, known as
the Cabibbo angle.
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Phenomenology of the Standard Model

The predictions of the Standard Model have been subjected to experimental tests
in a broad range of processes. In processes involving leptons alone, and hadrons at
high-momentum transfers, detailed, precise predictions are possible. In processes
involving hadrons at low momentum, it is often possible to make progress using
symmetry arguments. In still other cases, one can at least formulate a qualitative
picture. In recent years, developments in lattice gauge theory have begun to offer
the promise of reliable and precise predictions for at least some features of the
large-distance behavior of hadrons. There exist excellent texts and reviews treating
all of these topics. Here we will give only a brief survey, attempting to introduce
ideas and techniques which are important in understanding what may lie beyond
the Standard Model.

3.1 The weak interactions

We are now in a position to describe the weak interactions within the Standard
Model. Summarizing our results for the W and Z masses, we have, at the tree level:

M2
W = πα√

2GF sin2 θw

M2
Z = πα√

2GF sin2 θw cos2 θw

, (3.1)

where α is the fine-structure constant. Note, in particular, that in the leading
approximation,

M2
W

M2
Z

= cos2 θw. (3.2)

In these expressions, the Fermi constant is related to the W mass and the gauge
coupling through:

GF =
√

2
g2

8M2
W

GF = 1.166 × 10−5 GeV−2. (3.3)

29
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The Weinberg angle is:

sin2(θw) = 0.231 20(15). (3.4)

The measured values of the W and Z masses are:

MW = 80.425(38) GeV MZ = 91.1876(21) GeV. (3.5)

One can see that the experimental quantities satisfy the theoretical relations to good
accuracy. They are all in agreement at the part in 102–103 level when radiative
corrections are included.

The effective Lagrangian for the quarks and leptons obtained by integrating out
the W and Z particles is:

LW + LZ = 8GF√
2

[(
J 1
µ

)2 + (
J 2
µ

)2 + (
J 3
µ − sin2 θw JµEM

)2]
. (3.6)

The first two terms correspond to the exchange of the charged W ± fields. The last
term represents the effect of Z boson exchange. This structure has been tested ex-
tensively. In many experiments, the precision is sufficiently great that it is necessary
to include radiative corrections.

The most precise tests of the weak interaction theory involve the Z bosons.
Experiments at the LEP accelerator at CERN and the SLD accelerator at SLAC
produced millions of Zs. These large samples permitted high-precision studies of
the line shape and of the branching ratios to various final states. Care is needed
in calculating radiative corrections. It is important to make consistent definitions
of the various quantities. Detailed comparisons of theory and experiment can be
found on the web site of the Particle Data Group (http://pdg.lbl.gov). As inputs,
one generally takes the value of GF measured in µ decays; the measured mass of
the Z , and the fine structure constant. Outputs include the Z boson total width:

experiment �Z = 2.4952 ± 0.0023 theory �Z = 2.4956 ± 0.0007. (3.7)

The decay width of the Z to hadrons and leptons is also in close agreement (see
Fig. 3.1). The W mass can also be computed with these inputs, and is by now
measured quite precisely:

experiment MW = 80.454 ± 0.059 ± 0.0023 theory MW = 80.390 ± 0.18.

(3.8)
As of this writing, one piece of the Standard Model is missing: the Higgs boson.

Taking seriously the simplest version of symmetry breaking in the Standard Model,
there is one additional physical state. Its mass is a parameter (e.g. knowing the value
of GF, it can be determined in terms of the Higgs quartic coupling, λ). Finding the
Higgs particle is a serious experimental challenge, as its couplings to most particles
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Fig. 3.1. OPAL results for the Z line shape. The solid line is theory; the dots are
data (the size of the dots corresponds to the size of the error bars).

e+

e−

Z0

Z0

h

Fig. 3.2. Higgs can be produced in e+e− annihilation in association with a Z0 particle.

are quite small. For example, couplings to leptons are suppressed by m�/v. The LEP
experiments set a lower limit on the Higgs mass of about 115 GeV. The principal
production mechanism is indicated in Fig. 3.2. For Higgs in the mass range explored
at LEP, the most important decay channel involves decays to b quarks. At the LHC,
other production mechanisms are dominant. For example, for a broad range of
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g

g

h

t

t

Fig. 3.3. In hadron colliders, Higgs particles can be produced by several mecha-
nisms. The diagram above illustrates production by gluons.

masses, colliding gluons produce a virtual top pair, which in turn couple to the
Higgs (Fig. 3.3).

3.2 The quark and lepton mass matrices

We have seen that we can take the Yukawa couplings for the up-type quarks to be
diagonal, but cannot simultaneously diagonalize those for the down-type quarks.
As a result, when the Higgs field gets an expectation value, the up quark masses
are given by:

mu f = (yu) f√
2

v. (3.9)

These are automatically diagonal. But the down quark masses are described by a
3 × 3 mass matrix,

md f f ′ = (yd) f f ′√
2

v. (3.10)

We can diagonalize this matrix by separate unitary transformations of the d̄ and d
fields. Because the d quarks are singlets of SU (2), the transformation of d̄ leaves
the kinetic terms and gauge interactions of these quarks unchanged. But the trans-
formation of the d quarks does not commute with SU (2), so the couplings of the
gauge bosons to these quarks are more complicated. The unitary transformation
between the “mass” or “flavor” eigenstates and the weak interaction eigenstates
is known as the CKM matrix. Denoting the mass eigenstates as u′, d ′, etc., the
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transformation has the form:d ′

s ′

b′

 =
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d
s
b

. (3.11)

There are various ways of parameterizing the CKM matrix. The Particle Data Group
favors the following convention:

V =
 c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12c23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

. (3.12)

A number of features of this parameterization are worthy of note. First, V is unitary,
V †V = 1. Second, V is real unless δ is non-zero. Thus δ provides a measure of
CP violation. Finally, the parameterization has been chosen in such a way that,
experimentally, all of the angles are small. As a result, all of the off-diagonal
components of the matrix are small. The current measured values of the CKM
angles are:

s12 = 0.2243 ± 0.0016 s23 = 0.0413 ± 0.0015
s13 = 0.0039 ± 0.0005 δ13 = 1.05 ± 0.024.

(3.13)

Examining these quantities, one sees that not only are the off-diagonal matrix
elements small, but they are hierarchically small. Wolfenstein has developed a
convenient parameterization:

V =
 1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

 + O(λ4). (3.14)

Note that δ13, and hence ρ and η, are not small. But there are several small entries,
and a hierarchical structure reminiscent of the quark masses themselves.

From unitarity follow a number of relations among the elements of the matrix.
For example,

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0. (3.15)

From Vud ≈ Vcb ≈ Vtb ≈ 1, this becomes a relation between three complex num-
bers which says that they form a triangle – the unitarity triangle. Determining from
experiment that these quantities do form a triangle is an important test of this model
for the quark masses.

We should also give the values of the quark masses themselves. This is somewhat
subtle, since in QCD it is necessary to specify an energy scale, much as one must
specify the scale of the gauge coupling in QCD. With a scale of order 1 GeV, the
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quark masses are roughly:

mu ≈ 1.5 − 4 MeV md ≈ 4 − 8 MeV ms ≈ 80 − 130 MeV
mc ≈ 1.15 − 1.35 GeV mb ≈ 4.1 − 4.4 GeV mt ≈ 174.3 ± 5 GeV.

(3.16)

Before considering the small neutrino masses, the lepton Yukawa couplings can
simply be taken diagonal, and there is no mixing. The lepton masses are:

me = 0.511 MeV mµ = 113 MeV mτ = 1.777 GeV . (3.17)

Overall, the picture of quark and lepton masses is quite puzzling. They vary over
nearly five orders of magnitude. Correspondingly, the dimensionless Yukawa cou-
plings have widely disparate values. Understanding this might well be a clue to
what lies beyond the Standard Model.

3.3 The strong interactions

The strong interactions, as their name implies, are characterized by strong cou-
pling. As a result, perturbative methods are not suitable for most questions. In
comparing theory and experiment, it is necessary to focus on a few phenomena
which are accessible to theoretical analysis. By itself, this is not particularly dis-
turbing. A parallel with the quantum mechanics of electrons interacting with nuclei
is perhaps helpful. We can understand simple atoms in detail; atoms with very
large Z can be treated by Hartree–Fock or other methods. But atoms with inter-
mediate Z can be dealt with, at best, by detailed numerical analysis accompanied
by educated guesswork. Molecules are even more problematic, not to mention
solids. But we are able to make detailed tests of the theory (and its extension
in quantum electrodynamics) from the simpler systems, and develop qualitative
understanding of the more complicated systems. In many cases, we can do quanti-
tative analysis of the small fluctuations about the ground states of the complicated
system.

In the theory of strong interactions, as we will see, many problems are hopelessly
complicated. Low-lying spectra are hard; detailed exclusive cross sections in high-
energy scattering essentially impossible. But there are many questions we can
answer. Rates for many inclusive questions at very high energy and momentum
transfer can be calculated with high precision. Qualitative features of the low lying
spectrum of hadrons and their interactions at low energies can be understood in a
qualitative (and sometimes quantitative) fashion by symmetry arguments. Recently,
progress in lattice gauge theory has made it possible to perform calculations which
previously seemed impossible, for features of spectra and even for interaction rates
important for understanding the weak interactions.
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3.3.1 Asymptotic freedom

The coupling of a gauge theory (and of a field theory more generally) is a function
of energy or length scale. If a typical momentum transfer in a process is q, and if
M denotes the cutoff scale,

8π2

g2(q2)
= 8π2

g2(�)
+ b0 ln

(
q2

M2

)
. (3.18)

Here

b0 = 11

3
CA − 2

3
ci n

(i)
f − 1

3
ci n

(i)
φ . (3.19)

In this expression, n(i)
f is the number of left-handed fermions in the i th representa-

tion, while n(i)
φ is the number of scalars. CA is the quadratic Casimir of the adjoint

representation, and ci the quadratic Casimir of the i th representation,

f acd f bcd = CAδab Tr(T aT b) = ciδ
ab. (3.20)

These formulas are valid if the masses of the fermions and scalars are negligible
at scale q2. For example, in QCD, at scales of order the Z boson mass, the masses
of all but the top quark can be neglected. All the quarks are in the fundamental
representation, and there are no scalars. So b0 = 22/3. As a result, g2 gets smaller
as q2 gets larger, and, conversely, g2 gets larger as q2 gets smaller. Since momentum
transfer is inversely proportional to a typical distance scale, one can say that the
strong force gets weaker at short distances, and stronger at large distances. We will
calculate b0 in Section 3.5.

This is quite striking. In the case of QCD, it means that hadrons, when probed
at very large momentum transfer, behave as collections of free quarks and gluons.
Perturbation theory can be used to make precise predictions. On the other hand,
viewed at large distances, hadrons are strongly interacting entities. Perturbation
theory is not a useful tool, and other methods must be employed. The most strik-
ing phenomena in this regime are confinement – the fact that one cannot observe
free quarks – and, closely related, the existence of a mass gap. Neither of these
phenomena can be observed in perturbation theory.

3.4 The renormalization group

In thinking about physics beyond the Standard Model, by definition, we are consid-
ering phenomena involving degrees of freedom to which we have, as yet, no direct
experimental access. The question of degrees of freedom which are as yet unknown
is the heart of the problem of renormalization. In the early days of quantum field
theory, it was often argued that one should be able to take a formal limit of infinite
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cutoff, � → ∞. Ken Wilson promulgated a more reasonable view: real quantum
field theories describe physics below some characteristic scale, �. In a condensed
matter system, this might be the scale of the underlying lattice, below which the
system may often be described by a continuum quantum field theory. In the Stan-
dard Model, a natural scale is the scale of the W and Z bosons. Below this scale, the
system can be described by a renormalizable field theory, QED plus QCD, along
with certain non-renormalizable interactions – the four-fermi couplings of the weak
interactions. In defining this theory, one can take the cutoff to be, say, MW , or one
can take it to be aMW , for some a < 1. Depending on the choice of a, the values
of the couplings will vary. The parameters of the low energy effective Lagrangian
must depend on a in such a way that physical quantities are independent of this
choice. The process of determining the values of couplings in an effective theory
which reproduce the effects of some more microscopic theory is often referred to
as matching.

Knowing how physical couplings depend on the cutoff, one can determine how
physical quantities behave in the long-wavelength, infrared regime by simple di-
mensional analysis. Quantities associated with operators of dimension less than four
will grow in the infrared. They are said to be “relevant.” Those with dimension four
will vary as powers of logarithms; they are said to be “marginal.” Quantities with di-
mension greater than four, those conventionally referred to as “non-renormalizable
operators,” will be less and less important as the energy is lowered. They are said to
be “irrelevant.” In strongly interacting theories, the dimensions of operators can be
significantly different than expected from naive classical considerations. The clas-
sification of operators as relevant, marginal, and irrelevant applies to their quantum
behavior.

At sufficiently low energies, we can ignore the irrelevant, non-renormalizable
couplings. Alternatively, by choosing the matching scale, M , low enough, only the
marginal and relevant couplings are important. In a theory with only dimensionless
couplings, the variation of the coupling with q2 is closely related to its variation
with the cutoff, M . Physical quantities are independent of the cutoff, so any ex-
plicit dependence on the cutoff must be compensated by the dependence of the
couplings on M . On dimensional grounds, M must appear with q2, so knowledge
of dependence of couplings with M permits a derivation of their dependence on
q2. More precisely, in studying, say, a cross section, any explicit dependence on
the cutoff must be compensated by the dependence of the coupling on the cutoff.
Calling the physical quantity σ , we can express this as a differential equation, the
renormalization group equation:(

M
∂

∂ M
+ β(g)

∂

∂g

)
σ = 0. (3.21)
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Here the beta function (or “β-function”) is given by:

β(g) = M
∂

∂ M
g. (3.22)

We can evaluate the beta function from our explicit expression, Eq. (3.18), for g2:

β(g) = −b0
g2

16π2
g. (3.23)

We will compute b0 in the next section. This equation has corrections in each order
of perturbation theory and beyond.

So far we have expressed the coupling in terms of a cutoff and a physical scale.
In an old-fashioned language, the coupling, g2(M), is the “bare” coupling. We can
define a “renormalized coupling” at a scale µ2, g2(µ):

8π2

g2(µ2)
= 8π2

g2(M)
+ b0 ln

( µ

M

)
. (3.24)

In practice, it is necessary to give a more precise definition. We will discuss this
when we compute the beta function in the next section. Because of this need to give
a precise definition of the renormalized coupling, care is required in comparing
theory and experiment. There are, as we will review shortly, a variety of definitions
in common use, and it is important to be consistent.

Quantities like Green’s functions are not physical, and obey an inhomogeneous
equation. One can obtain this equation in a variety of ways. For simplicity, consider
first a Green function with n scalar fields, such as:

G(x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉. (3.25)

This Green function is related to the renormalized Green function as follows. If the
theory is defined at a scale µ, the effective Lagrangian takes the form:

Lµ = Z−1(µ)(∂µφ2) + · · · . (3.26)

Here Z−1 arises from integrating out physics above the scale µ. It will typically
include ultraviolet-divergent loop effects. Rescaling φ so that the kinetic term is
canonical, φ = Z1/2φr, we have that

G(x1, . . . , xn) = Z (µ)n/2Gr(x1, . . . , xn). (3.27)

The left-hand side is independent of µ, so we can write an equation for Gr:(
µ

∂

∂µ
+ β(g)

∂

∂g
+ nγ

)
Gr = 0, (3.28)

where γ , known as the anomalous dimension, is given by:

γ = 1

2
µ

∂

∂µ
ln(Z ). (3.29)
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In the case of several different fields, e.g. gauge fields, fermions and scalars, this
equation is readily generalized. There is an anomalous dimension for each field,
and the nγ term is replaced by the appropriate number of fields of each type and
their anomalous dimensions.

The effective action obeys a similar equation. Starting with:

�(x1, . . . , xn) = Z (µ)−n/2�r(x1, . . . , xn). (3.30)(
µ

∂

∂µ
+ β(g)

∂

∂g
− nγ

)
�r = 0. (3.31)

These equations are readily solved. We could write the solution immediately, but
an analogy with the motion of a fluid is helpful. A typical equation, for example,
for the density of a component of the fluid (e.g. the density of bacteria) would take
the form: [

∂

∂t
+ v(x)

∂

∂x
− ρ(x)

]
D(t, x) = 0, (3.32)

where D(t, x) is the density as a function of position and time, and v(x) is the
velocity of the fluid at x ; ρ represents a source term (e.g. growth due to the presence
of yeast, or a variable temperature). To solve this equation, one first solves for the
motion of an element of fluid initially at x , i.e. one solves:

d

dt
x̄(t ; x) = v(x̄(t ; x)) x̄(0; x) = x . (3.33)

In terms of x̄ , we can immediately write down a solution for D:

D(t, x) = D0(x̄(t ; x))e
∫ t

0 dt ′ρ(x̄(t ′;x))

= D0(x̄(t ; x)) e
∫ x

x̄(t) dx ′ ρ(x ′)
v(x ′) . (3.34)

Here D0 is the initial density. One can check this solution by plugging in directly,
but each piece has a clear physical interpretation. For example, if there were no
source (ρ = 0), the solution just would become D0(x̄(t ; x)). With no velocity, the
source would lead to just the expected growth of the density.

Let’s apply this to Green’s functions. Consider, for example, a two-point function,
G(p) = ih(p2/µ2)/p2. In our fluid dynamics analogy, the coupling, g, is the analog
of the velocity; the log of the scale, t = ln(p/µ), plays the role of the time. The
equation for g is then: [

∂

∂t
− β(g)

∂

∂g
− 2γ (g)

]
h(t) = 0. (3.35)
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Define ḡ(µ) as the solution of

µ
∂

∂µ
ḡ(µ) = β(ḡ). (3.36)

At lowest order, this is solved by Eq. (3.24). Then

h(p, g) = h(ḡ(t))e2
∫ t

t0
dt ′γ (ḡ(t ′,g))/β(ḡ(t ′,g))

. (3.37)

One can write the solution in the form:

G(p, λ) = i

p2
G(ḡ(t ; g))e2

∫ ḡ
g dg′ γ (g′)

β(g′) . (3.38)

3.5 Calculating the beta function

In the previous section, we presented the one loop result for the beta function and
used it in various applications. In this section, we actually compute the beta function.
There are a variety of ways to compute the variation of the gauge coupling with
energy scale. One is to compute the potential for a very heavy quark–antiquark pair
as a function of their separation (we use the term quark here loosely for a field in
the N representation of SU (N )). The potential is a renormalization-group invariant
quantity. At lowest order it is given by:

V (R) = −g2CF

R
(3.39)

where

CF =
N 2−1∑
a=1

T aT a. (3.40)

The potential is a physical quantity; this is why it is renormalization-group invariant.
In perturbation theory, it has corrections behaving as g2(�) ln(R�). This follows
simply from dimensional analysis. So if we choose R = �, the logarithmic terms
disappear and we have:

V (R) = −g2(R)
CF

R
(1 + O(g2(R))). (3.41)

In an asymptotically free theory like QCD, where the coupling gets smaller with
distance, Eq. (3.41) becomes more and more reliable as R gets smaller. This result
has physical applications. In the case of a bound state of a top quark and antiquark,
one might hope that this would be a reasonable approximation, and describe the
binding of the system. Taking αs(R) ∼ 0.1, for example, would give a typical radius
of order (17 GeV)−1, a length scale where one might expect perturbation theory to
be reliable (and for which αs(R) ∼ 0.1). By analogy with the hydrogen atom, one
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would expect the binding energy to be of order 2 GeV. In practice, however, this is
not directly relevant, since the width of the top quark is of the same order – the top
quark decays before it has time to form a bound state. Still, it should be possible to
see evidence for such QCD effects in production of t t̄ pairs near threshold in e+e−

annihilation.
A second approach is to study Green’s functions in momentum space. The cal-

culation is straightforward, if slightly more tedious than the analogous calculation
in a U (1) gauge theory (QED). The main complication is the three gauge boson
vertex, which has many terms (at one loop, one can use symmetries to greatly sim-
plify the algebra). It is necessary to have a suitable regulator for the integrals. By
far the most efficient is the dimensional regularization technique of ’t Hooft and
Veltman. Here one initially allows the space-time dimensionality, d, to be arbitrary,
and takes d → 4 − ε. For convenience, we include the two most frequently needed
integration formulas below; their derivation can be found in many textbooks.∫

ddk

(k2 + M2)n
= πd/2�(n − d/2)

�(n)
(M2)d/2−n (3.42)∫

ddk k2

(k2 + M2)n
= πd/2�(n − d/2 − 1)

�(n)
(M2)d/2−n+1. (3.43)

Ultraviolet divergences, such as would occur for n = 2 in the first integral, give rise
to poles in the limit ε → 0. If we were simply to cut off the integral at k2 = �2,
we would find: ∫

d4k

(2π )4

1

(k2 + M2)2
≈ 1

16π2
ln(�/M). (3.44)

In dimensional regularization this behaves as:∫
d4k

(2π )4

1

(k2 + M2)2
= 1

16π2
�
(ε

2

)
≈ 1

8π2ε
. (3.45)

So ε should be thought of as ln(�2). The computation of the Yang–Mills beta
function by studying momentum-space Feynman diagrams can be found in many
textbooks, and is outlined in the exercises.

Here we follow a different approach, known as the background field method.
This technique is closely tied to the path integral, which will play an important
role in this book. It is also closely tied to the Wilsonian view of renormalization.
We break up A into a long-wavelength part, and a shorter-wavelength, fluctuating
quantum part:

Aµ = Aµ + aµ. (3.46)



3.5 Calculating the beta function 41

We can think of Aµ as corresponding to modes of the field with momenta below
the scale q, and aµ as corresponding to higher momenta. We wish to compute an
effective action for Aµ, integrating out the high-momentum modes:∫

[dA]
∫

[da]ei S(A,a) =
∫

[dA]ei Seff(A). (3.47)

In calculating the effective action, we are treating Aµ as a fixed, classical back-
ground. In this approach, one can work entirely in Euclidean space, which greatly
simplifies the calculation.

Our first task is to write ei S(A,a). For this purpose, it is convenient to suppose that
A satisfies its equation of motion. (Otherwise, it is necessary to introduce a source
for a). A convenient choice of gauge is known as background field gauge:

Dµaµ = 0, (3.48)

where Dµ is the covariant derivative defined with respect to the background fieldA.
At one loop, we only need to work out the action to second order in the fluctuating
fields aµ, ψ, φ. Consider, first, the fermion action. To quadratic order, we can set
aµ = 0 in the Dirac Lagrangian. The same holds for scalars. So from the fermions
and scalars we obtain:

det(�D)n f det(D2)−nφ/2. (3.49)

The fermion functional determinant can be greatly simplified. It is convenient, for
this computation, to work with four-component Dirac fermions. Then

det(�D) = det(�D �D)1/2

= det

(
D2 + 1

2
Dµ Dν[γ µ, γ ν]

)
= det(D2 + FµνJµν). (3.50)

Here Fµν is the field strength associated with A (we have used the connection of
the field strength and the commutator of covariant derivatives, Eq. (2.14)), and Jµν

is the generator of Lorentz transformations in the fermion representation.
What is interesting is that we can write the gauge boson determinant, in the

background field gauge, in a similar fashion.1 With a little algebra, the gauge part
of the action can be shown to be

Lgauge = − 1

4g2

(
TrFa 2

µν − 2g2aa
µ D2aµ a − 2aa

µ f abcFbµνac
ν

)
. (3.51)

1 The details of these computations are outlined in the exercises. Here we are following closely the presentation
of the text by Peskin and Schroeder.
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Here we have used the Aa
µ notation, in order to be completely explicit about

the gauge indices. Recalling the form of the Lorentz generators for the vector
representation:

(J ρσ )αβ = i
(
δρ
αδσ

β − δσ
α δ

ρ
β

)
, (3.52)

we see that this object has the same formal structure as the fermion action:

Lgauge = − 1

2g2

[
aa

µ

(
(−D2)acgµν + 2

(
1

2
Fb

ρσJ ρσ

)µν (
tb
G

)ac
)

ac
ν

]
. (3.53)

Finally, the Faddeev–Popov Lagrangian is just:

Lc = c̄a[−(D2)ab]cb. (3.54)

Since the ghost fields are Lorentz scalars, this Lagrangian has the same form as the
others. We need, then, to evaluate a product of determinants of the form:

det

(
−D2 + 2

(
1

2
Fb

ρσJ ρσ

)
tb

)
(3.55)

with t and J the generators appropriate to the representation.
The term in parentheses can be written:

�r, j = −∂2 + �(1) + �(2) + �(J ) (3.56)

with

�(1) = i
[
∂µ Aa

µta + Aa
µta∂µ

]
�(2) = AaµtaAb

µtb. (3.57)

�(J ) = 2

(
1

2
Fb

ρσJ ρσ

)
tb.

The action we seek is the log of the determinant. We are interested in this action
expanded to second order in A and second order in ∂2:

ln det(�r, j ) = ln det(−∂2) + tr

[
(−∂2)−1

(
�(1) + �(2) + �(J )

)
− 1

2

(
(−∂2)−1�(1)(−∂2)−1�(1)

)]
, (3.58)

where 1/(−∂2) is the propagator for a scalar field. So this has the structure of a set
of one-loop diagrams in a scalar field theory. Since we are working to quadratic
order, we can take the A to carry momentum k. The term involving two powers of
�(1) is in some ways the most complicated to evaluate. Note that the trace is a trace
in coordinate space and on the gauge and Lorentz indices. In momentum space, the
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Fig. 3.4. The background field calculation has the structure of scalar electrodynamics.

space-time trace is is just an integral over momenta. We take all of the momenta to
be Euclidean. So the result is given, in momentum space, by:

1

2

∫
ddk

(2π )d
Aa

µ(k)Ab
ν(−k)

∫
dd p

(2π )d
tr

1

p2
(2p + k)µta 1

(p + k)2
(2p + k)ν tb.

(3.59)
This has precisely the structure of one of the vacuum polarization diagrams of
scalar electrodynamics (see Fig. 3.4). The other arises from the �(2). Combining,
and performing the integral by dimensional regularization gives:

1

2

∫
ddk

(2π )d
Aa

µ(−k)Ab
ν(k)(k2gµν − kµkν)

[
C(r )d( j)

3(4π )2
�

(
2 − d

2

)
(k2)2−d/2

]
.

(3.60)

where C(r ) are the Casimirs we have encountered previously. The quantities C( j)
are similar quantities for the Lorentz group; C( j) = 0 for scalars, 1 for Dirac spinors
and 2 for 4-vectors. To quadratic order in the external fields, the transverse terms
above are just (Fµν)2.

The piece involving �(J ) is even simpler to evaluate, since the needed factors
of momentum (derivatives) are already included in F . The rest is bookkeeping; the
action has the form:

Leff = −1

4

(
1

g2
+ 1

2

(
CG − Cc − n f

2
Cn f

))
F2

µν (3.61)

where

Ci = ci
1

16π2

(
2

ε
− ln(k2)

)
cG = −20/3; cc = 3; cn f = −1/3. (3.62)

This gives precisely Eq. (3.18).

3.6 The strong interactions and dimensional transmutation

In QCD, the only parameters, classically, with dimensions of mass are the quark
masses. In a world with just two light quarks, u and d, we wouldn’t expect the
properties of hadrons to be different from the observed properties of the non-strange
hadrons. But the masses of the up and down quarks are quite small, too small, as we
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will see, to account for the masses of the non-strange hadrons, such as the proton
and neutron. In other words, in the limit of zero quark mass, the hadrons would
not become massless. How can a mass arise in a theory with no classical mass
parameters?

While, classically, QCD is scale invariant, this is not true quantum mechanically.
We have seen that we must specify the value of the gauge coupling at a particular
energy scale; in the language we have used up to now, the theory is specified by
giving the Lagrangian associated with a particular cutoff scale. If we change this
scale, we have to change the values of the parameters, and physical quantities,
such as the proton mass, should be unaffected. Using our experience with the
renormalization group, we can write a differential equation which expresses how
such a mass depends on g and µ so that the mass is independent of which scale we
choose for our Lagrangian:[

µ
∂

∂µ
+ β(g)

∂

∂g

]
mp = 0. (3.63)

We know the solution of this equation:

mp = Cµe− ∫ dg′
β(g′) . (3.64)

To lowest order in the coupling,

mp = Cµe
− 8π2

b0g2 . (3.65)

This phenomenon, that a physical mass scale can appear as a result of the need
to introduce a cutoff in the quantum theory is called dimensional transmutation. In
the next section, we will discuss this phenomenon in lattice gauge theory. Later, we
will describe a two-dimensional model in which we can do a simple computation
which exhibits the dynamical appearance of a mass scale.

3.7 Confinement and lattice gauge theory

The fact that QCD becomes weakly coupled at high-momentum transfers has al-
lowed rigorous comparison with experiment. Despite the fact that the variation of
the coupling is only logarithmic, experiments are sufficiently sensitive, and have
covered a sufficiently broad range of q2, that such comparisons are possible. Still,
many of the most interesting questions of hadronic physics – and some of the most
interesting challenges of quantum field theory – are problems of low-momentum
transfer. Here one encounters the flip side of asymptotic freedom: at large distances,
the theory is necessarily strongly coupled and perturbative methods are not use-
ful. It is, perhaps, frustrating that we cannot compute the masses of the low-lying
hadrons in a fashion analogous to the calculation of the properties of simple atoms.
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Perhaps even more disturbing is that we cannot give a simple argument that quarks
are confined, or that QCD exhibits a mass gap. To deal with these questions, we can
first ask a somewhat naive question: what can we say about the path integral, or for
that matter the Hamiltonian, in the limit that the coupling constant becomes very
large? This question is naive in that the coupling constant is not really a parameter
of this theory. It is a function of scale, and the important scale for binding hadrons is
the scale where the coupling becomes of order one. But let’s consider the problem
anyway. Start with a pure gauge theory, i.e. a theory without fermions or scalars.
Consider, first, the path integral. To extract the spectrum, it should be adequate to
consider the Euclidean version:

Z =
∫

[d Aµ] exp

(
− 1

4g2
F2

µν

)
. (3.66)

Let’s contrast the weak and strong coupling limits of this expression. At weak
coupling, 1/g2 is large, so fluctuations are highly damped; we might expect the
action to be controlled by stationary points. The simplest such stationary point is
just the one where Fµν = 0, and this is the basis of perturbation theory. Later we
will see that there are other interesting stationary points – classical solutions of the
Euclidean equations.

Now consider strong coupling. As g → ∞, the action vanishes – there is no
damping of quantum fluctuations. It is not obvious how one can develop any sort
of approximation scheme. We can consider this problem, alternatively, from a
Hamiltonian point of view. A convenient gauge for this purpose is the gauge A0 = 0.
In this gauge, Gauss’s law is a constraint that must be imposed on states. As we
will discuss shortly, Gauss’s law is (almost) equivalent to the condition that the
quantum states must be invariant under time-independent gauge transformations.
In A0 = 0 gauge, the canonical momenta are very simple:

�i = ∂L
∂ Ȧi

= − 1

g2
Ei . (3.67)

So the Hamiltonian is:

H = g2

2
��2 + 1

2
�B2. (3.68)

In the limit g2 → ∞, the magnetic terms are unimportant, and the �2 terms domi-
nate. So we should somehow work, in lowest order, with states which are eigenstates
of �E . In any approach which respects even rotational covariance, it is unclear how
to proceed.

The solution to both dilemmas is to replace the continuum of space-time with
a discrete lattice of points. In the Lagrangian approach, one introduces a space-
time lattice. In the Hamiltonian approach, one keeps time continuous, but makes
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space discrete. Clearly there is a large price for such a move: one gives up Lorentz
invariance – even rotational invariance. At best, Lorentz invariance is something
which one can hope to recover in the limit that the lattice spacing is small compared
to relevant physical distances. There are several rewards, however.

(1) One has a complete definition of the theory which does not rely on perturbation theory.
(2) The lattice, at strong coupling, gives a simple model of confinement.
(3) One obtains a precise procedure in which to calculate properties of hadrons. With large

enough computing power, one can in principle calculate properties of low-lying hadrons
with arbitrary precision.

There are other difficulties. Not only is rotational symmetry lost, but other ap-
proximate symmetries – particularly chiral symmetries – are complicated. But over
time, combining ingenuity and growing computer power, there has been enormous
progress in numerical lattice computations. Lattice gauge theory has developed into
a highly specialized field of its own, and we will not do justice to it here. However,
given the importance of field theory – often strongly coupled field theories – not
only to our understanding of QCD but to any understanding of physics beyond the
Standard Model, it is worthwhile to briefly introduce the subject here.

3.7.1 Wilson’s formulation of lattice gauge theory

In introducing a lattice, the hope is that, as one takes the lattice spacing, a, small,
one will recover Lorentz invariance. A little thought is required to understand what
is meant by small. The only scale in the problem is the lattice spacing. But there will
be another important parameter: the gauge coupling. The value of this coupling, we
might expect, should be thought of as the QCD coupling at scale a. So taking small
lattice spacing, physically, means taking the gauge coupling weak. At small lattice
spacing, short-distance Green’s functions will be well-approximated by their per-
turbative expansions. On the other hand, the smaller the lattice, the more numerical
power required to compute the physically interesting, long-distance quantities.

There is one symmetry which one might hope to preserve as one introduces a
space-time lattice: gauge invariance. Without it, there are many sorts of operators
which could appear in the continuum limit, and recovering the theory of interest
is likely to be very complicated. Wilson pointed out that there is a natural set
of variables to work with, the Wilson lines. Consider, first, a U (1) gauge theory.
Under a gauge transformation, Aµ(x) → Aµ + ig(x)∂µg†(x), where g(x) = eiα(x),
the object

U (x1, x2) = exp

(
i
∫ x2

x1

dxµ Aµ

)
,
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transforms as:

U (x1, x2) → g(x1)U (x1, x2)g†(x2). (3.69)

So, for example, for a charged fermion field, ψ(x), transforming as ψ(x) →
g(x)ψ(x), a gauge-invariant operator is:

ψ†(x1)U (x1, x2)ψ(x2). (3.70)

From gauge fields alone, one can construct an even simpler gauge-invariant object,
a Wilson line beginning and ending at some point x :

U (x, x) = ei
∮

C dxµ Aµ, (3.71)

where U is called a Wilson loop.
These objects have a simple generalization in non-Abelian gauge theories. Using

the matrix form for Aµ, the main issue is one of ordering. The required ordering
prescription is path ordering, P:

U (x1, x2) = P ei
∫ x2

x1
dxµ Aµ. (3.72)

It is not hard to show that the transformation law of the Abelian case generalizes
to the non-Abelian case:

U (x1, x2) → g(x1)U (x1, x2)g†(x2). (3.73)

To see this, note, first, that path ordering is like time ordering, so if s is the parameter
of the path, U satisfies:

d

ds
U (x1(s), x2) =

(
ig

dxµ

ds
Aµ(x1(s))

)
U (x1(s)x2), (3.74)

or, more elegantly,

dxµ

1

ds
DµU (x1, x2) = 0. (3.75)

Now suppose U (x1, x2) satisfies the transformation law (Eq. (3.73)). Then it is
straightforward to check, from Eq. (3.74), that U (x1 + dx1, x2) satisfies the correct
equation. Since U satisfies a first-order differential equation, this is enough.

Again, the integral around a closed loop, C , is gauge invariant, provided one
now takes the trace:

U (x1, x1) = Tr ei
∮

C dxµ Aµ. (3.76)

Wilson used these objects to construct a discretized version of the usual path
integral. Take the lattice to be a simple hypercube, with points xµ = anµ, where
nµ is a vector of integers; a is called the lattice spacing. At any point, x , one
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can construct a simple Wilson line, U (x)µν , known as a plaquette. This is just the
product of Wilson lines around a unit square. Letting nµ denote a unit vector in
the µ direction, we denote the Wilson line U (x, x + anµ) by U (x)µ. These are the
basic variables; as they are associated with the lines linking two lattice points, these
are called “link variables.” Then the Wilson loops about each plaquette are denoted:

U (x)µν = U (x)µU (x + anµ)νU (x + anµ + anν)−µU (x + anν)−ν. (3.77)

In the non-Abelian case, a trace is understood. For small a, in the Abelian case, it
is easy to expand Uµν in powers of a, and show that:

U (x)µν = eia2 Fµν (x). (3.78)

So we can write an action, which in the limit of small lattice spacing goes over to
the Yang–Mills action:

Swilson = 1

4g2

∑
�x,µ,ν

U (x)µ,ν (3.79)

In the non-Abelian case, this same expression holds, except with 4 replaced by 2,
and a trace over the U matrices.

How might we investigate the question of confinement with this action? Here,
Wilson also made a proposal. Consider the amplitude for a process in which a
very heavy (infinitely heavy) quark–antiquark pair are produced in the far past,
separated by a distance R, and allowed to propagate for a long time, T , after which
they annihilate. In Minkowski space, this amplitude would be given by:

〈 f |e−i H T |i〉. (3.80)

If we transform to Euclidean space, and insert a complete set of states, for each
state we have a factor exp(−EnT ). As T → ∞, this becomes e−E0T , where E0

is the ground state of the system with two infinitely massive quarks, separated by
a distance R – what we would naturally identify with the potential of the quark–
antiquark system.

In the path integral, this expectation value is precisely the Wilson loop, UP ,
where P is the path from the point of production to the point of annihilation and
back. If the quarks only experience a Coulomb force, one expects the Wilson loop
to behave as

〈UP〉 ∝ e−αT/R (3.81)

for a constant α. In other words, the exponential behaves as the perimeter of the
loop. If the quarks are confined, with a linear confining force, the exponential
behaves as e−bT R , i.e. like the area of the loop. So Wilson proposed to measure the



3.7 Confinement and lattice gauge theory 49

Fig. 3.5. Leading non-vanishing contribution to the Wilson loop in strong-coupling
lattice gauge theory.

expectation value of the Wilson loop, and determine whether it obeyed a perimeter
or area law.

In strong coupling, it is a simple matter to do the computation in the lattice gauge
theory. We are interested in∫ ∏

dU (x)µνe−Slattice+i
∏

P U . (3.82)

We can evaluate this by expanding the exponent in powers of 1/g2. Because∫
dUµUµ = 0

∫
dUµUµU †

µ = c (3.83)

(you can check this easily in the Abelian case), in order to obtain a non-vanishing
result, we need to tile the path with plaquettes, as indicated in Fig. 3.5. So the result
is exponential in the area,

〈UP〉 = (const/g2)A, (3.84)

and the force law is

V (R) = const
g2

a2
R. (3.85)

This is not a proof of confinement in QCD. First note that this result also holds in
the strong-coupling limit of an Abelian gauge theory. This is possible because even
the pure gauge Abelian lattice theory is an interacting theory. From this we learn
that the strong-coupling behavior of a lattice theory can be very different than the
weak coupling behavior. In lattice QED, there is a phase transition (a discontinuous
change of behavior) between the strong- and weak-coupling phases. In the case of
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an asymptotically free theory like QCD, we expect a close correspondence between
coupling and lattice size. To describe, say, a proton, we would like to use a lattice on
which the spacing a is much smaller than the QCD scale. In this case, the coupling
we should use in the lattice theory is small. It is then not at all obvious that the
strong-coupling result is applicable. At present, the issue can only be settled by
evaluating the lattice path integral numerically. In principle, since the lattice theory
reduces space-time to a finite number of points, the required path integral is just an
ordinary integral, albeit with a huge number of dimensions. For example, if we have
a 104 lattice, with of order 104 links (each 3 × 3 matrices), and quarks at each site, it
is clear that a straightforward numerical evaluation involves an exponentially large
number of operations. In practice, it is necessary to use Monte Carlo (statistical
sampling) methods to evaluate the integrals. These techniques are now sufficiently
powerful to convincingly demonstrate an area law at weak coupling. The constant
in the area law – the coefficient of the linear term in the quark–antiquark potential,
is a dimensionful parameter. It must be a renormalization-group invariant. As a
result, it must take the form:

T = ca−2e− ∫ dg′
βg′ . (3.86)

At weak coupling, we know the form of the beta function, so we know how T should
behave as we vary the lattice spacing and coupling. Results of numerical studies
are in good agreement with these expressions. There has also been great progress in
computing the low-lying hadron spectrum and certain weak decay matrix elements.

It is interesting to see how the strong-coupling result arises from a Hamiltonian
viewpoint. To simplify the computation, we consider a U (1) gauge theory. In the
Hamiltonian approach, the basic dynamical variables are the matrices Ui , associated
with the spatial directions. There is also A0. As in continuum field theory, we can
choose the gauge A0 = 0. In this gauge, in the continuum, the dynamical variables
are Ai , and their conjugate momenta Ei ; on the lattice, the conjugate momenta to
the Ui s are the Ei s. The Hamiltonian has the form:

H =
∑

g2 ��(x)2/a + 1

4g2

∑
Ui j (�x)a−1. (3.87)

The Ui s are compact variables, so the�(x)s, at each point, are like angular momenta.
At strong coupling, this is a system of decoupled rotors. The ground state of the
system has vanishing value of these angular momenta.

Now introduce a heavy quark–antiquark pair to the system, separated by a dis-
tance R in the z direction. In A0 = 0 gauge, states must be gauge invariant (we will
discuss this further when we consider instantons in the next chapter). So a candidate
state has the form:

|�〉 = q†(0)Uz(0, R)q̄†(R)|0〉. (3.88)
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Fig. 3.6. Low-order contributions to e+e− annihilation.

Here

Uz(0, R) = Uz(0, 1)Uz(1, 2) . . . Uz(N − 1, N ), (3.89)

where R = Na. Now we can evaluate the expectation value of the Hamiltonian in
this state. At strong coupling, we can ignore the magnetic terms. The effect of the
Uz operators is to raise the “angular momentum” associated with each link by one
unit (in the U (1) case, Uz(n, n + 1) = eiθn+1 ). So the energy of the state is just:

a−1g2 N (3.90)

and the potential grows linearly with separation.

3.8 Strong interaction processes at high momentum transfer

QCD has been tested, often with high precision, in a variety of processes at high
momentum transfer. It is these processes to which one can apply ordinary perturba-
tion theory. If Q2 is the typical momentum transfer of the process, cross sections are
given by a power series in αs(q2). The application of perturbation theory, however,
is subtle. In accelerators, we observe hadrons; in perturbation theory, we compute
the production rate for quarks and gluons. We briefly survey some of these tests
in this section. In some ways, the simplest to analyze is e+e− annihilation, and
we discuss it first. Then we turn to processes involving deep inelastic scattering of
leptons by hadrons. Finally, we discuss processes involving hadrons.

3.8.1 e+e− Annihilation

Theoretically, perhaps the simplest process to understand is the total cross section
in e+e− annihilation. At the level of quarks and gluons, the first few diagrams
contributing to the production cross section are exhibited in Fig. 3.6. There are, in
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Fig. 3.7. Emission of gluons and quarks leads to formation of hadrons.

perturbation theory, a variety of final states: qq̄ , qq̄ g, qq̄ g g, qq̄ qq̄, and so on.
We do not understand, in any detail, how these quarks and gluons materialize as the
observed hadrons. But we might imagine that this occurs as in Fig. 3.7. The initial
quarks radiate gluons which can in turn radiate quark–antiquark pairs. As the cas-
cade develops, quarks and antiquarks can pair to form mesons; qqq combinations
can form baryons, and so on. In these complex processes (called “hadronization”),
we can construct many relativistic invariants, and many will be small, so that per-
turbation theory cannot be trusted. In a sense this is good; otherwise, we would be
able to show that free quarks and gluons were produced in the final states. But if we
only ask about the total cross section, each term in the series is a function only of the
center of mass energy, s. As a result, if we simply choose s for the renormalization
scale, the cross section is given by a power series in αs(s). One way to see this is
to note that the cross section is proportional to the imaginary part of the photon
vacuum polarization tensor, σ (s) ∝ Im �. One can calculate � in Euclidean space,
and then analytically continue. In the Euclidean calculation, there are no infrared
divergences, so the only scales are s and the cutoff (or renormalization scale). It is
convenient to consider the ratio

R(e+e− → hadrons) = σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
. (3.91)

The lowest-order (α0
s ) contribution can be written down without any work:

R(e+e− → hadrons) = 3
∑

Q2
f (3.92)

where we have explicitly pulled out a factor of 3 for color, and the sum is over those
quark flavors light enough to be produced at energy

√
s. So, for example, above the

charm quark and below the bottom quark threshold, this would give

R(e+e− → hadrons) = 10/3. (3.93)
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Fig. 3.8. R in e+e− annihilation, compared with theory. Reproduced from
H. Burkhardt and B. Pietrzyk, Phys. Lett. B 513, 46 (2001). Copyright 2001,
with permission from Elsevier.

Before comparing with data, we should consider corrections. The cross section has
been calculated through order α3

s . Here we quote just the first two orders:

R(e+e− → hadrons) = 3
∑

Q2
f

(
1 + αs

π

)
. (3.94)

This is compared with data in Fig. 3.8.
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Fig. 3.9. Feynman diagrams contributing to Z decay are similar to those in e+e−
annihilation.

Quantity Value Standard Model Pull

mt [GeV] 176.1 ± 7.4 176.96 ± 4.0 −0.1
180.1 ± 5.4 0.6

MW [GeV] 80.454 ± 0.059 80.390 ± 0.018 1.1
80.412 ± 0.042 0.5

MZ [GeV] 91.1876 ± 0.0021 91.1874 ± 0.0021 0.1
�Z [GeV] 2.4952 ± 0.0023 2.4972 ± 0.0012 −0.9
�(had) [GeV] 1.7444 ± 0.0020 1.7435 ± 0.0011 —
� (inv) [MeV] 499.0 ± 1.5 501.81 ± 0.13 —
�(�+�−) [MeV] 83.984 ± 0.086 84.024 ± 0.025 —
σhad [nb] 41.341 ± 0.037 41.472 ± 0.000 1.9

Fig. 3.10. Comparison of theory and experiment for properties of the Z boson. Note
close agreement at the part in 102 − 103 level. Reprinted from Electroweak Model
and Constraints on New Physics, Particle Data Group (2005), and S. Eidelman et
al., Phys. Lett. B, 592, 1 (2004) (used with permission of the Particle Data Group
and Elsevier).

This calculation has other applications. Perhaps the most interesting is the
Z width. Z decays to hadrons involve essentially the same Feynman diagrams
(Fig. 3.9), except for the different Z couplings to the quarks. Again, this is com-
pared with experiment in Fig. 3.10.

3.8.2 Jets in e+e− annihilation

Much more is measured in e+e− annihilation than the total cross section, and
clearly we would like to extract further predictions from QCD. If we are to be able
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Fig. 3.11. The infrared problem.

to use perturbation theory, it is important that we limit our questions to processes
for which all momentum transfers are large. It is also important that perturbation
theory fail for some questions. After all, we know that the final states observed in
accelerators contain hadrons, not quarks and gluons. If perturbation theory were
good for sufficiently precise descriptions of the final state, the theory would simply
be wrong.

To understand the issues, let’s briefly recall some features of QED for a process
like e+e− → µ+µ−. At lowest order, one just has the production of the µ+µ− pair.
But in order α, one has final states with an additional photon, and loop corrections
to the muon lines (also the electron/positron), as indicated in Fig. 3.11. Both the
loop corrections and the total cross section for final states with a photon are infrared
divergent. In QED, the resolution to this problem is resolution. In an experiment, one
cannot detect a photon of arbitrarily low energy. So in comparing the theory with the
observed cross section for µ+µ− (no photon), one must allow for the possibility
that a very-low-momentum photon is emitted and not detected. Including some
energy resolution, �E , the cross sections for each possible final state are finite. If
the energy is very large, one also has to keep in mind that experimental detectors
cannot resolve photons sufficiently parallel to one or the other of the outgoing
muons. The cross section, again, for each type of final state has large logarithms,
ln(E/mµ). These are often called “collinear singularities” or “mass singularities.”
So one must allow for the finite angular resolution of real experiments. Roughly
speaking, then, the radiative corrections for these processes involve

δσ ∝ α

4π
ln(E/�E) ln(�θ ). (3.95)

As one makes the energy resolution smaller, or the angular resolution smaller,
perturbation theory becomes poorer. In QED, it is possible to sum these large,
double-logarithmic terms.

In QCD, these same issues arise. Partial cross sections are infrared divergent.
One obtains finite results if one includes an energy and angular resolution. But
now the coupling is not so small as in QED, and it grows with energy. In other
words, if one takes an energy resolution much smaller than the typical energy in the
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Fig. 3.12. Deep inelastic scattering of leptons off a nucleon.

process, or an angular resolution which is very small, the logarithms which appear
in the perturbation expansion signal that the expansion parameter is not αs(s) but
something more like αs(�E) or αs(�θs). So perturbation theory eventually breaks
down.

On the other side, if one does not make �E or �θ too small, perturbation theory
should be valid. Consider, again, e+e− annihilation to hadrons. One might imagine
the processes which lead to the observed final states involve emission of many gluon
and quark–antiquark pairs from the initial outgoing qq̄ pair, as in Fig. 3.7. The final
emissions will involve energies and momentum transfers of order the masses of
pions and other light hadrons, and perturbation theory will not be useful. On the
other hand, we can restrict our attention to the kinematic regime where the gluon is
emitted at a large angle relative to the quark, and has a substantial energy. There are
no large logarithms in this computation, nor in the computation of the qq̄ final state.
We can give a similar definition for the qq̄g final state. From an experimental point
of view, this means that we expect to see jets of particles (or energy-momentum),
reasonably collimated, and that we should be able to calculate the cross sections
for emission of such jets. These calculations are similar to those of QED. Such jets
are observed in e+e− annihilation, and their angular distribution agrees well with
theoretical expectation. When first observed, these three jet events were described,
appropriately, as the “discovery of the gluon.”

3.8.3 Deep inelastic scattering

Deep inelastic scattering was one of the first processes to be studied theoretically
in QCD. These are experiments in which a lepton is scattered at high momentum
transfer from a nucleus. The lepton can be an electron, a muon, or a neutrino; the
exchanged particle can be a γ , W ± or Z (Fig. 3.12). One doesn’t ask about the details
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of the final hadronic state, but simply how many leptons are scattered at a given
angle. Conceptually, these experiments are much like Rutherford’s experiment
which discovered the atomic nucleus. In much the same way, these experiments
showed that nucleons contain quarks, of just the charges predicted by the quark
model.

This process was attractive because one can analyze it without worrying about
issues of defining jets and the like. The total cross section can be related, by uni-
tarity, to a correlation function of two currents: the electromagnetic current, in the
case of the photon; the weak currents in the case of the weak gauge bosons. The
currents are space-like separated, and this separation becomes small as the mo-
mentum transfer, Q2, becomes large. This analysis is described in many textbooks.
Instead, we will adopt a different viewpoint, which allows a description of the pro-
cess which generalizes to other processes involving hadrons at high momentum
transfer.

Feynman and Bjorken suggested that we could view the incoming proton as
a collection of quarks and gluons, which they collectively referred to as partons.
They argued that one could define a probability to find a parton of type i carrying
a fraction x of the proton momentum, fi (x) (and similarly for neutrons). At high
momentum transfer, they suggested that the scattering of the virtual photon (or
other particle) off the nucleon would actually involve the scattering of this object
off one of the partons, the others being “spectators” (Fig. 3.12). In other words, the
cross section for deep inelastic scattering would be given by:

σ (e−(k) + p(P) → e−(k ′) + X )

=
∫

dζ
∑

f

f f (ζ )σ (e−(k) + q(ζ P) → e−(k ′) + q f (p′)) (3.96)

This assumption may – should – seem surprising. After all, the scattering process
is described by the rules of quantum mechanics, and there should be all sorts of
complicated interference effects. We will discuss this question below, but for now,
suffice it to say that this picture does become correct in QCD for large momentum
transfers.

For the case of the virtual photon, the cross section for the parton process can be
calculated just as in QED:

dσ

dt̂
(e−q → e−q) = 2πα2 Q2

f

ŝ2

[
ŝ2 + û2

t̂2

]
. (3.97)

Here ŝ, t̂, û are the kinematic invariants of the elementary parton process. For
example, if we neglect the mass of the lepton and the incoming nucleon:

ŝ = 2p · k = 2ζ P · k = ζ s. (3.98)
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If the scattered electron momentum is measured, q is known, and we can relate x
of the process to measured quantities. From momentum conservation:

(ζ P + q)2 = 0. (3.99)

Or

q2 + 2ζ P · q = 0. (3.100)

Solving for ζ :

ζ = x = − q2

2P · q
. (3.101)

It is convenient to introduce another kinematic variable,

y = 2P · q

s
= 2P · q

2P · k
. (3.102)

Then Q2 = q2 = xys, and we can write a differential cross section:

d2σ

dxdy
(e− P → e− X ) =

(∑
f

x f f (x)Q2
f

)
2πα2s

Q4
[1 + (1 − y)2]. (3.103)

This and related predictions were observed to hold in the first deep inelastic scat-
tering experiments at SLAC, providing the first persuasive experimental evidence
for the reality of quarks. Note, in particular, the scaling implied by these relations.
For fixed y, the cross section is a function only of x .

In QCD, these notions need a crucial refinement. The distribution functions are
no longer independent of Q2:

f f (x) → f f (x, Q2). (3.104)

To understand this, we return to the question: why should a probabilistic model
of partons work at all in these very quantum processes? Consider, for example,
the Feynman diagrams of Fig. 3.13. Clearly there are complicated interference
terms when one squares the amplitude. But it turns out that, in certain gauges,
the interference diagrams are suppressed, and the cross section is just given by
a square of terms, as in Fig. 3.14. So one gives a probabilistic description of the
process, just as Feynman and Bjorken suggested, with the distribution function the
result of the sequence of interactions in the figure. These diagrams depend on Q2.
One can write integro-differential equations for these functions, the Altareli–Parisi
equations. To explain the data, one determines these distribution functions at one
value of Q2 from experiment, and evolves them to other values. By now, these have
been studied over a broad range of Q2. Some experimental results from the HERA
detector at ZEUS (DESY) are shown in Fig. 3.15.
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Fig. 3.13. Diagrams contributing to total rate. Diagrams to the right are complex
conjugates of corresponding amplitudes on the left. The second term represents a
complicated interference.

2

Fig. 3.14. In suitable gauges, deep inelastic scattering is dominated by absolute
squares of amplitudes (interference unimportant).

3.8.4 Other high momentum processes

These ideas have been applied to other processes. The analysis which provides
a diagrammatic understanding of deep inelastic scattering shows that the same
structure functions are relevant to other high-momentum transfer processes, though
care is required in their definitions. Examples include lepton pair production in
hadronic collisions (Fig. 3.16) and jet production in hadron collisions. All have
been subject to particularly stringent experimental tests.

Suggested reading

There are a number of excellent texts on the Standard Model. An Introduction to
Quantum Field Theory by Peskin and Schroeder (1995) provides a good introduc-
tion both to the theory of weak interactions and to the strong interactions, including
deep inelastic scattering, parton distributions and the like. Other excellent texts in-
clude the books by Cheng and Li (1984), Donoghue et al. (1992), Pokorski (2000),
Weinberg (1995), Bailin and Love (1993), Cottingham and Greenwood (1998),
and many others. An elegant calculation of the beta function in QCD, which uses
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Fig. 3.15. The proton structure function F2 as a function of Q2 at fixed x as
determined by H1 and ZEUS at DESY. From G. E. Wolf, Nucl. Phys. Proc. Suppl,
38, 107 (1995).

the Wilson loop to determine the potential perturbatively, appears in the lectures
of Susskind (1977). These lectures, as well as Wilson’s original paper (1974) and
the text of Creutz (1983), provide a good introduction to lattice gauge theory. An
important subject which we did not discuss in this chapter is heavy quark physics.
This is experimentally important and theoretically accessible. A good introduction
is provided in the book by Manohar and Wise (2000).
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Fig. 3.16. Diagram showing P P̄ annihilation with µ-pair production (Drell–Yan
process).

Exercises

(1) Add to the Lagrangian of Eq. (2.41) a term

δL = εTrM (3.105)

for small ε. Show that, in the presence of ε, the expectation values of the �π fields
are fixed, and give a simple physical explanation. Compute the masses of the π fields
directly from the Lagrangian.

(2) Verify Eqs. (2.48)–(2.56).
(3) Compute the mass of the Higgs field as a function of µ and λ. Discuss production of

Higgs particles (you do not need to do detailed calculations, but indicate the relevant
Feynman graphs and make at least crude estimates of cross sections) in e+e−, µ+µ−

and P P̄ annihilation. Keep in mind that because some of the Yukawa couplings are
extremely small, there may be processes generated by loop effects which are bigger
than processes which arise at tree level.

(4) Using the formula for the e+e− cross section, determine the branching ratio for decay
of the Z into hadrons:

B(Z → hadrons) = �(Z → hadrons)

�(Z → all)
. (3.106)
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The Standard Model as an effective field theory

The Standard Model has some remarkable properties. The renormalizable terms
respect a variety of symmetries, all of which are observed to hold to a high degree
in Nature.

� Baryon number:

Q → ei α
3 Q ū → e−i α

3 ū d̄ → e−i α
3 d̄. (4.1)

� Three separate lepton numbers:

L f → e−iα f L f ē f → eiα f ē f . (4.2)

It is not necessary to impose these symmetries. They are simply consequences of
gauge invariance, and the fact that there are only so many renormalizable terms one
can write. These symmetries are said to be “accidental,” since they don’t seem to
result from any deep underlying principle.

This is already a triumph. As we will see when we consider possible extensions
of the Standard Model, this did not have to be. But this success raises the question:
why should we impose the requirement of renormalizability?

In the early days of quantum field theory, renormalizability was sometimes pre-
sented as a sacred principle. There was a view that field theories were fundamental,
and should make sense in and of themselves. Much effort was devoted to under-
standing whether the theories existed in the limit that the cutoff was taken to infinity.

But there was an alternative paradigm for understanding field theories, provided
by Fermi’s original theory of the weak interactions. In this theory, the weak inter-
actions are described by a Lagrangian of the form:

Lweak = G f√
2

Jµ Jµ. (4.3)

Here the currents, Jµ, are bilinears in the fermions; they include terms like
QσµT a Q∗. This theory, like the Standard Model, was very successful. It took some
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Fig. 4.1. Exchange of the massive W boson gives rise to the four-Fermi interaction.

time to actually determine the form of the currents but, for more than forty years,
all experiments in weak interactions could be summarized in a Lagrangian of this
form. Only as the energies of bosons in e+e− experiments approached the Z boson
mass were deviations observed.

The four-Fermi theory is non-renormalizable. Taken seriously as a fundamental
theory, it predicts violations of unitarity at TeV energy scales. But from the begin-
ning, the theory was viewed as an effective field theory, valid only at low energies.
When Fermi first proposed the theory, he assumed that the weak forces were caused
by exchange of particles – what we now know as the W and Z bosons.

4.0.1 Integrating out the W and Z bosons

Within the Standard Model, we can derive the Fermi theory, and we can also un-
derstand the deviations. A traditional approach is to examine the Feynman diagram
of Fig. 4.1. This can be understood as a contribution to a scattering amplitude, but
it is best understood here as a contribution to the effective action of the quarks and
leptons. The currents of the Fermi theory are just the gauge currents which describe
the coupling at each vertex. The propagator, in the limit of very-small-momentum
transfer, is just a constant. In coordinate space, this corresponds to a space-time
δ-function – the interaction is local. The effect is just to give the four-Fermi La-
grangian. One can consider effects of small finite momentum by expanding the
propagator in powers of q2. This will give four-Fermi operators with derivatives.
These are suppressed by powers of MW and their effects are very tiny at low ener-
gies. Still, in principle, they are there, and in fact the measurement of such terms
at energies a significant fraction of MZ provided the first hints of the existence of
the Z boson.

This effective action can also be derived in the path integral approach. Here we
literally integrate out the heavy fields, the W and Z . In other words, for fixed values
of the light fields, which we denote by φ, we do the path integral over W and Z ,
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expressing the result as an effective action for the φ fields:∫
[dφ]ei Seff =

∫
[dφ]

∫
[dWµ][dW ∗

µ]�F Pei
∫

(W †
µ(∂2+M2

W )W µ+JµW †
µ+Jµ†Wµ)d4x . (4.4)

Here, for simplicity, we have omitted the Z particle. We have chosen the Feynman–
’t Hooft gauge. The Jµ and Jµ† are the usual weak currents. They are constructed
out of the various light fields, the quarks and leptons, which we have grouped,
generically, into the set of fields, φ. Written this way, the path integral is the most
basic field theory path integral, and we are familiar with the result:

ei Seff = e
∫

d4xd4 y Jµ(x)�(x,y)Jµ(y). (4.5)

Here �(x, y) denotes the propagator for a scalar of mass MW . In the limit M → ∞,
this is just a δ-function (one can compute this, or see this directly from the path
integral – if we neglect the derivative terms in the action, the propagator is just a
constant in momentum space):

�(x, y) = i

M2
W

δ(x − y). (4.6)

So

Seff = 1

M2
W

Jµ† Jµ. (4.7)

The lesson is that, up to the late 1970s, one could view QED + QCD + the Fermi
theory as a perfectly acceptable theory of the interactions. The theory would have
to be understood, however, as an effective theory, valid only up to an energy scale
of order 100 GeV or so. Sufficiently precise experiments would require inclusion of
operators of dimension higher than four. The natural scale for these operators would
be the weak scale. The Fermi theory is ultraviolet divergent. These divergences
would be cut off at scales of order the W boson mass.

4.0.2 What might the Standard Model come from?

As successful as the Standard Model is, and despite the fact that it is renormaliz-
able, it is likely that, like the four-Fermi theory, it is the low-energy limit of some
underlying, more “fundamental” theory. In the second half of this book, our model
for this theory will be string theory. Consistent theories of strings, for reasons which
are somewhat mysterious, are theories which describe general relativity and gauge
interactions. Unlike field theory, string theory is a finite theory. It does not require
a cutoff for its definition. In principle, all physical questions have well-defined an-
swers within the theory. If this is the correct picture for the origin of the laws of
Nature at extremely short distances, then the Standard Model is just its low-energy



66 4 The Standard Model as an effective field theory

limit. When we study string theory, we will understand in some detail how such a
structure can emerge. For now, the main lesson we should take concerns the require-
ment of renormalizability: the Standard Model should be viewed as an effective
theory, valid up to some energy scale, �. Renormalizability is not a constraint we
impose upon the theory; rather, we should include operators of dimension five or
higher with coefficients scaled by inverse powers of �. The question of the value
of � is an experimental one. From the success of the Standard Model, as we will
see, we know that the cutoff is large. From string theory, we might imagine that
� ≈ Mp = 1.2 × 1018 GeV. But, as we will now describe, we have experimental
evidence that there is new physics which we must include at scales well below Mp.
We will also see that there are theoretical reasons to believe that there should be
new physics at TeV energy scales.

4.1 Lepton and baryon number violation

We have remarked that at the level of renormalizable operators, baryon and lepton
number are conserved in the Standard Model. Viewed as an effective theory, how-
ever, we should include higher-dimension operators, with dimensionful couplings.
We would expect such operators to arise, as in the case of the four-Fermi theory,
as a result of new phenomena and interactions at very high energy scales. The
coefficients of these operators would be determined by this dynamics.

There would seem, at first, to be a vast array of possibilities for operators which
might be induced in the Standard Model Lagrangian. But we can organize the
possible terms in two ways. First, if Mbsm is the scale of some new physics, operators
of progressively higher dimension are suppressed by progressively larger powers
of Mbsm. Second, the most interesting, and readily detectable, operators are those
which violate the symmetry of the renormalizable Lagrangian. This is already
familiar in the weak interaction theory. In the Standard Model, the symmetries are
precisely baryon and lepton number.

4.1.1 Dimension five: lepton number violation and neutrino mass

To proceed systematically, we should write operators of dimension five, six, and so
on. At the level of dimension five, we can write several terms which violate lepton
number:

L = 1

Mbsm
γ f, f ′φφL f L ′

f + c.c. (4.8)

With non-zero φ, these terms give rise to neutrino masses. This type of mass term
is usually called a “Majorana mass.” In nature, these masses are quite small. For
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example, if Mbsm = 1016 GeV, which we will see is a plausible scale, then the neu-
trino masses would be of order 10−3 eV. In typical astrophysical and experimental
situations, neutrinos are produced with energies of order MeV or larger, so it is
difficult to measure these masses by studying the energy-momentum dispersion re-
lation (very sensitive measurements of the end-point spectra beta-decay (β-decay)
set limits of order electronvolts on neutrino mass). More promising are oscillation
experiments, in which these operators give rise to transitions between one type of
neutrino to another, similar to the phenomenon of K meson oscillations. Roughly
speaking, in, say, the β-decay of a d quark, one produces the neutrino partner of
the electron. However, the mass (energy) eigenstate is a linear combination of the
three types of neutrino (as we will see, it is typically principally a combination of
two). So experiments or observations downstream from the production point will
measure processes in which neutrinos produce muons or taus.

In the past few years, persuasive evidence has emerged that the neutrinos do
have non-zero masses and mixings. This comes from the study of neutrinos coming
from the Sun (the “solar neutrinos”) and neutrinos produced in the upper atmo-
sphere by cosmic rays (which produce pions which subsequently decay to muons
and νµs, whose decays in turn produce electrons, νµs, and νes). Accelerator and
reactor experiments have provided dramatic and beautiful evidence in support of
this picture.

Currently, the atmospheric data is best described as a mixing of νµ and ντ .
Because one is examining an oscillation, one does not know the value of the mass,
but one determines:

δm2
a = 2.4 × 10−3 eV2 θa = 45◦ ± 10. (4.9)

Similarly, for the solar neutrinos, which appear to be mainly mixing of νµ and ντ :

δm2
s = 8.2 × 10−5 eV2 θs = 32◦ ± 4. (4.10)

It is conceivable that these masses are not described by the Lagrangian of
Eq. (4.8). Instead, the masses might be “Dirac,” by which one means that there
might be additional degrees of freedom, which by analogy to the ē fields we could
label ν̄, with very tiny Yukawa couplings to the normal neutrinos. This would truly
represent a breakdown of the Standard Model: even at low energies, we would have
been missing basic degrees of freedom. But this does not seem likely. If there are
singlet neutrinos, N , nothing would prevent them from gaining a “Majorana” mass:

LMaj = M N N . (4.11)

As for the leptons and quarks, there would also be a coupling of ν to N . There would
now be a mass matrix for the neutrinos, involving both N and ν. For simplicity,
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consider the case of just one generation. Then this matrix would have the form:

Mν =
(

M yv

yv 0

)
. (4.12)

Such a matrix has one large eigenvalue, of order M , and one small one, of order
(y2v2)/M . This provides a natural way to understand the smallness of the neutrino
mass; it is referred to as the “seesaw mechanism.” Alternatively, we can think of
integrating out the right-handed neutrino, and generating the operator of Eq. (4.8).

It seems more plausible that the observed neutrino mass is Majorana than Dirac,
but this is a question that hopefully will be settled in time by experiments searching
for neutrinoless double beta-decay, n + n → p + p + e− + e−. If it is Majorana,
this suggests that there is another scale in physics, well below the Planck scale. For
even if the new Yukawa couplings are of order one, the neutrino mass is of order

mν = 10−5 eV(Mp/�). (4.13)

If the Yukawas are small, as are many of the quark Yukawa couplings, the scale can
be much larger.

4.1.2 Other symmetry-breaking dimension-five operators

There is another class of symmetry-violating dimension-five operators which can
appear in the effective Lagrangian. These are electric and magnetic dipole moment
operators. For example, the operator

Lµe = e

Mbsm
Fµνµ̄σµνµ (4.14)

(we are using a four-component notation here) would lead to processes violating
muon number conservation, particularly the decay of the muon to an electron and
a photon. There are stringent experimental limits on such processes, for example:

BR(µ → e γ ) < 1.2 × 10−11. (4.15)

Other operators of this type include operators which would generate lepton violating
τ decays, on which the limits are far less stringent.

In the Standard Model, CP is an approximate symmetry. We have explained that
three generations of quarks are required to violate CP within the Standard Model.
So amplitudes which violate CP must involve all three generations, and are typically
highly suppressed. From an effective Lagrangian viewpoint, if we integrate out the
W and Z bosons, the operators which violate CP are dimension six, and typically
have coefficients suppressed by quark masses and mixing angles, as well as loop
factors. As a result, new physics at relatively modest scales has the potential for
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dramatic effects. Electric dipole moment operators for quarks or leptons would
arise from operators of the form:

Ld = emq

M2
bsm

F̃µν q̄σµνq + c.c., (4.16)

where

F̃µν = 1

2
εµνρσ Fρσ (4.17)

The presence of the ε symbol is the signal of CP violation, as the reader can check. In
the non-relativistic limit, this is �σ · �E . These would lead, for example, to a neutron
electric dipole moment of order

dn = e

Mbsm
. (4.18)

Searches for such dipole moments set limits dn < 10−25 e-cm. So, unless there is
some source of suppression, Mbsm, in CP violating processes, is larger than about
102 TeV.

4.1.3 Irrelevant operators and high-precision experiments

There are a number of dimension-five operators on which it is possible to set
somewhat less stringent limits, and one case in which there is a possible discrepancy.
Corrections to the muon magnetic moment could arise from:

Lg−2 = e

Mbsm
Fµνµ̄σµνµ + c.c., (4.19)

where Fµν is the electromagnetic field (in terms of the fundamental SU (2) and U (1)
fields, one can write similar gauge-invariant combinations which reduce to this at
low energies). The muon magnetic moment is measured to extremely high precision,
and its Standard Model contribution is calculated with comparable precision. As
of this writing, there is a 2.6 σ discrepancy between the two. Whether this reflects
new physics or not is uncertain. We will encounter one candidate for this physics
when we discuss supersymmetry.

There are other operators on which we can set TeV-scale limits. The success of
QCD in describing jet physics allows one to constrain four quark operators which
would give rise to a hard component in the scattering amplitude. Such operators
might arise, for example, if quarks were composite. Constraints on flavor-changing
processes provide tight constraints on a variety of operators. Operators like

Lfc = 1

M2
bsm

sσµd∗sσµd∗ (4.20)
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(where we have switched to a two-component notation) would contribute to K − K̄
mixing and other processes. This constrains Mbsm to be larger than 100 TeV or so.
Any new physics at the TeV scale must explain why this operator is so severely
suppressed.

4.1.4 Dimension-six operators: proton decay

Proceeding to dimension six, we can write numerous terms which violate baryon
number, as well as additional lepton-number violating interactions:

Lbv = 1

M2
bsm

Qσµū∗Lσµd̄∗ + · · · . (4.21)

This can lead to processes such as p → πe. Experiments deep underground set
limits of order 1033 years on this process. Correspondingly, the scale Mbsm must be
larger than 1015 GeV.

So viewing the Standard Model as an effective field theory, we see that there are
many possible non-renormalizable operators which might appear, but most have
scales which are tightly constrained by experiment. One might hope – or despair –
that the Standard Model will provide a complete description of nature up to scales
many orders of magnitude larger than we can hope to probe in experiment.

But there are a number of reasons to think that the Standard Model is incomplete,
and at least one which suggests that it will be significantly modified at scales not
far above the weak scale.

4.2 Challenges for the Standard Model

The Standard Model is tremendously successful. It describes the physics of strong,
weak and electromagnetic interactions with great precision to energies of order
100 GeV, or distances as small as 10−17 cm. It explains why baryon number and
the separate lepton numbers are conserved, with only one assumption: there is no
interesting new physics up to some high-energy scale.

On the other hand, the Standard Model cannot be a complete theory. The existence
of neutrino mass requires at least additional states (if these masses are Dirac),
and more likely some new physics at a high-energy scale which accounts for the
Majorana neutrino masses. This scale is probably not larger than 1016 GeV, well
below the Planck scale. The existence of gravity means that there is certainly
something missing from the theory. The plethora of parameters – about seventeen,
counting those of the minimal Higgs sector – suggests that there is a deeper structure.
More directly, features of the big bang cosmology which are now well established
cannot be accommodated within the Standard Model.
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4.2.1 A puzzle at the renormalizable level

In the standard model there is a puzzle even at the level of dimension four operators.
Consider:

Lθ = θ F F̃, (4.22)

where

F̃µν = 1

2
εµνρσ Fρσ . (4.23)

We usually ignore these because classically they are inconsequential; they are total
derivatives and do not modify the equations of motion. In a U (1) theory, for example,

F F̃ = 2εµνρσ ∂µ Aν∂ρ Aσ = 2∂µ(εµνρσ Aν∂ρ Aσ ). (4.24)

In the next chapter, we will see that this has a non-Abelian generalization, but that
despite being a total divergence, these terms have real effects at the quantum level.
In QCD, they turn out to be highly constrained. From the limits on the neutron
electric dipole moment, one can show that θ < 10−9. This is the first real puzzle
we have encountered. Why such a small dimensionless number? Answering this
question, as we will see, may point to new physics.

4.3 The hierarchy problem

The second very puzzling feature is the Higgs field. As of this writing, the Higgs
field is the one piece of the Standard Model which has not been seen. Indeed, the
structure we have postulated, a single Higgs doublet with a particular potential,
might be viewed as somewhat artificial. We could have included several doublets,
or perhaps tried to explain the breaking of the gauge symmetry through some
more complicated dynamics. But there is a more serious question associated with
fundamental scalar fields, raised long ago by Ken Wilson. This problem is often
referred to as the hierarchy problem.

Consider, first, the one-loop corrections to the electron mass in QED. These are
logarithmically divergent. In other words,

δm = am0
α

4π
ln(�). (4.25)

We can understand this result in simple terms. In the limit m0 → 0, the theory
has an additional symmetry, a chiral symmetry, under which e and ē transform
by independent phases. This symmetry forbids a mass term, so the result must be
linear in the (bare) mass. So, on dimensional grounds, any divergence is at most
logarithmic. This actually resolves a puzzle of classical electrodynamics. Lorentz
modeled the electron as a uniformly charged sphere of radius a. As a → 0, the
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electrostatic energy diverges. In modern terms, we would say that we know a is
smaller than 10−17 cm, corresponding to a self-energy far larger than the electron
mass itself. But we see that in the quantum theory, the cutoff occurs at a scale of
order the electron mass, and there is no large self-energy correction.

But for scalars, there is no such symmetry, and corrections to masses are quadrat-
ically divergent. One can see this quickly for the Higgs self-coupling, which gives
rise to a mass correction of the form:

δm2 = λ2
∫

d4k

(2π )4(k2 − m2)
. (4.26)

If we view the Standard Model as an effective field theory, this integral should be
cut off at a scale where new physics enters. We have argued that this might occur
at, say, 1014 GeV. But in this case the correction to the Higgs mass is gigantic
compared to the Higgs mass itself.

4.4 Dark matter and dark energy

In a sense, our analysis seems backwards. We began with a discussion of dimension
five and six operators, operators which are irrelevant, and then turned our attention
to the Higgs mass, a dimension two, relevant operator. We still have not considered
the most relevant operator of all, the unit operator, with dimension zero.

In recent years, astronomers and astrophysicists have presented persuasive ev-
idence that the energy density of the universe is largely in some unfamiliar form;
about 30% some non-baryonic pressureless matter (the dark matter) and about 60%
in some form with negative pressure (the dark energy). The latter might be a cos-
mological constant (of which more later). The former could well be some new type
of weakly interacting particle. Dark matter would indicate the existence of addi-
tional, possibly quite light degrees of freedom in nature. The dark energy is totally
mysterious. It could be the energy of the vacuum, the cosmological constant. If so,
it is even more puzzling than the hierarchy problem we described before. In field
theory this energy is quartically divergent; it is the first divergence one encounters
in any quantum field theory textbook. At one loop, it is given by an expression of
the form:

� =
∑

i

(−1)F
∫

d3k

(2π )3

1

2

√
k2 + m2

i (4.27)

where the sum is over all particle species (including spins). This is just the sum of
the zero-point energies of the oscillators of each momentum. If one cuts this off,
again at 1014 GeV, one gets a result of order

� = 1054 GeV4. (4.28)
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The measured value of the dark-energy density, by contrast, is

� = 10−47 GeV4. (4.29)

This wide discrepancy is probably one of the most troubling problems facing fun-
damental physics today.

4.5 Summary: successes and limitations of the Standard Model

Overall, we face a tension between the striking successes of the Standard Model
and its limitations. On the one hand, the model successfully accounts for almost
all of the phenomena observed in accelerators. On the other, it fails to account for
some of the most basic phenomena of the universe: dark matter, dark energy, and the
existence of gravity itself. As a theoretical structure, it also explains successfully
what might be viewed as mysterious conservation laws: baryon and separate lepton
numbers. But it has seventeen parameters – sixteen of which are pure numbers,
with values which range “all over the map.” The rest of this book explores possible
solutions of these puzzles, and their implications for particle physics, astrophysics
and cosmology.

Suggested reading

There are a number of excellent texts on the Standard Model. An Introduction to
Quantum Field Theory by Peskin and Schroeder (1995) provides a good introduc-
tion both to the theory of weak interactions and to the strong interactions, including
deep inelastic scattering, parton distributions and the like. Other excellent texts in-
clude the books by Cheng and Li (1984), Donoghue et al. (1992), Pokorski (2000),
Bailin and Love (1993), and many others.
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Anomalies, instantons and the strong CP problem

While perturbation theory is a powerful and useful tool in understanding field
theories, for our exploration of physics beyond the Standard Model, an understand-
ing of non-perturbative physics will be crucial. There are many reasons for this.

(1) One of the great mysteries of the Standard Model is non-perturbative in nature: the
smallness of the θ parameter.

(2) Strongly interacting field theories will figure in many proposals to understand mysteries
of the Standard Model.

(3) The interesting dynamical properties of supersymmetric theories, both those directly
related to possible models of nature and those which provide insights into broad physics
issues, are non-perturbative in nature.

(4) If string theory describes nature, non-perturbative effects are necessarily critical.

We have introduced lattice gauge theory, which is perhaps our only tool for doing
systematic calculations in strongly coupled theories. But, as a tool, its value is quite
limited. Only a small number of calculations are tractable, in practice, and the diffi-
cult numerical challenges sometimes obscure the underlying physics. Fortunately,
there is a surprising amount that one can learn from symmetry considerations, semi-
classical arguments and from our experimental knowledge of one strongly coupled
theory, QCD. In each of these, an important role is played by the phenomena known
as anomalies, and related to these a set of semiclassical field configurations known
as instantons.

Usually, the term anomaly is used to refer to the quantum-mechanical violation
of a symmetry which is valid classically. Instantons are finite-action solutions of
the Euclidean equations of motion, typically associated with tunneling phenomena.
Anomalies are crucial to understanding the decay of the π0 in QCD. Anomalies
and instantons account for the absence of a ninth light pseudoscalar meson in the
hadron spectrum. Within the weak-interaction theory, anomalies and instantons
lead to violation of baryon and lepton number; these effects are unimaginably
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tiny at the current time, but were important in the early universe. Absence of
anomalies in gauge currents is important to the consistency of theoretical structures,
including both field theories and string theories. The cancellation of anomalies
within the Standard Model itself is quite non-trivial. Similar constraints on possible
extensions of the Standard Model will be very important. In the previous chapter,
we mentioned the θ parameter of QCD. This term seems innocuous, but, due to
anomalies and instantons, its potential effects are real. Because the θ term violates
CP, they are also dramatic. The problem of the smallness of the θ parameter –
the strong CP problem – strongly suggests new phenomena beyond the Standard
Model, and this will be a recurring theme in this book. In this chapter, we explain
how anomalies arise and some of the roles which they play. The discussion is meant
to provide the reader with a good working knowledge of these subjects, but it is not
encyclopedic. A guide to texts and reviews on the subject appears at the end of the
chapter.

5.1 The chiral anomaly

Before considering real QCD, consider a non-Abelian gauge theory theory, with
only a single flavor of quark. Before making any field redefinitions, the Lagrangian
takes the form:

L = − 1

4g2
F2

µν + q̄ Dµσµq̄∗ + q Dµσµq∗ + mq̄q + m∗q̄∗q∗. (5.1)

The Lagrangian, here, is written in terms of two-component fermions (see
Appendix A). The fermion mass need not be real,

m = |m|eiθ . (5.2)

In this chapter, it will sometimes be convenient to work with four component
fermions, and it is valuable to make contact with this language in any case. In terms
of these, the mass term is:

Lm = Re(m) q̄q + Im(m) q̄γ5q. (5.3)

In order to bring the mass term to the conventional form, with no γ5s, one could try
to redefine the fermions; switching back to the two-component notation:

q → e−iθ/2q q̄ → e−iθ/2q̄. (5.4)

But, in field theory, transformations of this kind are potentially fraught with diffi-
culties because of the infinite number of degrees of freedom.
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Fig. 5.1. The triangle diagram associated with the four-dimensional anomaly.

A simple calculation uncovers one of the simplest manifestations of an anomaly.
Suppose, first, that m is very large, m → M . In that case we want to integrate out
the quarks and obtain a low-energy effective theory. To do this, we study the path
integral:

Z =
∫

[d Aµ]
∫

[dq][dq̄]ei S (5.5)

Suppose M = eiθ |M |. In order to make m real, we can again make the trans-
formations: q → qe−iθ/2; q̄ → q̄e−iθ/2 (in four-component language, this is q →
e−iθ/2γ5q).) The result of integrating out the quark, i.e. of performing the path
integral over q and q̄ , can be written in the form:

Z =
∫

[d Aµ]
∫

ei Seff . (5.6)

Here Seff is the effective action which describes the interactions of gluons at scales
well below M .

Because the field redefinition which eliminates θ is just a change of variables
in the path integral, one might expect that there can be no θ -dependence in the
effective action. But this is not the case. To see this, suppose that θ is small, and
instead of making the field redefinition, treat the θ term as a small perturbation by
expanding the exponential. Now consider a term in the effective action with two
external gauge bosons. This is obtained from the Feynman diagram in Fig. 5.1. The
corresponding term in the action is given by

δLeff = −i
θ

2
g2 MTr(T aT b)

∫
d4 p

(2π )4
Trγ5

1

� p+ �k1 − M
�ε1

1

� p − M
�ε2

1

� p− �k2 − M
.

(5.7)

Here, the ki s are the momenta of the two photons, while the εs are their polarizations
and a and b are the color indices of the gluons. Introducing Feynman parameters
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and shifting the p integral, gives:

δLeff = −iθg2 MTr(T aT b)
∫

dα1dα2

∫
d4 p

(2π )4
Trγ5(� p−α1 �k1+α2 �k2+�k1+M) �ε1

× (� p − α1 �k1 + α2 �k2 + M) �ε2( � p − α1 �k1 + α2 �k2− �k2 + M)(
p2 − M2 + O

(
k2

i

))3 . (5.8)

For small ki , we can neglect the k-dependence of the denominator. The trace in the
numerator is easy to evaluate, since we can drop terms linear in p. This gives, after
performing the integrals over the αs,

δLeff = g2 M2θTr(T aT b)εµνρσ kµ

1 kν
2ε

ρ

1 εσ
2

∫
d4 p

(2π )4

1

(p2 − M2)3
. (5.9)

This corresponds to a term in the effective action, after doing the integral over p
and including a combinatoric factor of two from the different ways to contract the
gauge bosons:

δLeff = 1

32π2
θTr(F F̃). (5.10)

Now why does this happen? At the level of the path integral, the transformation
would seem to be a simple change of variables, and it is hard to see why this should
have any effect. On the other hand, if one examines the diagram of Fig. 5.1, one sees
that it contains terms which are linearly divergent, and thus it should be regulated. A
simple way to regulate the diagram is to introduce a Pauli–Villars regulator, which
means that one subtracts off a corresponding amplitude with some very large mass
�. However, our expression above is independent of �. So the θ -dependence from
the regulator fields cancels that of Eq. (5.10). This sort of behavior is characteristic
of an anomaly.

Consider now the case that m � �QCD. In this case, we shouldn’t integrate out the
quarks, but we still need to take into account the regulator diagrams. So if we redefine
the fields so that the quark mass is real (γ5-free, in the four-component description),
the low-energy theory contains light quarks and the θ term of Eq. (5.10).

We can describe this in a fashion which indicates why this is referred to as an
anomaly. For small m, the classical theory has an approximate symmetry under
which

q → eiαq q̄ → eiαq̄ (5.11)

(in four-component language, q → eiαγ5q). In particular, we can define a current:

jµ

5 = q̄γ5γµq (5.12)
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and, classically,

∂µ jµ

5 = mq̄γ5q. (5.13)

Under a transformation by an infinitesimal angle α one would expect

δL = α∂µ jµ

5 = mαq̄γ5q. (5.14)

But the divergence of the current contains another, m-independent term:

∂µ jµ

5 = mq̄γ5q + 1

32π2
F F̃ . (5.15)

The first term just follows from the equations of motion. To see that the second
term is present, we can study a three-point function involving the current and two
gauge bosons, ignoring the quark mass:

�AAj = T 〈∂µ j5 µ Aρ Aσ 〉. (5.16)

This is essentially the calculation we encountered above. Again, the diagram is
linearly divergent and requires regularization. Let’s first consider the graph without
the regulator mass. The graph of Fig. 5.1 is actually two graphs, because we must
include the interchange of the two external gluons. The combination is easily seen
to vanish, by the sorts of manipulations one usually uses to prove Ward identities:

g2

(2π )4

∫
d4 pTr �qγ5

1

� p+ �k1
�ε1

1

� p �ε2
1

� p− �k2
+ (1 ↔ 2). (5.17)

Writing

�qγ5 = −γ5( �k1+ � p) − (� p− �k2)γ5 (5.18)

and using the cyclic property of the trace, one can cancel a propagator in each term.
This leaves:∫

d4 pTr

(
−γ5 �ε1

1

� p �ε2
1

� p− �k2
− γ5

1

� p+ �k1
�ε1

1

� p �ε2 + (1 ↔ 2)

)
. (5.19)

Now shifting p → p + k2 in the first term, and p → p + k1 in the second, one
finds a pairwise cancellation.

These manipulations, however, are not reliable. In particular, in a highly divergent
expression, the shifts do not necessarily leave the result unchanged. With a Pauli–
Villars regulator, the integrals are convergent and the shifts are reliable, but the
regulator diagram is non-vanishing, and gives the anomaly equation above. One can
see this by a direct computation, or relate it to our previous calculation, including
the masses for the quarks, and noting that �qγ5, in the diagrams with massive quarks,
can be replaced by Mγ5.
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This anomaly can be derived in a number of other ways. One can define, for
example, the current by “point splitting,”

jµ

5 = q̄(x + iε)ei
∫ x+ε

x dxµ Aµq(x). (5.20)

Because operators in quantum field theory are singular at short distances, the Wilson
line makes a finite contribution. Expanding the exponential carefully, one recovers
the same expression for the current. We will do this shortly in two dimensions,
leaving the four-dimensional case for the problems. A beautiful derivation, closely
related to that we have performed above, is due to Fujikawa. Here one considers
the anomaly as arising from a lack of invariance of the path integral measure.
One carefully evaluates the Jacobian associated with the change of variables q →
q(1 + iγ5α), and shows that it yields the same result. We will do a calculation along
these lines in a two-dimensional model shortly, leaving the four-dimensional case
for the problems.

5.1.1 Applications of the anomaly in four dimensions

The anomaly has a number of important consequences for real physics.

� The π0 decay: the divergence of the axial isospin current,(
j3
5

)µ = ūγ5γ
µū − d̄γ5γ

µd, (5.21)

has an anomaly due to electromagnetism. This gives rise to a coupling of the π0 to two
photons, and the correct computation of the lifetime was one of the early triumphs of
the theory of quarks with color. The computation of the π0 decay rate appears in the
exercises.

� Anomalies in gauge currents signal an inconsistency in a theory. They mean that the
gauge invariance, which is crucial to the whole structure of gauge theories (e.g. to the fact
that they are simultaneously unitary and Lorentz-invariant) is lost. The absence of gauge
anomalies is one of the striking ingredients of the Standard Model, and it is also crucial
in extensions such as string theory.

� The anomaly, as we have indicated, accounts for the absence of a ninth axial Goldstone
boson in the QCD spectrum.

5.1.2 Return to QCD

What we have just learned is that, if in our simple model above, we require that the
quark masses are real, we must allow for the possible appearance, in the Lagrangian
of the standard model, of the θ terms of Eq. (5.10). In the weak interactions, this
term does not have physical consequences. At the level of the renormalizable terms,
we have seen that the theory respects separate B and L symmetries; B, for example,
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is anomalous. So if we simply redefine the quark fields by a B transformation, we
can remove θ from the Lagrangian.

For the θ angles of QCD and QED, we have no such symmetry. In the case
of QED, we do not really have a non-perturbative definition of the theory, and the
effects of θ are hard to assess, but one might expect that, embedded in any consistent
structure (like a grand unified theory (GUT) or String Theory) they will be very
small, possibly zero. As we saw, F F̃ is a total divergence. The right-hand side of
Eq. (4.24) is not gauge invariant, however, so one might imagine that it could be
important. But as long as A falls off at least as fast as 1/r (F falls faster than 1/r2),
the surface term behaves as 1/r4, and so vanishes.

In the case of non-Abelian gauge theories, the situation is more subtle. It is again
true that F F̃ can be written as a total divergence:

F F̃ = ∂µKµ Kµ = εµνρσ

(
Aa

ν Fa
ρσ − 2

3
f abc Aa

ν Ab
ρ Ac

σ

)
. (5.22)

But now the statement that F falls faster than 1/r2 does not permit an equally
strong statement about A. We will see shortly that there are finite-action classical
solutions for which F ∼ 1/r4, but A → 1/r , so that the surface term cannot be
neglected. These solutions are called instantons. It is because of this that θ can have
real physical effects.

5.2 A two-dimensional detour

There are many questions in four dimensions which we cannot answer except with
numerical lattice calculation. These include the problem of dimensional transmu-
tation and the effects of the anomaly on the hadron spectrum. There are a class
of models in two dimensions which are asymptotically free and in which one can
study these questions in a controlled approximation. Two dimensions are often a
poor analog for four, but for some of the issues we are facing here, the parallels
are extremely close. In these two-dimensional examples, the physics is more man-
ageable, but still rich. In four dimensions, the calculations are qualitatively similar;
they are only more difficult because the Dirac algebra and the various integrals are
more involved.

5.2.1 The anomaly in two dimensions

First we investigate the anomaly in the quantum electrodynamics of a massless
fermion in two dimensions; this will be an important ingredient in the full anal-
ysis. The point-splitting method is particularly convenient here. Just as in four
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dimensions, we write:

jµ

5 = ψ̄(x + ε)ei
∫ x+ε

x Aρdxρ

γ µγ 5ψ(x). (5.23)

Naively, one can set ε = 0 and the divergence vanishes by the equations of motion.
But in quantum field theory, products of operators become singular as the operators
come very close together. For very small ε, we can pick up the leading singularity
in the product of ψ(x + ε)ψ by using the operator product expansion (OPE). The
OPE states that the product of two operators at short distances can be written as
a series of local operators of progressively higher dimension, with less and less
singular coefficients. For our case, this means:

ψ̄(x + ε)γ µγ 5ψ(x) =
∑ cn

ε1−n
On(x) (5.24)

where On is an operator of dimension n. The leading term comes from the unit
operator. To evaluate its coefficient, we can take the vacuum expectation value of
both sides of this equation. On the left-hand side, this is just the propagator.

It is not hard to work out the fermion propagator in coordinate space in two
dimensions. For simplicity, we work with space-like separations, so we can Wick-
rotate to Euclidean space. Start with the scalar propagator:

〈φ(x)φ(0)〉 =
∫

d2 p

(2π )2

1

k2
e−i p·x

= 1

2π
ln(|x |µ), (5.25)

where µ is an infrared cutoff. (When we come to string theory, this propagator,
with its infrared sensitivity, will play a crucial role.) Correspondingly, the fermion
propagator is:

〈ψ̄(x + ε)ψ(x)〉 =�∂〈φ(x)φ(0)〉 = 1

2π

�ε
ε2

. (5.26)

Expanding the factor in the exponential to order ε gives

∂µ jµ

5 = naive piece + i

2π
∂µερ Aρ tr

�ε
ε2

γ µγ 5. (5.27)

Taking the trace gives εµνε
ν ; averaging ε over angles (〈εµεν〉 = 1

2ηµνε
2), yields

∂µ jµ

5 = 1

2π
εµν Fµν. (5.28)

This is parallel to the situation in four dimensions. The divergence of the current
is itself a total derivative:

∂µ jµ

5 = 1

2π
εµν∂

µ Aν. (5.29)
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So it is possible to define a new current which is conserved:

Jµ = jµ

5 − 1

2π
εµ
ν Aν (5.30)

However, just as in the four-dimensional case, this current is not gauge invariant.
There is a familiar field configuration for which A does not fall off at infinity: the
field of a point charge. If one has charges, ±θ at infinity, they give rise to a constant
electric field, F0i = ±eθ . So θ has a very simple interpretation in this theory.

It is easy to see that physics is periodic in θ . For θ > q , it is energetically favorable
to produce a pair of charges from the vacuum which shield the charge at ∞.

5.2.2 Path integral computation of the anomaly

One can also do this calculation in the path integral, following Fujikawa. The
redefinition of the fields which eliminates the phase in the fermion mass matrix,
from this point of view, is just a change of variables. The question is: what is the
Jacobian. The Euclidean path integral is defined by expanding the fields:

ψ(x) =
∑

anψn(x) (5.31)

where

�Dψn(x) = λnψn(x) (5.32)

and the measure is: ∫
�danda∗

n . (5.33)

Here, for normalized functions ψn ,

an =
∫

d2xψ∗
n (x)ψ(x). (5.34)

So, under an infinitesimal γ5 transformation, we have:

δψ = iθγ5ψ (5.35)

δan = iθ
∫

d2xψn(x)γ5ψm(x)am . (5.36)

The required Jacobian is then:

det

(
δnn′ + iθ

∫
ψ̄n′γ5ψn

)
. (5.37)

To evaluate this determinant, we write det(M) = eTr log M . To linear order in θ , we
need to evaluate:

Tr iθγ5. (5.38)
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This trace must be regularized. A simple procedure is to replace the determinant
by:

Tr iθγ5e−(λ2
n/M2). (5.39)

At the end of the calculation, we should take M → ∞. We can replace λ2
n by

�D �D = D2 + 1

2
σµν Fµν. (5.40)

Expanding in powers of Fµν , it is only necessary to work to first order (in the
analogous calculation in four dimensions, it is necessary to work to second order).
In other words, we expand the exponent to first order in Fµν and replace D2 → p2.
The required trace is:

iθ
∫

d2 p

p2
Tr(γ5σµν)

Fµν

M
e− p2

M2 . (5.41)

The trace here now just refers to the trace over the Dirac indices. The momentum
integral is elementary, and we obtain∫

�danda∗
n →

∫
�danda∗

nei θ
2π

∫
d2xεµν Fµν

. (5.42)

Interpreting the divergence of the current as the variation of the effective Lagrangian,
we see that we have recovered the anomaly equation. The anomaly in four and other
dimensions can also be calculated in this way. The exercises at the end of the chapter
provide more details of these computations.

5.2.3 The CPN model: an asymptotically free theory

The model we have considered so far is not quite like QCD in at least two ways.
First, there are no instantons; second, the coupling e is dimensionful. We can ob-
tain a theory closer to QCD by considering a class of theories with dimensionless
couplings, the non-linear σ -models. These are models whose fields are the coor-
dinates of some smooth manifold. They can be, for example, the coordinates of an
n-dimensional sphere. An interesting case is the CPN model; here the CP stands
for “complex projective” space. This space is described by a set of coordinates, zi ,
i = 1, . . . , N + 1, where zi is identified with αzi , where α is any complex constant.
Alternatively, we can define the space through the constraint:∑

i

|zi |2 = 1; (5.43)

where the point zi is equivalent to eiαzi . In the field theory, the zi s become two-
dimensional fields, zi (x). To implement the first of the constraints, we can add
to the action a Lagrange multiplier field, λ(x). For the second, we observe that
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the identification of points in the “target space,” CPN , must hold at every point in
ordinary space-time, so this is a U (1) gauge symmetry. So introducing a gauge field,
Aµ, and the corresponding covariant derivative, we want to study the Lagrangian:

L = 1

g2
[|Dµzi |2 − λ(x)(|zi |2 − 1)]. (5.44)

Note that there is no kinetic term for Aµ, so we can simply eliminate it from the
action using its equations of motion. This yields

L = 1

g2
[|∂µz j |2 + |z∗

j∂µz j |2]. (5.45)

It is easier to proceed, however, keeping Aµ in the action. In this case, the action is
quadratic in z, and we can integrate out the z fields:

Z =
∫

[d A][dλ][dz j ] exp[−S] =
∫

[d A][dλ] exp

[
−
∫

d2x�eff[A, λ]

]
=
∫

[d A][dλ] exp

[
−N tr log(−D2 − λ) − 1

g2

∫
d2xλ

]
. (5.46)

5.2.4 The large-N limit

By itself, the result of Eq. (5.46) is still rather complicated. The fields Aµ and λ have
non-linear and non-local interactions. Things become much simpler if one takes
the “large N limit,” N → ∞ with g2 N fixed. In this case, the interactions of λ and
Aµ are suppressed by powers of N . For large N , the path integral is dominated by
a single field configuration, which solves

δ�eff

δλ
= 0 (5.47)

or, setting the gauge field to zero,

N
∫

d2k

(2π )2

1

k2 + λ
= 1

g2
. (5.48)

The integral on the left-hand side is ultraviolet divergent. We will simply cut it off
at scale M . This gives:

λ = m2 = M exp

[
− 2π

g2 N

]
. (5.49)

Here, a theory which is scale invariant, classically, exhibits a mass gap. This is
the phenomenon of dimensional transmutation. These masses are related in a
renormalization-group-invariant fashion to the cutoff. So the theory is quite analo-
gous to QCD. We can read off the leading term in the beta (β-)function from the
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familiar formula:

m = Me− ∫ dg
β(g) (5.50)

so, with

β(g) = − 1

2π
g3b0 (5.51)

we have b0 = 1.
But most important for our purposes, it is interesting to explore the question of

θ -dependence. Just as in 1 + 1-dimensional electrodynamics, we can introduce a θ

term:

Sθ = θ

2π

∫
d2xεµν Fµν. (5.52)

Here Fµν can be expressed in terms of the fundamental fields z j . As usual, this is
the integral of a total divergence. But precisely as in the case of 1 + 1-dimensional
electrodynamics we discussed above, this term is physically important. In perturba-
tion theory in the model, this is not entirely obvious. But using our reorganization of
the theory at large N , it is. The lowest-order action for Aµ is trivial, but at one loop
(order 1/N ), one generates a kinetic term for A through the vacuum polarization
loop:

Lkin = N

2πm2
F2

µν. (5.53)

At this order, then, the effective theory consists of the gauge field, with coupling
e2 = 2πm2/N , and some coupling to a set of charged massive fields, z. As we
have already argued, θ corresponds to a non-zero background electric field due to
charges at infinity, and the theory clearly has non-trivial θ -dependence.

To this model one can add massless fermions. In this case, one has an anoma-
lous U (1) symmetry, as in QCD. There is then no θ -dependence; by redefining
the fermions, ψ → eiaθψ , one can eliminate θ . In this model, the absence of θ-
dependence can be understood more physically: θ represents a charge at ∞, and
it is possible to shield any such charge with massless fermions. But there is non-
trivial breaking of the U (1) symmetry. At low energies, one has now a theory with
a fermion coupled to a dynamical U (1) gauge field. The breaking of the associated
U (1) in such a theory is a well-studied phenomenon, which we will not pursue here.

5.2.5 The role of instantons

There is another way to think about the breaking of the U (1) symmetry and θ -
dependence in this theory. If one considers the Euclidean functional integral, it is
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natural to look for stationary points of the integration, i.e. for classical solutions
of the Euclidean equations of motion. In order that they be potentially important,
it is necessary that these solutions have finite action, which means that they must
be localized in Euclidean space and time. For this reason, such solutions were
dubbed “instantons” by ’t Hooft. Such solutions are not difficult to find in the CPN

model; we will describe them below. These solutions carry non-zero values of the
topological charge,

1

2π

∫
d2xεµν Fµν = n, (5.54)

and have an action 2πn. If we write zi = zicl + δzi , the functional integral, in the
presence of a θ term, has the form:

Z inst = e
−2πn

g2 einθ

∫
[dδz j ]e

−δzi
δ2 S

δzi δz j
δz j + · · · . (5.55)

It is easy to construct the instanton solution in the case of CP1. Rather than
write the theory in terms of a gauge field, as we have done above, it is convenient
to parameterize the theory in terms of a single complex field, Z . One can, for
example, define Z = z1/z2, and let Z̄ denote its complex conjugate. Then, with a
bit of algebra, one can show that the action for Z which follows from Eq. (5.45)
takes the form (it is easiest to work backwards, starting with the equation below
and deriving Eq. (5.45)):

L = ∂µZ∂µ Z̄

(1 + Z̄ Z )2
. (5.56)

The function

gZ Z̄ = 1

(1 + Z̄ Z )2
(5.57)

has an interesting significance. There is a well-known mapping of the unit sphere,
x2

1 + x2
2 + x2

3 , onto the complex plane:

z = x1 + i x2

1 − x3
. (5.58)

The inverse is

x1 = z + z∗

1 + |z|2 x2 = z − z∗

i(1 + |z|2)
x3 = |z|2 − 1

|z|2 + 1
. (5.59)

The line element on the sphere is mapped in a non-trivial way onto the plane:

ds2 = dx2
1 + dx2

2 + dx3
3 = gzz̄dzdz̄ = 1

(1 + z̄z)z
dzdz̄. (5.60)
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So the model describes a field constrained to move on a sphere; g is the metric of
the sphere. In general, such a model is called a non-linear sigma model. This is an
example of a Kahler geometry, a type of geometry which will figure significantly
in our discussion of string compactification.

It is straightforward to write down the equations of motion:

∂2 ZgZ Z̄ + ∂µZ

(
∂µ Z̄

∂g

∂ Z̄
+ ∂µφ

∂g

∂ Z

)
= 0, (5.61)

or

∂z∂z̄ Z − 2∂z Z∂z̄ Z̄

1 + Z̄ Z
= 0. (5.62)

Now calling the space-time coordinates z = x1 + i x2, z∗ = x1 − i x2, we see that
if Z is analytic, the equations of motion are satisfied! So a simple solution, which
you can check has finite action, is

Z (z̄) = ρ z̄. (5.63)

In addition to evaluating the action, you can evaluate the topological charge,

1

2π

∫
d2xεµν Fµν = 1 (5.64)

for this solution. More generally, the topological charge measures the number of
times that Z maps the complex plane into the complex plane; Z = zn has charge n.

We can generalize these solutions. The solution of Eq. (5.63) breaks several sym-
metries of the action: translation invariance, two-dimensional rotational invariance,
and the scale invariance of the classical equations. So we should be able to gener-
ate new solutions by translating, rotating and dilating the solution. You can check
that

Z (z) = az + b

cz + d
(5.65)

is a solution with action 2π . The parameters a, . . . , d are called collective co-
ordinates. They correspond to the symmetries of translations, dilations, and ro-
tations, and special conformal transformations (forming the group SL(2, C)). In
other words, any given finite-action solution breaks the symmetries. In the path
integral, the symmetry of Green’s functions is recovered when one integrates over
the collective coordinates. For translations, this is particularly simple. Integrating
over X0, the instanton position,

〈Z (x)Z (y)〉 ≈
∫

d2x0φcl(x − x0)φcl(y − x0)e−S0 . (5.66)
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(The precise measure is obtained by the Faddeev–Popov method.) Similarly, the
integration over the parameter ρ yields a factor∫

dρρ−1e
− 2π

g2(ρ) · · · (5.67)

Here the first factor follows on dimensional grounds. The second follows from
renormalization-group considerations. It can be found by explicit evaluation of the
functional determinant. Note that, because of asymptotic freedom, this means that
typical Green functions will be divergent in the infrared.

There are many other features of this instanton one can consider. For example,
one can add massless fermions to the model. The resulting theory has a chiral U (1)
symmetry, which is anomalous. The instanton gives rise to non-zero Green functions
which violate the U (1) symmetry. We will leave investigation of fermions in this
model to the exercises, and turn to the theory of interest, which exhibits phenomena
parallel to this simple theory.

5.3 Real QCD

The model of the previous section mimics many features of real QCD. Indeed, we
will see that much of our discussion can be carried over, almost word for word,
to the observed strong interactions. This analogy is helpful, given that in QCD we
have no approximation which gives us control over the theory comparable to that
which we found in the large-N limit of the CPN model. As in that theory, we have
the following.

� There is a θ parameter, which appears as an integral over the divergence of a non-gauge
invariant current.

� There are instantons, which indicate that physical quantities should be θ -dependent.
However, instanton effects cannot be considered in a controlled approximation, and there
is no clear sense in which θ -dependence can be understood as arising from instantons.

� In QCD, there is also a large-N expansion, but while it produces significant simplifica-
tion, one cannot solve the theory even in the leading large-N approximation. Instead,
understanding of the underlying symmetries, and experimental information about chi-
ral symmetry breaking, provides critical information about the behavior of the strongly
coupled theory, and allows computations of the physical effects of θ .

5.3.1 The theory and its symmetries

In order to understand the effects of θ , it is sufficient to focus on only the light quark
sector of QCD. For simplicity in writing some of the formulas, we will consider
two light quarks; it is not difficult to generalize the resulting analysis to the case of



90 5 Anomalies, instantons and the strong CP problem

three. It is believed that the masses of the u and d quarks are of order 5 MeV and
10 MeV, respectively, much smaller than the scale of QCD. So we first consider an
idealization of the theory in which these masses are set to zero. In this limit, the
theory has a symmetry SU (2)L × SU (2)R. Calling

q =
(

u
d

)
q̄ =

(
ū
d̄

)
, (5.68)

the two SU (2) symmetries act separately on q and q̄ (thought of as left-handed
fermions),

qT → qT UL q̄ → URq̄. (5.69)

This symmetry is spontaneously broken. The order parameter for the symmetry
breaking is believed to be an expectation value for the quark bilinear:

M = q̄q. (5.70)

Under the original symmetry,

M → URMUL. (5.71)

The expectation value (condensate) of M is

M = c�3
qcd

(
1 0
0 1

)
. (5.72)

This breaks some of the original symmetry, but preserves the symmetry UL = UR.
This symmetry is just the SU (2) of isospin. The Goldstone bosons associated with
the three broken symmetry generators must transform in a representation of the
unbroken symmetry: these are just the pions, which are a vector of isospin. One
can think of the Goldstone bosons as being associated with a slow variation of the
expectation value in space, so we can introduce a composite operator

M = q̄q = M0ei πa (x)τa
fπ

(
1 0
0 1

)
(5.73)

The quark mass term in the Lagrangian is then (for simplicity taking mu = md

= mq)

mqM. (5.74)

ReplacingMby its expression (5.73) gives a potential for the pion fields. Expanding
M in powers of π/ fπ , the minimum of the potential occurs for πa = 0. Expanding
to second order, one has

m2
π f 2

π = mq M0. (5.75)
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We have been a bit cavalier about the symmetries. The theory also has two U (1)
symmetries:

q → eiαq q̄ → eiαq̄ (5.76)

q → eiαq q̄ → e−iαq̄ (5.77)

The first of these is baryon number and it is not chiral (and is not broken by the
condensate). The second is the axial U (1)5; it is also broken by the condensate. So,
in addition to the pions, there should be another approximate Goldstone boson. But
there is no good candidate among the known hadrons. The η, has the right quantum
numbers, but, as we will see below, the η is too heavy to be interpreted in this way.
The absence of this fourth (or, in the case of three light quarks, ninth) Goldstone
boson is called the U (1) problem.

The U (1)5 symmetry suffers from an anomaly, however, and we might hope that
this has something to do with the absence of a corresponding Goldstone boson. The
anomaly is given by

∂µ jµ

5 = 1

16π2
F F̃ . (5.78)

Again, we can write the right-hand side as a total divergence,

F F̃ = ∂µK µ, (5.79)

where

Kµ = εµνρσ

(
Aa

ν Fa
ρσ − 2

3
f abc Aa

ν Ab
ρ Ac

σ

)
. (5.80)

This accounts for the fact that in perturbation a theory the axial U (1) is conserved.
Non-perturbatively, as we will now show, there are important configurations in the
functional integral for which the right-hand side does not vanish rapidly at infinity.

5.3.2 Instantons in QCD

In the Euclidean functional integral

Z =
∫

[d A][dq][dq̄]e−S (5.81)

it is natural to look for stationary points of the effective action, i.e. finite action,
classical solutions of the theory in imaginary time. The Yang–Mills equations are
complicated, non-linear equations, but it turns out that, much as in the CPN model,
the instanton solutions can be found rather easily. The following tricks simplify
the construction, and turn out to yield the general solution. First, note that the
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Yang–Mills action satisfies an inequality, the Bogomolnyi bound:∫
(F ± F̃)2 =

∫
(F2 + F̃2 ± 2F F̃) =

∫
(2F2 + 2F F̃) ≥ 0. (5.82)

So the action is bounded by
∫

F F̃ , with the bound being saturated when

F = ±F̃ (5.83)

i.e. if the gauge field is (anti-) self-dual.1 This equation is a first-order equation, and
it is easy to solve if one first restricts to an SU (2) subgroup of the full gauge group.
One makes the ansatz that the solution should be invariant under a combination of
ordinary rotations and global SU (2) gauge transformations:

Aµ = f (r2) + h(r2)�x · �τ (5.84)

where we are using the matrix notation for the gauge fields. One can actually make
a better guess: define the gauge transformation

g(x) = x4 + i �x · �τ
r

(5.85)

and take

Aµ = f (r2)g∂µg−1. (5.86)

Then plugging in the Yang–Mills equations yields:

f = −ir2

r2 + ρ2
(5.87)

where ρ is an arbitrary quantity with dimensions of length. The choice of origin here
is also arbitrary; this can be remedied by simply replacing x → x − x0 everywhere
in these expressions, where x0 represents the location of the instanton.

From this solution, it is clear why
∫

∂µK µ does not vanish for the solution:
while A is a pure gauge at infinity, it falls only as 1/r . Indeed, since F = F̃ , for
this solution ∫

F2 =
∫

F̃2 = 32π2. (5.88)

This result can also be understood topologically. Note that g defines a mapping
from the “sphere at infinity” into the gauge group. It is straightforward to show that

1

32π2

∫
d4x F F̃ (5.89)

1 This is not an accident, nor was the analyticity condition in the CPN case. In both cases, we can add fermions
so that the model is supersymmetric. Then one can show that if some of the supersymmetry generators, Qα ,
annihilate a field configuration, then the configuration is a solution. This is a first-order condition; in the Yang–
Mills case, it implies self-duality, and in the CPN case it requires analyticity.
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counts the number of times g maps the sphere at infinity into the group (one for
this specific example; n more generally). In the exercises and suggested reading,
features of the instanton are explored in more detail.

So we have exhibited potentially important contributions to the path integral
which violate theU (1) symmetry. How does this violation of the symmetry show up?
Let’s consider the path integral more carefully. Having found a classical solution,
we want to integrate about small fluctuations about it. Including the θ term, these
have the form

〈ūud̄d〉 = e
− 8π2

g2 eiθ
∫

[dδA][dq][dq̄]exp

(
− δ2S

δA2
δA2 − Sq,q̄

)
ūud̄d. (5.90)

Now S contains an explicit factor of 1/g2. As a result, the fluctuations are formally
suppressed by g2 relative to the leading contribution. The one-loop functional in-
tegral yields a product of determinants for the fermions, and of inverse square root
determinants for the bosons.

Consider the integral over the fermions. It is straightforward, if challenging, to
evaluate the determinants. But if the quark masses are zero, the fermion functional
integrals are zero, because there is a zero mode for each of the fermions, i.e. for
both q and q̄ there is a normalizable solution of the equation:

�Du = 0 �Dū = 0 (5.91)

and similarly for d and d̄. It is straightforward to construct these solutions:

u = ρ

(ρ2 + (x − x0)2)3/2
ζ, (5.92)

where ζ is a constant spinor, and similarly for ū, etc.
Let’s understand this a bit more precisely. Euclidean path integrals are conceptu-

ally simple. Consider some classical solution, �cl(x) (here � denotes collectively
the various bosonic fields; we will treat, for now, the fermions as vanishing in the
classical solutions). In the path integral, at small coupling, we are interested in
small fluctuations about the classical solution,

� = �cl + δ�. (5.93)

Because the action is stationary at the classical solution,

S = Scl +
∫

d4xδ�
∂2L
∂�2

δ� + · · · . (5.94)

The second derivative here is a shorthand for a second-order differential operator,
which we will simply denote by S′′, and refer to as the quadratic fluctuation oper-
ator. We can expand δ� in (normalizable) eigenfunctions of this operator �n with
eigenvalues λn , � = cn�n . The result of the functional integral is then

∏
λ

−1/2
n .
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This is the leading correction to the classical limit. Higher-order corrections are
suppressed by powers of g2. This is most easily seen by working in the scaling
where the action has a 1/g2 out front. Then one can derive the perturbation theory
from the path integral in the usual way; the main difference from the usual treatment
with zero background fields is that the propagators are more complicated. The prop-
agators for various fields in the instanton background are in fact known in closed
form.

The form of the differential operator is familiar from our calculation of the β-
function in the background field method (in the background field gauge). For the
gauge bosons, in a suitable (“background field”) gauge, it is

S′′ = D2 + Jµν Fµν. (5.95)

Here D is just the covariant derivative with the vector potential corresponding to
the classical solution (instanton), and similarly for the field strength; Jµν is the
generator of Lorentz transformations in the vector representation. The eigenvalue
problem was completely solved by ’t Hooft.

Both the bosonic and fermionic quadratic fluctuation operators have zero eigen-
values. For the bosons, these potentially give infinite contributions to the functional
integral, and they must be treated separately. The difficulty is that among the vari-
ations of the fields are symmetry transformations: changes in the location of the
instanton (translations), rotations of the instanton, and scale transformations. Con-
sider translations. For every solution, there is an infinite set of solutions obtained by
shifting the origin (varying x0). Instead of integrating over a coefficient, c0, we in-
tegrate over the collective coordinate x0 (one must also include a suitable Jacobian
factor). The effect of this is to restore translational invariance in Green’s functions.
We will see this explicitly shortly. Similarly, the instanton breaks the rotational
invariance of the theory. Correspondingly, we can find a three-parameter set of
solutions and zero modes. Integrating over these rotational collective coordinates
restores rotational invariance. (The instanton also breaks a global gauge symmetry,
but a combination of rotations and gauge transformations is preserved.)

Finally, the classical theory is scale invariant; this is the origin of the parameter
ρ in the solution. Again, one must treat ρ as a collective coordinate, and integrate
over ρ. There is a power of ρ arising from the Jacobian, which can be determined
on dimensional grounds. For the Green function, Eq. (5.90), for example, which
has dimension six, we have (if all of the fields are evaluated at the same point),∫

dρρ−7. (5.96)

However, there is additional ρ-dependence because the quantum theory violates the
scale symmetry. This can be understood by replacing g2 → g2(ρ) in the functional
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integral, and using

e−8π2g2(ρ) ≈ (ρM)b0 (5.97)

for small ρ. For three-flavor QCD, for example, b0 = 9, and the ρ integral diverges
for large ρ. This is just the statement that the integral is dominated by the infrared,
where the QCD coupling becomes strong.

Fermion functional integrals introduce a new feature. In four-component lan-
guage, it is necessary to treat q and q̄ as independent fields. This rule gives the
functional integral as a determinant, rather than as, say, the square root of a de-
terminant. (In two-component language, this corresponds to treating q and q∗ as
independent fields.) So at one-loop order, we need to study:

�Dqn = λnqn �Dq̄n = λnq̄n (5.98)

For non-zero λn there is a pairing of solutions with opposite eigenvalues of γ5.
In four-component notation, one can see this from:

�Dqn = λnqn → �Dγ5qn = −λnγ5qn. (5.99)

Zero eigenvalues, however, are special. There is no corresponding pairing. This has
implications for the fermion functional integral. Writing

q(x) =
∑

anqn(x), (5.100)

S =
∑

λna∗
nan. (5.101)

Then ∫
[dq][dq̄]e−S =

∞∏
n=0

danda∗
ne−∑

n �=0 λna∗
n an . (5.102)

Because the zero modes do not contribute to the action, many Green functions
vanish. For example, 〈1〉 = 0. In order to obtain a non-vanishing result, we need
enough insertions of q to “soak up” all of the zero modes.

We have seen that, in the instanton background, there are normalizable fermion
zero modes, one for each left-handed field. This means that in order for the path
integral to be non-vanishing, we need to include insertions of enough qs and q̄s to
soak up all of the zero modes. In other words, in two-flavor QCD, non-vanishing
Green functions have the form

〈ūud̄d〉 (5.103)

and violate the symmetry. Note that the symmetry violation is just as predicted
from the anomaly equation:

�Q5 = 2

16π2

∫
d4x F F̃ = 4. (5.104)
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This is a particular example of an important mathematical theorem known as the
Atiyah–Singer index theorem.

We can put all of this together to evaluate a Green function which violates the
classical U (1) symmetry of the massless theory, 〈ū(x)u(x)d̄(x)d(x)〉. Taking the
gauge group to be SU (2), there is one zero mode for each of u, ū, d and d̄ . The
fields in this expectation value can soak up all of these zero modes. The effect of
the integration over x0 is to give a result independent of x , since the zero modes
are functions only of x − x0. The integration over the rotational zero modes gives a
non-zero result only if the Lorentz indices are contracted in a rotationally invariant
manner (the same applies to the gauge indices). The integration over the instanton
scale size – the conformal collective coordinate – is more problematic, exhibiting
precisely the infrared divergence of Eq. (5.96).

So we have provided some evidence that the U (1) problem is solved in QCD,
but no reliable calculation. What about θ -dependence? Let us ask first about θ -
dependence of the vacuum energy. In order to get a non-zero result, we need
to allow that the quarks are massive. Treating the mass as a perturbation, we
obtain a result of the form:

E(θ) = C�9
QCDmumd cos(θ )

∫
dρρ−3ρ9. (5.105)

So, as in the CPN model, we have evidence for θ-dependence, but cannot do a
reliable calculation. That we cannot do a calculation should not be a surprise.
There is no small parameter in QCD to use as an expansion parameter. Fortunately,
we can use other facts which we know about the strong interactions to get a better
handle on both the U (1) problem and the question of θ -dependence.

Before continuing, however, let us consider the weak interactions. Here there
is a small parameter, and there are no infrared difficulties, so we might expect
instanton effects to be small. The analog of the U (1)5 symmetry in this case is
baryon number. Baryon number has an anomaly in the standard model, since
all of the quark doublets have the same sign of the baryon number. ’t Hooft
showed that one could actually use instantons, in this case, to compute the vi-
olation of baryon number. Technically, there are no finite-action Euclidean so-
lutions in this theory; this follows, as we will see in a moment, from a simple
scaling argument. However, ’t Hooft realized that one can construct important
configurations of non-zero topological charge by starting with the instantons of
the pure gauge theory and perturbing them. For the Higgs boson, one solves the
equation

D2φ = V ′(φ). (5.106)
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For a light boson, one can neglect the right-hand side. Then this equation is
solved by:

φ(x) = i σ̄ µxµ

(
1

x2 + ρ2

) 1
2

〈φ〉. (5.107)

Note that at large x , this has the form g(x)〈φ〉. As a result, the action of the config-
uration is finite. One finds a correction to the action

δS = 1

g2
v2ρ2. (5.108)

Including this in the exponential damps the ρ integral at large ρ, and leads to a
convergent result.

Including now the fermions, there is a zero mode for each SU (2) doublet. So
one obtains a non-zero expectation value for correlation functions of the form
〈Q Q QL L L〉, where the color and SU (2) indices are contracted in a gauge invariant
way, and the flavors for the Qs and Ls are all different. The coefficient has the form:

Abv = C e− 2π
αw . (5.109)

From this, one can see that baryon number violation occurs in the Standard Model,
but at an incredibly small rate. One can also calculate a term in the effective
action, involving three quarks and three leptons, with a similar coefficient, by
studying Green functions in which all of the fields are widely separated. We will
encounter this sort of computation later, when we discuss instantons in supersym-
metric theories.

5.3.3 Physical interpretation of the instanton solution

We have derived dramatic physical effects from the instanton solution by direct
calculation, but we have not provided a physical picture of the phenomena the
instanton describes. Already in quantum mechanics, imaginary time solutions of
the classical equations of motion are familiar in the WKB analysis of tunneling,
and the Yang–Mills instanton (and the CPN instanton) also describe tunneling
phenomena. In this section, we will confine our attention to pure gauge theories.
The generalization to theories with fermions and/or scalars is straightforward and
interesting.

To understand the instanton as tunneling, it is helpful to work in a non-covariant
gauge, in which there is a Hamiltonian description. The gauge A0 = 0 is par-
ticularly useful. In this gauge, the canonical coordinates are the Ai s, and their
conjugate momenta are Ei s (with a minus sign). This is too many degrees of free-
dom if all are treated as independent. The resolution lies in the need to enforce
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Gauss’s law, which is now to be viewed as an operator constraint on states. For
example, in a U (1) theory,

G(�x)|�〉 = ( �∇ · �E − ρ)|�〉 = 0. (5.110)

The left-hand side is almost the generator of gauge transformations. On the gauge
fields, for example,[∫

d3xω(�x)G(�x), Ai (�y)

]
= −

∫
d3x∂ jω(�x)[E(�x) j , A(�y)i ] = ∂iω(�y). (5.111)

In the second step we integrated by parts and dropped a possible surface term. This
requires that ω → 0 fast enough at infinity. Such gauge transformations are called
“small” gauge transformations. We have learned that in A0 = 0 gauge, states must
be invariant under time-independent, small gauge transformations.

In electrodynamics, this is not particularly interesting. But the same manipula-
tions hold in non-Abelian theories, and in this case there are interesting large gauge
transformations. An example is

g(�x) = exp

(
iπ

�x · �σ√�x2 + a2

)
. (5.112)

We can also consider powers of g, gn . We can think of g as mapping the three-
dimensional space into the group SU (2). The number of times that the mapping
wraps around the gauge group is known as the winding number, and it can be written
as:

n = 1

24π2

∫
d3xεi jk Tr[∂i g∂ j g∂k g]. (5.113)

However, gn is not unique; we can multiply by any small gauge transformation
without changing n. The zero energy states consist of Ai = ig−n∂i gn , averaged
over the small gauge transformations so as to make them invariant.

With just a little algebra, one can show that n = ∫
d3x K0, where K µ is the

topological current we encountered in Eq. (5.80). So an instanton, in A0 = 0 gauge,
corresponds to a tunneling between states of different n. More precisely, there is a
non-zero matrix element of the Hamiltonian between states of different n,

〈n|H |n ± 1〉 = ε. (5.114)

This is analogous to the situation in crystals, and the energy eigenstates are similar
to Bloch waves:

|θ〉 =
∑

n

einθ |n〉, (5.115)
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with energy ε cos(θ). This θ is precisely the same θ which entered as a parameter
in the Lagrangian.

5.3.4 QCD and the U (1) problem

In real QCD, we have seen that, on the one hand, instanton configurations violate
the axial U (1) symmetry. On the other hand, the explicit calculations are infrared-
divergent, so we cannot make a reliable calculation of the Goldstone mass. This is
not a surprise; there is no small parameter which would justify the use of a semi-
classical approximation. Still, the instanton analysis we have described makes clear
that there is no reason to expect that there is a light Goldstone boson. Actually, while
perturbative and semiclassical (instanton) techniques have no reason to give reli-
able results, there are two approximation methods techniques which are available.
The first is large N , where one now allows the N of SU (N ) to be large, with g2 N
fixed. In contrast to the case of CPN , this does not permit enough simplification to
permit explicit computations, but it does allow one to make qualitative statements
about the theory. Witten has pointed out a way in which one can relate the mass
of the η (or η′ if one is thinking in terms of SU (3) × SU (3) current algebra) to
quantities in a theory without quarks. The anomaly is an effect suppressed by a
power of N , in the large N limit. This is because the loop diagram contains a factor
of g2 but not of N . So, in large N , it can be treated as a perturbation, and the η is
almost massless. The ∂µ jµ

5 is like a creation operator for η, so (just like ∂µ jµ 3
5 is a

creation operator for the π meson), so one can compute the mass if one knows the
correlation function, at zero momentum,〈

∂µ jµ

5 (x)∂µ jµ

5 (y)
〉 ∝ 1

N 2
〈F(x)F̃(x)F(y)F̃(y)〉. (5.116)

To leading order in the 1/N expansion, the F F̃ correlation function can be computed
in the theory without quarks. Witten argued that while this vanishes order by order in
perturbation theory, there is no reason that this correlation function need vanish in
the full theory. Attempts have been made to compute this quantity both in lattice
gauge theory and using the AdS–CFT correspondence recently discovered in string
theory. Both methods give promising results.

So the U (1) problem should be viewed as solved, in the sense that absent any
argument to the contrary, there is no reason to think that there should be an extra
Goldstone boson in QCD.

The second approximation scheme which gives some control of QCD is known as
chiral perturbation theory. The masses of the u, d and s quarks are small compared
to the QCD scale, and the mass terms for these quarks in the Lagrangian can be
treated as perturbations. This will figure in our discussion in the next section.
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5.4 The strong CP problem

5.4.1 The θ -dependence of the vacuum energy

The fact that the anomaly resolves the U (1) problem in QCD raises another issue.
Given that

∫
d4x F F̃ has physical effects, a theta term in the action has physical

effects as well. Since this term is CP odd, this means that there is the potential
for strong CP-violating effects. These effects should vanish in the limit of zero
quark masses, since in this case, by a field redefinition, we can remove θ from the
Lagrangian. In the presence of quark masses, the θ -dependence of many quantities
can be computed. Consider, for example, the vacuum energy. In QCD, the quark
mass term in the Lagrangian has the form:

Lm = muūu + mdd̄d + h.c. (5.117)

Were it not for the anomaly, we could, by redefining the quark fields, take mu

and md to be real. Instead, we can define these fields so that there is no θ F F̃ term
in the action, but there is a phase in mu and md . Clearly, we have some freedom
in making this choice. In the case that mu and md are equal, it is natural to choose
these phases to be the same. We will explain shortly how one proceeds when the
masses are different (as they are in nature). So

Lm = (muūu + mdd̄d)eiθ + h.c. (5.118)

Now we want to treat this term as a perturbation. At first order, it makes a
contribution to the ground-state energy proportional to its expectation value. We
have already argued that the quark bilinears have non-zero vacuum expectation
values, so

E(θ ) = (mu + md) cos(θ )〈q̄q〉. (5.119)

While, without a difficult non-perturbative calculation, we can’t calculate the
separate quantities on the right-hand side of this expression, we can, using current
algebra, relate them to measured quantities. We have seen (Appendix B) that

mπ2 fπ2 = Tr Mq〈�〉 = (mu + md)〈q̄q〉. (5.120)

Replacing the quark mass terms in the Lagrangian by their expectation values, we
can immediately read off the energy of the vacuum as a function of θ :

E(θ ) = m2
π f 2

π cos(θ ). (5.121)

This expression can readily be generalized to the case of three light quarks by similar
methods. So we see that there is real physics in θ , even if we don’t understand how to
do an instanton calculation. In the next section, we will calculate a more interesting
quantity: the neutron electric dipole moment as a function of θ .
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π

N N

Fig. 5.2. Diagram in which CP-violating coupling of the pion contributes to dn.

5.4.2 The neutron electric dipole moment

The most interesting physical quantities to study in connection with CP violation
are electric dipole moments, particularly that of the neutron, dn. If CP were badly
violated in the strong interactions, one might expect dn ≈ e fm ≈ 10−14 cm. But
the experimental limits on the dipole moment are striking,

dn < 10−25 e cm. (5.122)

Using current algebra, the leading contribution to the neutron electric dipole mo-
ment due to θ can be calculated, and one obtains a limit θ < 10−9. Here we outline
the main steps in the calculation; I urge you to work out the details following the
reference in the suggested reading. We will simplify the analysis by working in an
exact SU (2)-symmetric limit, i.e. by taking mu = md = m. We again treat the La-
grangian of Eq. (5.118) as a perturbation. We can understand how this term depends
on the π fields by making an axial SU (2) transformation on the quark fields. In
other words, a background π field can be thought of as a small chiral transformation
on the vacuum. Then, for example, for the τ3 direction, q → (1 + iπ3τ3)q (the π

field parameterizes the transformation), so the action becomes:

m

fπ
π3(q̄γ5q + θ q̄q). (5.123)

The second term is a CP-violating coupling of the mesons to the pions.
This coupling is difficult to measure directly, but this coupling gives rise, in

a calculable fashion, to a neutron electric dipole moment. Consider the graph of
Fig. 5.2. This graph generates a neutron electric dipole moment, if we take one
coupling to be the standard pion–nucleon coupling, and the second the coupling we
have computed above. The resulting Feynman graph is infrared divergent; we cut
this off at mπ , while cutting off the integral in the ultraviolet at the QCD scale. The
low-energy calculation is reliable in the limit that mπ is small, so that ln(mπ/�QCD)
is large compared to one. The result is:

dn = gπ N N
−θmumd

fπ (mu + md)
〈N f |q̄τ aq|Ni 〉 ln(MN/mπ )

1

4π2
MN . (5.124)
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The matrix element can be estimated using the SU (3) symmetry of Gell-Mann
and Ne’eman, yielding dn = 5.2 × 10−16θ cm. The experimental bound gives θ <

10−9–10−10. Understanding why CP violation is so small in the strong interactions
is the “strong CP problem.”

5.5 Possible solutions of the strong CP problem

What should our attitude towards this problem be? We might argue that, after
all, some Yukawa couplings are as small as 10−5, so why is 10−9 so bad? On
the other hand, we suspect that the smallness of the Yukawa couplings is related to
approximate symmetries, and that these Yukawa couplings are telling us something.
Perhaps there is some explanation of the smallness of θ , and perhaps this is a clue
to new physics. In this section we review some of the solutions which have been
proposed to understand the smallness of θ .

5.5.1 When mu = 0

Suppose that the mass of the up quark were zero. In this case, by a field redefinition
of the up quark,

u → e−iθu, (5.125)

one could make the θ term vanish as a consequence of the anomaly. This is a simple
enough explanation, but there are two issues. First, why? We could imagine that
this is the result of a symmetry, but this symmetry cannot be a real symmetry of
the underlying theory, since it is violated by QCD (through the anomaly). We will
see later in this book that discrete symmetries, with anomalies of the kind required
to understand a vanishing u quark mass, do frequently arise in string theory. So
perhaps this sort of explanation is plausible.

There is a much more practical issue which arises from the phenomenology of
QCD itself. Standard studies of QCD current algebra give the non-zero value of mu

which we quoted earlier, around 5 MeV. This, by itself, is not necessarily a serious
objection. The question is: at what momentum transfer is the mass evaluated?
Suppose, for example, that this is the u quark mass at 300 MeV, while the mass of
the u quark at, say, 10 GeV is essentially zero. Integrating out physics between the
scale 10 GeV and 0.3 GeV will induce a u quark mass in the effective Lagrangian.
Instantons will generate such a term. It will be necessary to soak up the d and s
quark zero modes with the d and s quark mass terms, so the u quark mass will be
proportional to mdms . We can’t actually do a reliable calculation, but we would
expect:

mu = mdms

300 MeV
, (5.126)
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which is not much different than the usual current algebra number. At this point,
however, numerical lattice calculations are good enough to address this issue, and
a massless u quark at several GeV appears to be incompatible with the data.

5.5.2 Spontaneous CP violation

Suppose that the underlying theory respects CP, and the observed CP violation is
spontaneous. Because θ is CP odd, the underlying theory has θ = 0. One might
hope that this feature would be preserved when the symmetry is spontaneously
broken.

There are a number of ways that θ might be generated in the low-energy theory.
First, suppose that CP is broken by the expectation value of a complex field, �.
There might well be direct couplings, such as

1

16π2
Im�F F̃ . (5.127)

Note that � might also couple to fermions, giving them a large mass through
its expectation value. When these fermions are integrated out, this would also
generate an effective θ . This is likely simply given the anomalous field redefinitions
which may be required to make the masses of these fields real. It is possible to
construct models where, at least at tree level, the heavy fermion mass matrices
are real. Quantum corrections, and the couplings mentioned above, pose additional
challenges. It is an open question whether such an explanation of the smallness of
θ is plausible, and has testable consequences.

5.5.3 The axion

Perhaps the most compelling explanation of the smallness of θ involves a hypo-
thetical particle called the axion. We present here a slightly updated version of the
original idea of Peccei and Quinn.

Consider the vacuum energy as a function of θ (Eq. (5.119)). This energy has a
minimum at θ = 0, i.e. at the CP conserving point. As Weinberg noted long ago, this
is almost automatic: points of higher symmetry are necessarily stationary points.
As it stands, this observation is not particularly useful, since θ is a parameter, not
a dynamical variable. But suppose that one has a field, a, with coupling to QCD:

Laxion = (∂µa)2 + (a/ fa + θ )

32π2
F F̃, (5.128)

where fa is known as the axion decay constant. Suppose, in addition, that the rest
of the theory possesses a symmetry, called the Peccei–Quinn symmetry,

a → a + α (5.129)
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for constant α. Then, by a shift in a, one can eliminate θ . What we previously called
the vacuum energy as a function of θ , E(θ), is now V (a/ fa), the potential energy
of the axion. It has a minimum at θ = 0. The strong CP problem is solved.

One can estimate the axion mass by simply examining E(θ ):

m2
a ≈ m2

π fπ2

f 2
a

. (5.130)

If fa ∼ TeV, this yields a mass of order keV. If fa ∼ 1016 GeV, this gives a mass
of order 10−9 eV.

There are several questions one can raise about this proposal.

� Should the axion already have been observed? The couplings of the axion to matter can be
worked out in a given model in a straightforward way, using the methods of current algebra
(in particular of non-linear Lagrangians). All of the couplings of the axion are suppressed
by powers of fa. This is characteristic of a Goldstone boson. At zero momentum, a change
in the field is like a symmetry transformation, so, before including the QCD effects which
explicitly break the symmetry, axion couplings are suppressed by powers of momentum
over fa; QCD effects are suppressed by �QCD/ fa. So if fa is large enough, the axion is
difficult to see. The strongest limit turns out to come from red giant stars. The production
of axions is “semiweak,” i.e. it only is suppressed by one power of fa, rather than two
powers of mW ; as a result, axion emission is competitive with neutrino emission until
fa > 1010 GeV or so.

� As we will describe in more detail in the chapters on cosmology, the axion can be copiously
produced in the early universe. As a result, there is an upper bound on the axion decay
constant, of about 1011 GeV. If this bound is saturated, the axion constitutes the dark
matter. We will discuss this bound in detail in the chapter on particle astrophysics.

� Can one search for the axion experimentally? Typically, the axion couples not only to the
F F̃ of QCD, but also to the same object in QED. This means that in a strong magnetic
field, an axion can convert to a photon. Precisely this effect is being searched for by
groups at Livermore (the collaboration contains members from MIT and the University
of Florida as well) and Kyoto. The basic idea is to suppose that the dark matter in the
halo of our galaxy consists principally of axions. Using a (superconducting) resonant
cavity with a high Q value in a large magnetic field, one searches for the conversion
of these axions into excitations of the cavity, owing to the coupling of the axion to the
electromagnetic F F̃ = �E · �B. The experiments have already reached a level where they
set interesting limits; the next generation of experiments will cut a significant swath in
the presently allowed parameter space.

� The coupling of the axion to F F̃ violates the shift symmetry; this is why the axion
can develop a potential. But this seems rather paradoxical: one postulates a symmetry,
preserved to some high degree of approximation, but which is not a symmetry; it is
at least broken by tiny QCD effects. Is this reasonable? To understand the nature of
the problem, consider one of the ways an axion can arise. In some approximation, we
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can suppose we have a global symmetry under which a scalar field, φ, transforms as
φ → eiαφ. Suppose, further, that φ has an expectation value. This could arise due to a
potential, V (φ) = −µ2|φ|2 + λ|φ|4. Associated with the symmetry breaking would be a
(pseudo)-Goldstone boson, a. We can parameterize φ as:

φ = faeia/ fa |〈φ〉| = fa. (5.131)

If this field couples to fermions, they gain mass from its expectation value. At one loop,
the same diagrams we discussed in our anomaly analysis generate a coupling aF F̃ , from
integrating out the fermions. This calculation is identical to the corresponding calculation
for pions we discussed earlier. But we usually assume that global symmetries in nature
are accidents. For example, baryon number is conserved in the standard model simply be-
cause there are no gauge-invariant, renormalizable operators which violate the symmetry.
We believe it is violated by higher dimension terms. The global symmetry we postulate
here is presumably an accident of the same sort. But for the axion, the symmetry must be
extremely good. For example, suppose one has a symmetry breaking operator

φn+4

Mn
p

. (5.132)

Such a term gives a linear contribution to the axion potential of order f n+3
a /Mn

p . If
fa ∼ 1011, this swamps the would-be QCD contribution (m2

π f 2
π / fa) unless n > 12!

This last objection finds an answer in string theory. In this theory, there are
axions, with just the right properties, i.e. there are symmetries in the theory which
are exact in perturbation theory, but which are broken by exponentially small non-
perturbative effects. The most natural value for fa would appear to be of order
MGUT − Mp. Whether this can be made compatible with cosmology, or whether
one can obtain a lower scale, is an open question.

Suggested reading

There are a number of excellent books and reviews on anomalies, as well as good
treatments in quantum field theory textbooks. The texts of Peskin and Schroeder
(1995), Pokorski (2000) and Weinberg (1995) have excellent treatments of different
aspects of anomalies. The string textbook of Green et al. (1987) provides a good
introduction to anomalies in higher dimensions. One of the best introductions to the
physics of instantons is provided in the lecture by Coleman (1985). The U (1) prob-
lem in two-dimensional electrodynamics, and its role as a model for confinement,
is discussed by Casher et al. (1974). The serious reader should study ’t Hooft’s
instanton paper from 1976, in which he both uncovers much of the physical signif-
icance of the instanton solution, and performs a detailed evaluation of the determi-
nant. Propagators in the instanton background are obtained in Brown et al. (1978).
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Instantons in CPN models are studied by Affleck (1980). The dependence of dn

on θ is calculated by Crewther et al. (1979) in a short and quite readable paper.

Exercises

(1) Derive Eq. (5.15).
(2) Calculate the decay rate of the π0 to two photons. You will need the matrix element〈

π (q)
∣∣∂µ jµ3

5

∣∣0〉 = fπqµeiq·x , (5.133)

where fπ = 93 MeV. You will need also to compute the anomaly in the third component
of the axial isospin current.

(3) Fill in the details of the anomaly computation in two dimensions, being careful about
signs and factors of 2.

(4) Fill in the details of the Fujikawa computation of the anomaly, in the CPN model,
being careful about factors of 2. Make sure you understand why one is calculating a
determinant, and why the factors appear in the exponential. Verify that the action of Eq.
(5.56) is equal to

L = gφ,φ∗∂µφ∂µφ∗, (5.134)

where g is the metric of the sphere in complex coordinates, i.e. it is the line element
dx2

1 + dx2
2 + dx2

3 expressed as gz,zdz dz + gz,z∗dz dz∗ + gz∗zdz∗ dz + gdz∗dz∗dz∗dz∗.
A model with an action of this form is called a “Non-linear Sigma Model;” the idea is
that the fields live on some “target” space, with metric g. Verify Eqs. (5.56) and (5.59).

(5) Check that Eqs. (5.86) and (5.87) solve (5.83).
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Grand unification

One of the troubling features of the Standard Model is the plethora of coupling
constants; overall, there are 18, counting θ . It seems puzzling that a theory which
purports to be a fundamental theory should have so many parameters. Another is
the puzzle of charge quantization: why are the hypercharges all rational multiplets
of one another (and, as a result, the electric charges are rational multiples of one
another)? Finally, the gauge group itself is rather puzzling. Why is it semi-simple
and not simple?

Georgi and Glashow put forward a proposal which answers some of these ques-
tions. They suggested that the underlying gauge symmetry of nature is a simple
group, broken at some high-energy scale down to the gauge group of the Standard
Model. The Standard Model gauge group has rank 4 (there are four commut-
ing generators). SU (N ) groups have rank N − 1. So the simplest group among
the SU (N )s which might incorporate the Standard Model is SU (5). Without any
fancy group theory, it is easy to see how to embed SU (3) × SU (2) × U (1) in
SU (5). Consider the gauge bosons. These are in the adjoint representation of
the group. Written as matrices, under infinitesimal space-time independent gauge
transformations,

δAµ = iωa[T a, Aµ]. (6.1)

The Tas are 5 × 5, traceless, Hermitian matrices; altogether, there are 24 of them.
We can then break up the gauge generators in the following way. Writing the indices
on T a as (T a) j

i , the T as act on the fundamental 5 representation as:

(T a) j
i 5 j . (6.2)
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Fig. 6.1. Exchange of heavy vector particles in GUTs violates B and L. They can
lead to processes such as p → π0e+.

So if we think of the 5 as:

5 =


q1

q2

q3

L1

L2

 (6.3)

then the T as can be broken up into a set of SU (3) generators and a set of SU (2)
generators:

T a =
(

λa

2 0
0 0

)
T i =

(
0 0
0 σ i

2

)
. (6.4)

Here the λas are Gell-Mann’s SU (3) matrices, and the σ i s are the Pauli matrices.
There are three commuting matrices among these. The remaining diagonal matrix
can be taken to be

Ỹ = 1√
60


−2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 3 0
0 0 0 0 3

. (6.5)

Finally, there are twelve off-diagonal matrices:(
Xi

a

)b

j = δi
jδ

b
a (6.6)

where a, b = 1, 2, 3; i, j = 1, 2. These are not Hermitian; they are analogous to
raising and lowering operators in SU (2). One can readily form Hermitian linear
combinations. The associated vector mesons must be very heavy; they mediate
B-violating processes, as in Fig. 6.1. These can lead, for example, to p → π0e+.
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We want to claim that Ỹ is proportional to the ordinary hypercharge, and deter-
mine the proportionality constant. To do this, we consider, not the 5, but the 5̄, and
identify:

5̄ =


d̄1

d̄2

d̄3

L1

L2

. (6.7)

Now the generators of SU (5) acting on the 5̄ are −T aT . So we can read off imme-
diately that Y = √

60Ỹ/3. Since the gauge groups are unified in a single group, the
gauge couplings are all the same, so we can compute the Weinberg angle. Calling
g the SU (5) coupling,

gỸ = g′

2
Y (6.8)

where g′ is the hypercharge coupling of the Standard Model. From this, g2 =
5/3g′ 2. The Weinberg angle,

sin2(θW) = g′ 2

g2 + g′ 2
= 3

8
. (6.9)

So we have two dramatic predictions, if we assume that the Standard Model is
unified in this way.

(1) The SU (3) and SU (2) gauge couplings are equal.
(2) The Weinberg angle satisfies sin2(θW) = 3/8.

Before assessing these predictions, let’s first figure out where we would put the
rest of the quarks and leptons. In a single generation of the Standard Model, there
are 15 fields. SU (5) has a 10 representation, the antisymmetric product of two
5s. It can be written as an antisymmetric matrix, 10i j . If i and j are both SU (3)
indices, we obtain a (3̄, 1)−4/3 of SU (3). If one is an SU (3), one an SU (2) index, we
obtain a (3, 2)1/3. If both are SU (2) indices, we obtain a (1, 1)2. Here the subscripts
denote the ordinary hypercharge, related to Ỹ as above. These are just the quantum
numbers of the Q, ū and ē. As a matrix,

10 =


0 ū3 −ū2 Q1

1 Q2
1

−ū3 0 ū1 Q1
2 Q2

2

ū2 −ū1 0 Q1
3 Q2

3

−Q1
1 −Q1

2 −Q1
3 0 ē

−Q2
1 −Q2

2 −Q2
3 −ē 0

. (6.10)
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So a single generation of quarks and leptons fits neatly into a 5̄ and 10 of SU (5).

6.1 Cancellation of anomalies

An anomaly in a gauge symmetry would represent a breakdown of gauge invariance.
The consistency of gauge symmetries rests, however, on gauge invariance. For
example, to demonstrate that the theories are both unitary and Lorentz invariant,
we have used different gauges. Cancellation of anomalies is crucial, and the absence
of anomalies in the Standard Model is surely no accident.

It is not hard to check that in SU (5), the anomaly of the 5̄ cancels that of the 10.
In general, the anomalies in a gauge theory are proportional to dabc, where

{Ta, Tb} = dabcTc. (6.11)

One can organize the anticommutator above in terms of the various types of gen-
erators, for example SU (3), SU (2), U (1), and the off-diagonal generators, which
transform as (3, 2) of SU (3) × SU (2)), and check each class. We leave the details
for the exercises.

6.2 Renormalization of couplings

If we are going to describe the Standard Model, SU (5) must break at some high-
energy scale to SU (3) × SU (2) × U (1). Above this scale, the full SU (5) symmetry
holds to a good approximation, and all couplings renormalize the same way. Below
this scale, the couplings renormalize differently. We can write the equations for the
renormalization of the three separate couplings:

α−1
i (µ) = α−1

gut(Mgut) + bi
0

4π
ln

(
µ

Mgut

)
. (6.12)

We can calculate the beta functions at one loop starting with the usual formula:

b0 = 11

3
CA − 4

3
c(i)

f N (i)
f − 1

3
c(i)
φ N (i)

φ , (6.13)

where N (i)
f is the number of fermions in the i th representation; N (i)

φ is the number
of scalars. For SU (N ), CA = N , and for fermions or scalars in the fundamental
representation, cf = cφ = 1/2.

For SU (3) and SU (2) the beta-function coefficients, bi
0, are readily computed.

For the U (1), we need to remember the relative normalization we computed above:

b2
0 = 181/6 b3

0 = 7 b1
0 = 61

15
. (6.14)
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We can run these equations backwards. The SU (2) and U (1) couplings are
the best measured, so it makes sense to start with these, and run them up to the
unification scale. This determines αgut and Mgut. We can then predict the value of
the SU (3) coupling at, say, MZ . One finds that the unification scale, Mgut, is about
1015 GeV, and α3 is off by about seven standard deviations. In the exercises, you
will have the opportunity to perform this calculation in detail. We will see later that
low-energy supersymmetry greatly improves this.

6.3 Breaking to SU (3) × SU (2) × U (1)

In SU (5), it is relatively easy to introduce a set of Higgs fields which break the gauge
symmetry down to SU (3) × SU (2) × U (1). Consider a Hermitian scalar field, �,
in the adjoint representation. Writing � as a matrix, we have the transformation law:

δ� = ωa[T a, �]. (6.15)

Suppose that the minimum of the � potential lies at a point where:

� = vỸ . (6.16)

Then the SU (3), SU (2) and U (1) generators all commute with 〈�〉, but the Xs do
not.

Consider the most general SU (5)-invariant potential:

V = −m2Tr�2 + λTr�4 + λ′(Tr�2)2. (6.17)

One can find the minimum of this potential by first using an SU (5) transformation
to diagonalize �,

� = diag(a1, a2, a3, a4, a5). (6.18)

The potential is a function of the ai s, which one wants to minimize subject to the
constraint of vanishing trace. This can be done by using a Lagrange multiplier.

To establish that one has a local minimum of the form of Eq. (6.16), one can
proceed more simply. Write the potential as a function of v:

V = −1

2
µ2v2 + aλ

4
+ bλ′

4
v4 (6.19)

where a = 7/120. Then the extremum with respect to v is:

v = µ√
aλ + bλ′ . (6.20)

To establish that this is a local minimum, we need to show that the eigenval-
ues of the scalar mass-squared matrix are all positive. We can investigate this
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by considering small fluctuations about the stationary point. This point preserves
SU (3) × SU (2) × U (1). Writing � = 〈�〉 + δ�, δ� can be decomposed under
SU (3) × SU (2) × U (1) as

δ� = (1, 1) + (8, 1) + (1, 3) + (3, 2) + (3̄, 2). (6.21)

This point is certainly stationary; because of the symmetry, only the (1, 1) piece can
appear linearly in the potential, and it is this piece whose minimum we have just
found. To establish that the point is in fact a local minimum, one needs to show that
the quadratic terms in the fluctuations are all positive. This is done in the exercises.

6.4 SU (2) × U (1) breaking

In addition to the adjoint, it is necessary to include a 5 of Higgs, H , in order to break
SU (2) × U (1) to the U (1) of electromagnetism and to give mass to the quarks and
leptons. H has the form

H =
(

Hc

Hd

)
, (6.22)

where Hc is a color triplet of scalars and Hd is the ordinary Higgs doublet. For H
one might be tempted to write a potential of the form

V (H ) = −µ2|H |2 + λ

4
|H |4. (6.23)

However, this leads to a number of difficulties. Perhaps most important, when
included in the larger theory with the adjoint field, �, this potential has too much
symmetry; there is an extra SU (5), which would lead to an assortment of unwanted
Goldstone bosons. At the same time, the scale, µ, must be of order the scale of
electroweak symmetry breaking (as long as λ is not too much larger than one). So the
Higgs triplets will have masses of order the weak scale. But if the doublet couples
to quarks and leptons, the triplet will have baryon and lepton number violating
couplings to the quarks and leptons. So the triplet must be very massive.

Both problems can be solved if we couple � to H . The allowed couplings include:

V�−H = �H∗�H + λ′ H∗ HTr �2 + λ′′ H∗�2 H. (6.24)

If we carefully adjust the constants �, λ′, λ′′ and µ2, we can arrange that the
doublets are light and the triplets are heavy. For example, if we choose λ = λ′ = 0,
and µ2 = −3(�/

√
60)v − ε then the Higgs doublets have mass-squared −ε in the

Lagrangian, while the triplets have mass of order Mgut. This tuning of parameters,
which must be performed in each order of perturbation theory, provides an explicit
realization of the hierarchy problem.
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Turning to fermion masses, we are led to an interesting realization: not only does
grand unification make predictions for the gauge couplings, it can predict relations
among fermion masses as well. SU (5) permits the following couplings:

Ly = y1εi jklm Hi 10 jk10lm + y2 H∗
i 5̄ j 10i j . (6.25)

Here the ys are matrices in the space of generations. When H acquires an expecta-
tion value, it gives mass to the quarks and leptons. The first coupling gives mass to
the up-type quarks. The second coupling gives mass to both the down-type quarks
and the leptons. If we consider only the heaviest generation, we then have the tree
level prediction:

mb = mτ . (6.26)

This “prediction” is off by a factor of 3, but like the prediction of the coupling
constant, it is corrected by renormalization by roughly the observed amount. For
the lightest quarks and leptons, the prediction fails. However, unlike the unifica-
tion of gauge couplings, such predictions can be modified if there are additional
Higgs fields in other representations. In addition, for the lightest fermions, higher-
dimension operators, suppressed by powers of the Planck mass, can make signif-
icant contributions to masses. In supersymmetric grand unified theories, the ratio
of the GUT scale to the Planck scale is about 10−2, whereas the lightest quarks and
leptons have masses four orders of magnitude below the weak scale. We will post-
pone numerical study of these corrections, since the simplest SU (5) theory does not
correctly predict the values of the coupling constants. We will return to this subject
when we discuss supersymmetric grand unified theories, which do successfully
predict the observed values of the couplings.

6.5 Charge quantization and magnetic monopoles

While we must postpone success with the calculation of the unified couplings to our
chapters on supersymmetry, we should pause and note two triumphs. First, we have
a possible explanation for one of physics’ greatest mysteries: why is electric charge
quantized? Here it is automatic; electric charge, an SU (5) generator, is quantized,
just as color and isospin are quantized.

But Dirac long ago offered another explanation of electric charge quantization:
magnetic monopoles. He realized that consistency of quantum mechanics demands
that even if a single monopole exists in the universe, electric charges must all
be integer multiples of a fundamental charge. So we might suspect that magnetic
monopoles are hidden somewhere in this story. Indeed they are; these topics are
discussed in Chapter 7.
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6.6 Proton decay

We have discussed the dimension-six operators which can arise in the Standard
Model and violate baryon number. Exchanges of the X bosons generate operators
such as:

g2

M2
X

Qσµū∗Qσµē∗. (6.27)

This leads to the decay p → π0e+. In this model, one predicts a proton lifetime
of order 1028 years if Mgut ≈ 1015 GeV. The current limit on this decay mode is
5 × 1033 years. We will discuss the situation in supersymmetric models later.

The realization that baryon number violation is likely in any more fundamental
theory opens up a vista on a fundamental question about nature: why is there more
matter than antimatter in the universe. If, at some very early time, there were equal
amounts of matter and antimatter, then if baryon number is violated, one has the
possibility of producing an excess. Other conditions must be satisfied as well; we
will describe this in the chapter on cosmology.

6.7 Other groups

While SU (5) may in some respects be the simplest group for unification, once
one has set off in this direction, there are many possibilities. Perhaps the next
simplest is unification in the group O(10). As O(10) has rank 5, there is one extra
commuting generator; presumably this symmetry must be broken at some scale.
But more interesting is the fact that a single generation fits neatly in an irreducible
representation: the 16. The O(10) has an SU (5) subgroup, under which the 16
decomposes as a 10 + 5̄ + 1. The singlet has precisely the right Standard Model
quantum numbers – none – to play the role of the right-handed neutrino in the
seesaw mechanism.

We won’t thoroughly review the group theory of O groups, but we can describe
some of the important features. We will focus specifically on O(10), but much of
the discussion here is easily generalized to other groups. The generators of O(10)
are 10 × 10 antisymmetric matrices. There are 45 of these. We are particularly
interested in how these transform under the Standard Model group. The embedding
of the Standard Model in SU (5), as we have learned, is very simple, so a useful
way to proceed to understand O(10) is to find its SU (5) subgroup.

One way to think of O(10) is as the group of rotations of ten-dimensional vectors.
Call the components of such a vector x A, A = 1, . . . , 10. SU (5) transformations
are “rotations” of complex five-dimensional vectors, zi . So define

z1 = x1 + i x2 z2 = x3 + i x4 z3 = x5 + i x6 (6.28)
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and so on. With this correspondence, it is easy to see that a subgroup of O(10)
transformations preserves the product z · z′∗. This is the SU (5) subgroup of O(10).

From our construction, it follows that the 10 of O(10) transforms as a 5 + 5̄ of
SU (5). We can determine the decomposition of the adjoint by writing:

AAB = Aiī + Ai j + Aī j̄ . (6.29)

The labeling here is meant to indicate the types of complex indices the matrix A can
carry. The first term is just the 24 of SU (5), plus an additional singlet. This singlet
is associated with a U (1) subgroup of O(10), which rotates all of the objects with
i-type indices by one phase, and all of those with ī type indices by the opposite
phase. Note that Ai j is antisymmetric in its indices; in our study of SU (5), we
learned that this is the 10 representation. We can take it to carry charge 2 under the
U (1) subgroup. Aī j̄ , then, is the 10 representation, with charge −2. This accounts
for all 45 fields.

But where is the 16? We are familiar, from our experience with ordinary rotations
in 3 and (Euclidean 4) dimensions, as well as from the Lorentz group, with the fact
that O groups may have spinor representations. To construct these, we need to
introduce the equivalent of Dirac gamma matrices, �, satisfying:

{� I , � J } = 2δ I J . (6.30)

It is not hard to construct explicit matrices which satisfy these anticommutation
relations, but there is a simpler approach, which also makes the SU (5) embedding
clear. The anticommutation relations are similar to the relations for fermion creation
and annihilation operators. So define:

a1 = 1

2
(�1 + i�2) a2 = 1

2
(�3 + i�4) (6.31)

and so on, and similarly for their complex conjugates. Note that the ai s form a 5 of
SU (5), with charge +1 under the U (1). These operators satisfy the algebra:

{ai , a j̄ } = δi j̄ . (6.32)

These are the anticommutation relations for five pairs of fermion creation–
annihilation operators. We know how to construct the corresponding “states,” i.e.
the representations of the algebra. We define a state, |0〉, annihilated by the ai s.
Then there are five states created by aī acting on this state:

5̄−1 = aī |0〉. (6.33)

The 5̄ indicates the SU (5) representation; the subscript the U (1) charge. We could
now construct the states obtained with two creation operators, but let’s construct
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the states built with an odd number:

10−3 = aī a j̄ ak̄ |0〉 1−5 = a1̄a2̄a3̄a4̄a5̄|0〉. (6.34)

We have indicated that the first representation transforms like a 10 of SU (5), while
the second transforms like a singlet.

The states which involve even numbers of creation operators transform like a
5, a 10, and a singlet. Why do we distinguish these two sets? Remember, the goal
of this construction is to obtain irreducible representations of the group O(10).
As for the Dirac theory, we can construct the symmetry generators from the Dirac
matrices,

SI J = i

4
[� I , � J ]. (6.35)

These, too, can be decomposed on the complex basis, like AI J . But, as for the
usual Dirac matrices, there is another � matrix we can construct, the analog of
�5, �11. This matrix anticommutes with all of the �s, and thus the ai s. Thus the
states with even numbers of creation operators are eigenstates with eigenvalue
+1 under �11, while those with odd numbers are eigenstates with eigenvalue −1.
Since �11 commutes with the symmetry generators, these two representations are
irreducible.

A similar construction works for other groups. When we come to discuss string
theories in ten dimensions, we will be especially interested in the representa-
tions of O(8). Here the same construction yields two representations, denoted by
8 and 8′.

The embedding of the states of the Standard Model in O(10) is clear, since we
already know how to embed them in a 5̄ + 10 of SU (5). But what of the other
state in the 16? This is a Standard Model singlet. We don’t have a candidate, as
of yet, in the particle data book for this. But there are two observations we can
make. First, the symmetries of the Standard Model do not forbid a mass for this
particle. What does forbid a mass is the extra U (1). So if this symmetry is broken
at very high energies, perhaps with the initial breaking of the gauge symmetry,
this particle can gain a large mass. We will not explore the possible Higgs fields
in O(10), but, as in SU (5), there are many possibilities, and the U (1) can readily
be broken. Second, this particle has the right quantum numbers to couple to the
left-handed neutrino of the Standard Model. So this particle can naturally lead to a
“seesaw” neutrino mass. This mass might be expected to be of order some typical
Yukawa coupling, squared, divided by the unification scale. It is also possible that
this extra U (1) is broken at some lower scale, yielding a larger value for the neutrino
mass.
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Suggested reading

There are any number of good books and reviews on the subject of grand unification.
The books by Ross (1984), Mohapatra (2003) and Ramond (1999) all treat the topics
introduced in this chapter in great detail. The reader will find his or her interest
increases after studying some aspects of supersymmetry.

Exercises

(1) Verify the cancellation of anomalies between the 5̄ and 10 representations of SU (5).
(2) Establish the conditions that the solution of Eq. (6.16) is a local minimum of the

potential.
(3) Perform the calculation of coupling unification in the SU (5) model. Verify Eq. (6.14) for

the SU (3), SU (2) and U (1) beta functions. Start with the measured values of the SU (2)
and U (1) couplings, being careful about the differing normalizations in the Standard
Model and in SU (5). Compute the value of the unification scale (the point where these
two couplings are equal); then determine the value of α3 at MZ . Compare with the
value given by the Particle Data Group. You need only study the equations to one-loop
order. In practice, two-loop corrections, as well as threshold effects and higher-order
corrections to the beta function, are often included.

(4) Add to the Higgs sector of the SU (5) theory a set of scalars in the 45 representation.
Show that in this case all of the quark masses are free parameters.
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Magnetic monopoles and solitons

Anyone who has stared even briefly at Maxwell’s equations has speculated about the
existence of magnetic monopoles. There is no experimental evidence for magnetic
monopoles, but the equations would be far more symmetric if they existed. It was
Dirac who first considered carefully the implications of monopoles, and he came to
a striking conclusion: the existence of monopoles would require that electric charge
be quantized in terms of a fundamental unit. The problem of describing a monopole
lies in writing �B = �∇ × �A. We could simply give up this identification, but Dirac
recognized that �A is essential in formulating quantum mechanics. To resolve the
problem, we can follow Wu and Yang, and maintain �B = �∇ × �A, but not require
that the vector potential be single valued. Suppose we have a monopole located at
the origin. In the northern hemisphere, we can take

AN = g

4πr

(1 − cos(θ ))

sin(θ)
êφ, (7.1)

while in the southern hemisphere we can take:

AS = − g

4πr

(1 + cos(θ))

sin(θ)
êφ. (7.2)

By looking up the formulae for the curl in spherical coordinates, you can check
that, in both hemispheres:

�B = g

4πr2
r̂ , (7.3)

so indeed this does describe a magnetic monopole.
Each of these expressions is singular along a half-line: AN is singular along

θ = π ; AS is singular along θ = 0. These string-like singularities are known as
Dirac strings. They are suitable vector potentials to describe infinitely long, thin
solenoids, starting at the origin and going to infinity on the negative or positive z
axis. With a discontinuous �A, though, we need to ask whether quantum mechanics
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is consistent. Consider the equator (θ = π/2). Here

�AN − �AS = g

2πr
êφ = −�∇χ χ = − g

2π
φ. (7.4)

So the difference has the form of a gauge transformation. But to be a gauge trans-
formation, it must act sensibly on particles of definite charge. In particular, it must
be single valued. As the particle circumnavigates the sphere, its wave function
acquires a phase

eie
∫

d�x · �A. (7.5)

Potentially, this phase is different if we use �AN or �AS, in which case the string is a
detectable, real object. But the phases are the same if

exp

(
i

eg

2π

∮
d�x · �∇φ

)
= 1 or eg = 2πn. (7.6)

This is known as the Dirac quantization condition. Dirac argued that since e can
be the charge of any charged particle, if there is even one monopole somewhere in
the universe, this result shows that charge must be quantized.

In pure electrodynamics, the status of magnetic monopoles is obscure; the �B
field is singular and the energy is infinite. But in non-Abelian gauge theories with
scalar fields (Higgs fields), monopoles often arise as finite-energy, non-dissipative
solutions of the classical equations. Such solutions cannot arise in linear theories,
like electrodynamics; all configurations in such a theory spread with time. Non-
dissipative solutions can only arise in non-linear theories, and even then, such
solutions – known as solitons – can only arise in special circumstances.

The simplest theory which exhibits monopole solutions is SU (2) (more precisely
O(3)) Yang–Mills theory with a single Higgs particle in the adjoint representation.
But before considering this case, which is somewhat complicated, it is helpful to
consider solitons in lower-dimensional situations.

7.1 Solitons in 1 + 1 dimensions

Consider a quantum field theory in 1 + 1 dimension, with

L = 1

2
(∂µφ)2 − V (φ). (7.7)

Here

V (φ) = −1

2
m2φ2 + λφ4. (7.8)
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φ

x

Fig. 7.1. Kink solution of the two-dimensional field theory.

This potential, which is symmetric under φ → −φ, has two degenerate minima,
±φ0. Normally, we would choose as our vacuum a state localized about one or the
other minimum. These correspond to trivial solutions of the equations of motion.
But we can consider a more interesting solution, for which

φ(x → ±∞) → ±φ0. (7.9)

Such a solution interpolates between the two different vacua. We can construct
this solution much as one solves analogous problems in classical mechanics, by
quadrature. Finding the solution, known as the kink, is left for the exercises; the
result is

φkink = φ0tanh((x − x0)m). (7.10)

This solution is shown in Fig. 7.1. This object has finite energy. As we have in-
dicated, there are a continuous infinity of solutions, corresponding to the fact that
this kink can be located anywhere; this is a consequence of the underlying transla-
tional invariance. We can use this to understand in what sense the kink is a particle.
Consider configurations which are not quite solutions of the equations of motion,
in which x0 is allowed to be a slowly varying function of t , x0(t). We can write the
action for these configurations:

Skink =
∫

dt
∫

dx

[
1

2
(∂µφkink)2 − V (φkink)

]
. (7.11)

Only the φ̇ term contributes. The result is:

Skink =
∫

dt
M

2
ẋ2

0 . (7.12)

Here M is precisely the energy of the kink. So the kink truly acts as a particle. The
x0 is called a collective coordinate. We will see that such collective coordinates
arise for each symmetry broken by the soliton. These are similar to the collective
coordinates we encountered in the Euclidean problem of the instanton.
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7.2 Solitons in 2 + 1 dimensions: strings or vortices

As we go up in dimension, the possible solitons become more interesting. Consider
a U (1) gauge theory in 2 + 1 dimensions, with a single charged scalar field, φ. This
model is often called the Abelian Higgs model. The Lagrangian is:

L = |Dµφ|2 − V (|φ|). (7.13)

We assume that the potential is such that

〈φ〉 = v. (7.14)

Now we have a possibility we haven’t considered before. Working in plane polar
coordinates, if we consider only the potential, we can imagine obtaining finite-
energy configurations for which, at large r ,

φ → einθv. (7.15)

Because the potential tends to its minimum at infinity, such a configuration has
finite potential energy. However, the kinetic energy diverges since ∂µφ includes
(1/r )∂θφ. We can try to cancel this with a non-vanishing gauge field. At ∞, the
scalar field is a gauge transformation of the constant configuration, so to achieve
finite energy we want to gauge transform the gauge field as well:

Aθ → n (7.16)

so Dµφ → 1/r2, or faster. It is not hard to construct such solutions numerically.
As for the kinks, these configurations have collective coordinates, corresponding
to the two translational degrees of freedom and a rotational (or charge) degree of
freedom.

We can take these configurations as configurations in a 3 + 1-dimensional theory,
which are constant with respect to z. Viewed in this way, these are vortices, or
strings. One has collective coordinates corresponding to transverse motions of the
string, x0(z, t), y0(z, t). These string configurations could be quite important in
cosmology. Such a broken U (1) theory could lead to the appearance of long strings,
which could carry enormous amounts of energy. For a time, these were considered
a possible origin of inhomogeneities leading to formation of galaxies, but the data
now disfavors this possibility.

7.3 Magnetic monopoles

Dirac’s argument shows that, in the presence of a monopole, electric charges are
all multiples of a basic charge. This means that the U (1) is effectively compact.
So a natural place to look for monopoles is in gauge theories where the U (1) is a
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subgroup of a simple group. The SU (5) grand unified theory was an example of
this type, where electric charge is quantized.

We start, though, with the simplest example of this sort, an SU (2) gauge theory
with Higgs fields in the adjoint representation, φa . Such a theory was first considered
by Georgi and Glashow as a model for weak interactions without neutral currents,
and is known as the Georgi–Glashow model. An expectation value for φ, φ3 = v,
or

φ = v

2

(
1 0
0 −1

)
, (7.17)

leaves an unbroken U (1). The spectrum includes massive charged gauge bosons,
W ±, and a massless gauge boson, which we will call the photon, γ . By analogy to
the string/vortex solutions, we look for finite-energy at ∞

φ → gv. (7.18)

In the 2 + 1-dimensional case, we could think of the gauge transformation as a
mapping from the space at infinity (topologically a circle) onto the gauge group
(also a circle). In three dimensions, we want gauge transformations which map the
two sphere, S2, into the gauge group SU (2). For example, we can take

g(�x) = i
x̂ iσ i

2
. (7.19)

This suggests an “Ansatz” (guess) for a solution:

φa = r̂ ah(r ) Aa
i = −εa

i j

r̂ j

r
j(r ). (7.20)

This solution is very symmetric: it is invariant under a combined rotation in spin
and isospin (rather similar to the sorts of symmetries of the instanton solution).
Note that h and j satisfy coupled, non-linear equations, which, in general, must
be solved numerically. We can see from the form of the action that the mass is of
order 1/g2. In the next section we show that an analytic solution can be obtained
in a particular limit.

We can write an elegant expression for the number of times g(x) maps the sphere
into the gauge group:

N = 1

4π

∫
d Siεi jkTr(g∂ j g∂k g). (7.21)

In terms of the field, φ,

N = 1

8πv3

∫
εi jkεabc∂iφ

a∂ jφ
b∂kφ

c. (7.22)
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Finally, we need a definition of the magnetic charge. A natural choice is∫
d3x

1

v
∂i
(
φa Ba

i

) = 4π N

e
.

Putting these statements together, we see that this solution, the ’t Hooft–Polyakov
monopole, has one Dirac unit of magnetic charge.

7.4 The BPS limit

Prasad and Sommerfield wrote down an exact monopole solution in the limit that
V = 0. This limit seemed, originally, rather artificial, but we will see later that
some supersymmetric field theories automatically have vanishing potential for a
subset of fields. What simplifies the analysis in this limit is that the equations for
the monopole, which are ordinarily second-order non-linear differential equations,
become first-order equations. We will shortly understand this by thinking about
supersymmetry. But first, we can derive this by looking directly at the potential for
the gauge and scalar fields. We start by deriving a bound, the BPS bound, on the
mass of a static field configuration. Again, we call the gauge coupling e, to avoid
confusion with the magnetic charge g:

Mm =
∫

d3x
1

2

[
1

e2
�Ba · �Ba + ( �D�)a · ( �D�)a

]
. (7.23)

We can compare this with

A± =
∫

d3x

[
1

e
�Ba ± ( �D�)a

]2

= 1

2

∫
d3x

[
1

e2
�Ba2 + ( �D�)a2

]
±
∫

d3x
1

e
�Ba( �D�)a. (7.24)

In the last term, we can integrate by parts. You can check that this works for both
parts of the covariant derivative, i.e. this term becomes:

1

e

∫
d3x( �D · �B)a�a − 1

e

∫
d2a�an̂ · �Ba. (7.25)

The first term vanishes by the Bianchi identity (the Yang–Mills generalization of
the equation �∇ · �B = 0). The second term is v times what we have defined to be
the monopole charge, g. So we have:

A± =
∫

d3x

[
1

e2
�Ba ± ( �D�)a

]2

= Mm ± vg

e
. (7.26)
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The left-hand side of this equation is clearly greater than zero, so we have shown
that

Mm ≥
∣∣∣vg

e

∣∣∣. (7.27)

This bound, known as the Bogomolny or BPS bound, is saturated when

�Ba = ±1

e
( �D�)a. (7.28)

Note that, while we have spoken so far throughout this chapter about SU (2), this
result generalizes to any gauge group, with Higgs in the adjoint representation.
But let’s focus on SU (2), and try to find a solution which satisfies the Bogomolny
bound. As in the case of the ’t Hooft–Polyakov monopole, it is convenient to write:

�a = r̂ a

er
H (evr ) Aa

i = −εa
i j

r̂ j

er
(1 − K (evr )). (7.29)

Here we are using a dimensionless variable, u = evr , in terms of which the Hamil-
tonian scales simply. We are looking for solutions for which H → 0 and K → 1
as r → 0. Otherwise, the solutions will be singular at the origin. At ∞, we want
the configuration to look like a gauge transformation of the vacuum solution, so

K → 0 H → evr as r → ∞. (7.30)

We will leave the details to the exercises, but it is straightforward to show that these
equations are solved by:

H (y) = y coth(y) − 1 K (y) = y

sinh(y)
. (7.31)

The monopole mass is

Mm = vg

e
= 2πv

e2
, (7.32)

as predicted by the BPS formula.

7.5 Collective coordinates for the monopole solution

In lower-dimensional examples, we witnessed the emergence of collective coordi-
nates, which described the translations and other collective motions of the solitons.
In the case of the monopole, we have similar collective coordinates. Again, the so-
lutions violate translational invariance. As a result, we can generate new solutions
by replacing �x by �x − �x0. Now viewing x0 as a slowly varying function of t , we
obtain, as before, the action of a particle of mass Mm.
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There is another collective coordinate of the monopole solution, which has quite
remarkable properties. In the monopole solution, charged fields are excited. So the
monopole solution is not invariant under the U (1) gauge transformations of electro-
dynamics. One might think that this is not important; after all, we have stressed that
gauge transformations are not real symmetries, but instead represent a redundancy
of the description of a system. But we need to be more precise. In interpreting
Yang–Mills instantons, we worked in A0 = 0 gauge. In this gauge, the important
gauge transformations are time-independent gauge transformations, and these fall
into two classes: large gauge transformations and small gauge transformations.
The small gauge transformations are those which fall rapidly to zero at infinity, and
physical states must be invariant under these. For large gauge transformations, this
is not the case, and they can correspond to physically distinct configurations.

For the monopole configurations, the interesting gauge transformations are those
which tend, at infinity, to a transformation in the unbroken U (1) direction. For large
r , this direction is determined by the direction of the Higgs fields. We must be careful
about gauge fixing, so again we work in A0 = 0 gauge. For our collective motion,
we want to study gauge transformations in this direction, which vary slowly in time.
It is important, however, that we remain in A0 = 0 gauge, so the transformations
we will study are not quite gauge transformations. Specifically, we consider

δAi = Diχ(t)�/v, (7.33)

but we transform A0 by

δA0 = D0(χ�)/v − χ̇�/v (7.34)

and, in order that the Gauss law constraint be satisfied, δ� = 0. The action for χ

has the form:

S = C

2e2
χ̇2. (7.35)

Note that χ is bounded between 0 and 2π , i.e. it is an angular variable. Its conjugate
variable is like an angular momentum; calling this Q, we have

Q = pχ = C

e2
χ̇ H = 1

2C
e2 Q2. (7.36)

In the case of a BPS monopole, the constant C is e2 Mm/(2v2). So each monopole
has a tower of charged excitations, with energies of order e2 above the ground state.
These excitations of the monopole about the ground state are known as dyons. The
mass formula for these states has the form, in the case of a BPS monopole:

M = vg + vQ2/g. (7.37)
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We will understand this better when we embed this structure in a supersymmetric
field theory.

7.6 The Witten effect: the electric charge in the presence of θ

We have argued that in a U (1) gauge theory, it is difficult to see the effects of θ .
But in the presence of a monopole, a θ term has a dramatic effect, pointed out by
Witten: the monopole acquires an electric charge, proportional to θ .

We can see this first in a heuristic way. We work in a gauge with non-zero A0,
and take all fields static. Then

�E = −�∇ A0 �B = g

4π

�r
r2

+ �∇ × �A. (7.38)

For such a configuration, the θ term,

Lθ = θe2

8π2
�E · �B (7.39)

takes the form

Lθ = − θe2g

32π2

∫
d3r A0 �∇ · r̂

r2
= −θe2g

8π2

∫
d3r A0δ(�r ). (7.40)

We started with a magnetic monopole at the origin, but we now also have an electric
charge at the origin, (θe2g)/(8π2).

One might worry that in this analysis one is dealing with a singular field con-
figuration, and in the non-Abelian case the configuration is non-singular. We can
give a more precise argument. Let’s go back to A0 = 0 gauge. In this gauge, we can
sensibly write down the canonical Hamiltonian. In the absence of θ , the conjugate
momentum to �A is �E . But in the presence of θ , there is an additional contribution:

�� = −d �A
dt

+ θe2

8π2
�B. (7.41)

Now let’s think about the invariance of states under small gauge transformations.
For θ = 0, we saw that the small gauge transformations, with gauge parameter ω,
are generated by

Qω =
∫

d3x �∇ω · �E . (7.42)

An interesting set of large gauge transformations are those with ωa = λ�a/v. For
these, if we integrate by parts, we obtain a term which vanishes by Gauss’s law
(Gauss’s law is enforced by the invariance under small gauge transformations),
and a surface term. This surface term gives the total U (1) charge times λ. But we
can think of this another way. For the low-lying excitations, multiplication by ei Qω
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is like shifting the dynamical variable χ by a constant, λ. In general, the wave
functions for χ have the form eiqχ , where q is quantized. So the states pick up a
phase eiqλ. This is just the transformation of a state of charge q under the global
gauge transformation with phase λ.

In the presence of θ , however, the operator which implements time-independent
gauge transformations is modified. The �E is replaced by the canonical momentum
above. Now acting on states, the extra piece gives a factor (gθ )/(2π ) in the exponent.
Even states with q = 0 now pick up a phase, so there is an additional contribution
to the charge:

Q = nee − θnm

2π
. (7.43)

7.7 Electric–magnetic duality

Anyone who has ever seen Maxwell’s equations has speculated on a possible duality
between electricity and magnetism. If there were magnetic charges, these equations
would take the form:

�∇ · �E = ρe �∇ · �B = ρm, (7.44)

�∇ × �E = −∂ �B
∂t

+ �jm �∇ × �B = ∂ �E
∂t

+ �j e. (7.45)

These equations retain their form if we, replace �E → − �B, �B → �E and also let
ρe → ρm, ρm → −ρe (and similarly for the electric and magnetic currents).

Now that we have a framework for discussing magnetic charges, it is natural
to ask whether some theories of electrodynamics really obey such a symmetry. In
general, however, this is a difficult problem. We have just learned that electric and
magnetic charges, when they both exist, obey a reciprocal relation, g ∝ 1/e. From
the point of view of quantum field theory, this means that exchanging electric and
magnetic charges also means replacing the fundamental coupling by its inverse. In
other words, if there is such a duality symmetry, it relates a strongly coupled theory
to a weakly coupled theory. We don’t know a great deal about strongly coupled
gauge theories, so investigating the possibility of such a duality is a difficult problem.
That such a symmetry might exist in theories of the type we have been discussing
is not entirely crazy. For example, the monopole masses behave, at weak coupling,
like 1/g2. So as the coupling becomes strong, these particles become light, even as
the charged states become heavy. They have complicated quantum numbers (some
of the monopole states are fermionic, for example).

Remarkably, there is a circumstance where such dualities can be studied: theories
with more than one supersymmetry (in four dimensions). N = 4 supersymmetric
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Yang–Mills theory turns out to exhibit an electric–magnetic duality. These theories
will be discussed in Chapter 15. Crucial to verifying this duality will be a deeper
understanding of the BPS condition, which will allow us to establish exact formulas
for masses of certain particles, valid for all values of the coupling. These formulas
will exhibit precisely the expected duality between electricity and magnetism.

Suggested reading

There are many excellent reviews and texts on monopoles. These include Coleman
(1981) and Harvey (1996), and this chapter borrows ideas from both. You can find
an introduction to the subject in Chapter 6 of Jackson’s electrodynamics text (1999).

Exercises

(1) Verify that Eqs. (7.1) and (7.2) are those of infinitely long, thin solenoids ending at the
origin.

(2) Find the kink solution of the 1 + 1-dimensional model. Show that the collective coor-
dinate action is

S =
∫

dt
1

2
Mkink ẋ2

0 .

(3) Verify that Eq. (7.31) solves the BPS equations.
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Technicolor: a first attempt to explain hierarchies

In Chapter 5, we learned a great deal about the dynamics of quantum chromody-
namics. In Section 4.5, we argued that the hierarchy problem is one of the puzzles
of the Standard Model. The grand unified models of the previous chapter provided
a quite stark realization of the hierarchy problem. In an SU (5) grand unified model,
we saw that it is necessary to carefully adjust the couplings in the Higgs potential
in order that one obtain light doublets and heavy color triplet Higgs. This is already
true at tree level; loop effects will correct these relations, requiring further delicate
adjustments.

The first proposal to resolve this problem goes by the name “technicolor” and is
the subject of this chapter. The technicolor hypothesis exploits our understanding
of QCD dynamics. It elegantly explains the breaking of the electroweak symmetry.
It has more difficulty accounting for the masses of the quarks and leptons, and
simple versions seem incompatible with precision studies of the W and Z particles.
In this chapter, we will introduce the basic features of the technicolor hypothesis.
We will not attempt to review the many models that have been developed to try
to address the difficulties of flavor and precision electroweak experiments. It is
probably safe to say that, as of this writing, none is totally successful, nor are they
terribly plausible. But it should be kept in mind that this may reflect the limitations of
theorists; experiment may yet reveal that nature has chosen this path. In the second
part of this book, we will argue that in string theory, ignoring phenomenological
details, a technicolored solution to the hierarchy problem seems as likely as its
main competitor, supersymmetry. Perhaps some reader of this book will realize
what theorists have been missing.

Apart from the fact that technicolor might have something to do with Nature, this
brief chapter will also provide an opportunity to develop a deeper understanding of
the non-perturbative aspects of gauge theories.

131
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W W
νµ

π

Fig. 8.1. Diagrammatic representation of technicolor.

8.1 QCD in a world without Higgs fields

Consider a world with only a single generation of quarks and no Higgs fields. In such
a world, the quarks would be exactly massless. The SU (2)L × SU (2)R symmetry of
QCD would be, in part, a gauge symmetry. SU (2)L would correspond to the SU (2)
symmetry of the weak interactions. Hypercharge, Y , would include a generator of
SU (2)R and baryon number:

Y = 2T3R + B. (8.1)

The quark condensate,

〈q f q̄ f ′ 〉 = �3δ f f ′ (8.2)

would break some of the gauge symmetry. Electric charge, however, would be
conserved, so SU (2) × U (1) → U (1).

In Appendix C, we saw that the quark condensate conserves a vector SU (2),
ordinary isospin. This SU (2) is generated by the linear sum

Ti = TiL + TiR. (8.3)

So the SU (2) gauge bosons transform as a triplet of the conserved isospin. This
guarantees that the successful tree-level relation,

MW = MZ cos(θ ), (8.4)

is satisfied.
To understand the masses of the gauge bosons, remember that for a broken

symmetry with current jµ, the coupling of the Goldstone boson to the current is

〈0| jµ|π (p)〉 = i fπ pµ. (8.5)

This means that there is a non-zero amplitude for a gauge boson to turn into a
Goldstone, and vice versa. The diagram of Fig. 8.1 is proportional to:

g2 f 2
π pµ i

p2
pν. (8.6)

As the momentum tends to zero, this tends to a constant – the mass of the gauge
boson. For the charged gauge bosons, the mass is just:

m2
W ± = g2 f 2

π (8.7)
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while for the neutral gauge bosons we have a mass matrix:

fπ2

(
g2 gg′

gg′ g′ 2

)
(8.8)

giving one massless gauge boson and one with mass-squared (g2 + g′2) f 2
π .

All of this can be nicely described in terms of the non-linear sigma model which
is used to describe pion physics. Recall that the pions could be described in terms
of a matrix,

� = |〈ψψ〉|ei �π ·�τ
2 , (8.9)

which transforms under SU (2)L × SU (2)R as:

� → UL�U †
R. (8.10)

Changes in the magnitude of the condensate are associated with excitations in QCD
much more massive than the pion fields (the σ field of our linear sigma model of
Section 2.2). So it is natural to treat this as a constant. � is then a field constrained
to move on a manifold. As in our examples in two dimensions, a model based on
such a field is called a non-linear sigma model. The Lagrangian is:

L = f 2
π Tr∂µ�†∂µ�. (8.11)

In the context of the physics of light pseudo-Goldstone particles, the virtue of such
a model is it incorporates the effects of broken symmetry in a very simple way. For
example, all of the results of current algebra can be derived by studying the physics
of such a theory and its associated Lagrangian.

In the case of the σ -model, we have an identical structure, except that we have
gauged some of the symmetry, so we need to replace the derivatives by covariant
derivatives:

∂µ� → Dµ� = ∂µ� − i
Aa

µσa

2
� − i�

σ3

2
Bµ. (8.12)

Again, we can choose unitary gauge; we just set � = 1. So the Lagrangian in this
gauge is simply:

L = Tr

(
Aa

µσa

2
� + �

σ3

2
Bµ

)2

. (8.13)

This yields exactly the mass matrix we wrote before.

8.2 Fermion masses: extended technicolor

In technicolor models, the Higgs field is replaced by new strong interactions which
break SU (2) × U (1) at a scale Fπ = 1 TeV. But the Higgs field of the Standard
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Model gives masses not only to the gauge bosons, but to the quarks and leptons as
well. In the absence of the Higgs scalar, there are chiral symmetries which prohibit
masses for any of the quarks and leptons. While our simple model can explain
the masses of the W s and Zs, it has no mechanism to generate the masses for the
ordinary quarks and leptons.

If we are not to introduce fundamental scalars, the only way to break these
symmetries is to introduce further gauge interactions. Consider first a single gener-
ation of quarks and leptons. Enlarge the gauge group to SU (3) × SU (2) × U (1) ×
SU (N + 1). The technicolor group will be an SU (N ) subgroup of the last factor.
Take each quark and lepton to be part of an N + 1 or N + 1 of this larger group.
To avoid anomalies, we will also include a right-handed neutrino. In other words,
our multiplet structure is:(

Q
q

) (
Ū
ū

) (
D̄
d̄

) (
L
�

) (
Ē
ē

) (
N̄
ν̄

)
. (8.14)

Here q, ū, d̄, �, etc., are the usual quarks and leptons; the fields denoted with
capital letters are the techniquarks. Now suppose that the SU (N + 1) is broken to
SU (N ) by some other gauge interactions, in a manner similar to technicolor, at a
scale �etc � �tc. Then there are a set of broken gauge generators with mass of
order �etc. Exchanges of these bosons give rise to operators such as:

L4f = 1

�2
etc

Qσµq∗Ūσµū∗ + h.c. (8.15)

Using the identity for the Pauli matrices,∑
µ

(σµ)αα̇(σµ)β̇β = δβ
α δ

β̇
α̇ , (8.16)

permits us to rewrite the four-fermi interaction:

L4f = 1

�etc
QŪq∗ū∗ + h.c. (8.17)

We can replace QŪ by its expectation value, of order �3
tc. This gives rise to a mass

for the u quark. The other quarks and leptons gain mass in a similar fashion.
This model is clearly unrealistic on many counts: it has only one generation; there

is a massive neutrino; there are relations among the masses which are unrealistic;
there are approximate global symmetries which lead to unwanted pseudo-Goldstone
bosons. Still, it illustrates the basic idea of extended technicolor models: additional
gauge interactions break the unwanted chiral symmetries which protect the quark
and lepton masses.
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One can try to build realistic models by considering more complicated groups and
representations for the extended technicolor (etc) interactions. Rather than attempt
this here, we consider some of the issues in a general way. We imagine we have
a model with three generations. The extended technicolor interactions generate a
set of four-Fermi interactions which break the chiral symmetries which act on the
separate quarks and leptons. In a model of three generations, there are a number of
challenges which must be addressed.

(1) Perhaps the most serious is the problem of flavor-changing neutral currents. In addition
to four-Fermi operators which generate mass, there will also be four-Fermi operators
involving just the ordinary quarks and leptons. These operators will not, in general,
respect flavor symmetries. They are likely to include terms like

L�S=2 = 1

�etc
s̄d̄s∗d∗, (8.18)

which violate strangeness by two units. Unless �etc is extremely large (of the order of
hundreds of TeV), this will lead to unacceptably large rates for K 0 ↔ K̄ 0.

(2) Generating the top quark mass is potentially problematic. The top quark mass is larger
than the W and Z masses. Yet if the ETC scale is large, it is hard to see how to achieve
this.

(3) The problem of pseudo-Goldstone bosons is generic to technicolor models, in just the
fashion we saw for the simple model.

The challenge of technicolor model building is to construct models which solve
these problems. We will not attempt to review the various approaches which have
been put forward here. Models which solve these problems are typically extremely
complicated. Instead, we will close by briefly discussing another serious difficulty:
precision measurements of electroweak processes.

8.3 Precision electroweak measurements

In Section 4.5, we stressed that the parameters of the electroweak theory have been
measured with high precision, and compared with detailed theoretical calculations,
including radiative corrections. One naturally might wonder whether a strongly
interacting Higgs sector could reproduce these results. The answer is that it is
difficult. There are two categories of corrections which one needs to consider. The
first are, in essence, corrections to the relation

MW = MZ cos(θW ). (8.19)

In a general technicolor model, these will be large. But we have seen why this
relation holds in the minimal Standard Model: there is an approximate, global
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SU (2) symmetry. This is in fact the case of the simplest technicolor model we
encountered above. So this problem likely has solutions.

There are, however, other corrections as well, resulting from the fact that in
these strongly coupled theories, the gauge boson propagators are quite different
than those of weakly coupled field theories. These have been estimated in many
models, and are found to be far too large to be consistent with the data. More
details about this problem, and speculations on possible solutions, can be found in
the Suggested reading.

Suggested reading

An up-to-date set of lectures on technicolor, including the problems of flavor and
electroweak precision measurements, are those of Chivukula. An introduction to
the analysis of precision electroweak physics is provided by Peskin (1990); for the
application to technicolor theories, see Peskin and Takeuchi (1990).

Exercises

(1) Determine the relations between the quark and lepton masses in the extended technicolor
model above.

(2) What are the symmetries of the extended technicolor model in the limit that we turn off
the ordinary SU (3) × SU (2) × U (1) gauge interactions? How many of these symme-
tries are broken by the condensate? Each of these broken symmetries gives rise to an
appropriate Nambu–Goldstone boson. Some of these approximate symmetries are bro-
ken explicitly by the ordinary gauge interactions. The corresponding Goldstone bosons
will then gain mass, typically of order αi�etc. But some will not gain mass of this order.
Which symmetry (or symmetries) will be respected by the ordinary gauge interactions?
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Supersymmetry

In a standard advanced field theory course, one learns about a number of symmetries:
Poincaré invariance, global continuous symmetries, discrete symmetries, gauge
symmetries, approximate and exact symmetries. These latter symmetries all have
the property that they commute with Lorentz transformations, and in particular
they commute with rotations. So the multiplets of the symmetries always contain
particles of the same spin; in particular, they always consist of either bosons or
fermions.

For a long time, it was believed that these were the only allowed types of sym-
metry; this statement was even embodied in a theorem, known as the Coleman–
Mandula theorem. However, physicists studying theories based on strings stumbled
on a symmetry which related fields of different spin. Others quickly worked out
simple field theories with this new symmetry: supersymmetry.

Supersymmetric field theories can be formulated in dimensions up to eleven.
These higher-dimensional theories will be important when we consider string the-
ory. In this chapter, we consider theories in four dimensions. The supersymmetry
charges, because they change spin, must themselves carry spin – they are spin-1/2
operators. They transform as doublets under the Lorentz group, just like the two-
component spinors χ and χ∗. (The theory of two-component spinors is reviewed in
Appendix A, where our notation, which is essentially that of the text by Wess and
Bagger (1992), is explained). There can be 1, 2, 4 or 8 such spinors; correspond-
ingly, the symmetry is said to be N = 1, 2, 4 or 8 supersymmetry. Like generators
of an ordinary group, the supersymmetry generators obey an algebra; unlike an
ordinary bosonic group, however, the algebra involves anticommutators as well as
commutators (it is said to be “graded”).

There are at least four reasons to think that supersymmetry might have something
to do with TeV-scale physics. The first is the hierarchy problem: as we will see,
supersymmetry can both explain how hierarchies arise, and why there are not large
radiative corrections. The second is the unification of couplings. We have seen that
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while the gauge group of the Standard Model can rather naturally be unified in a
larger group, the couplings do not unify properly. In the minimal supersymmetric
extension of the Standard Model (the Minimal Supersymmetric Standard Model, or
MSSM) the couplings unify nicely, if the scale of supersymmetry breaking is about
1 TeV. Third, the assumption of TeV-scale supersymmetry almost automatically
yields a suitable candidate for the dark matter, with a density in the required range.
Finally, low-energy supersymmetry is strongly suggested by string theory, though
at present one cannot assert that this is a prediction.

9.1 The supersymmetry algebra and its representations

Because the supersymmetry generators are spinors, they do not commute with
the Lorentz generators. Perhaps, then, it is not surprising that the supersymmetry
algebra involves the translation generators (Q̄α̇ = Q̄∗

α̇){
Q A

α , Q̄ B
β̇

} = 2σ
µ

αβ̇
δAB Pµs (9.1){

Q A
α , Q̄ B

β

} = εαβ X AB . (9.2)

The X ABs are Lorentz scalars, antisymmetric in A, B, known as central charges.
If nature is supersymmetric, it is likely that the low-energy symmetry is N = 1,

corresponding to only one possible value for the index A above. Only N = 1
supersymmetry has chiral representations. Of course, one might imagine that the
chiral matter would arise at the point where supersymmetry was broken. But, as
we will see, it is very difficult to break N > 1 supersymmetry spontaneously;
this is not the case for N = 1. The smallest irreducible representations of N = 1
supersymmetry which can describe massless fields are as follows.

� Chiral superfields: (φ, ψα), a complex scalar and a chiral fermion.
� Vector superfields: (λ, Aµ), a chiral fermion and a vector meson, both, in general, in the

adjoint representation of the gauge group.
� The gravity supermultiplet: (ψµ,α, gµν), a spin-3/2 particle, the gravitino, and the graviton.

One can work in terms of these fields, writing supersymmetry transformation
laws and constructing invariants. This turns out to be rather complicated. One
must use the equations of motion to realize the full algebra. Great simplification
is achieved by enlarging space-time to include commuting and anticommuting
variables. The resulting space is called superspace.

9.2 Superspace

We may conveniently describe N = 1 supersymmetric field theories by using su-
perspace. Superspace allows a simple description of the action of the symmetry on
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fields and provides an efficient algorithm for construction of invariant Lagrangians.
In addition, calculations of Feynman graphs and other quantities are often greatly
simplified using superspace, at least in the limit that supersymmetry is unbroken or
nearly so.

In superspace, in addition to the ordinary coordinates, xµ, one has a set of
anticommuting, Grassmann, coordinates, θα, θ

∗
α̇ = θ̄α̇. The Grassmann coordinates

obey:

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0. (9.3)

Grassmann coordinates provide a representation of the classical configura-
tion space for fermions; they are familiar from the problem of formulating the
fermion functional integral. Note that the square of any θ vanishes. Derivatives also
anticommute: {

∂

∂θα

,
∂

∂θ̄β̇

}
= 0, etc. (9.4)

Crucial in the discussion of Grassmann variables is the problem of integration. In
discussing Poincaré invariance of ordinary field theory Lagrangians, the property
of ordinary integrals that∫ ∞

−∞
dx f (x + a) =

∫ ∞

−∞
dx f (x) (9.5)

is important. We require that the analogous property hold for Grassmann integration
(here for one variable): ∫

dθ f (θ + ε) =
∫

dθ f (θ ). (9.6)

This is satisfied by the integration rule:∫
dθ (1, θ ) = (0, 1). (9.7)

For the case of θα, θ̄α̇, one can write a simple integral table:∫
d2θθ2 = 1;

∫
d2θ̄ θ̄2 = 1, (9.8)

all others vanishing.
One can formulate a superspace description for both local and global supersym-

metry. The local case is rather complicated, and we won’t deal with it here, referring
the interested reader to the suggested reading, and confining our attention to the
global case.

The goal of the superspace formulation is to provide a classical description
of the action of the symmetry on fields, just as one describes the action of the
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Poincaré generators. Consider functions of the superspace variables, f (xµ, θ, θ̄ ).
The supersymmetry generators act on these as differential operators: xµ, θ, θ∗:

Qα = ∂

∂θα

− iσµ
αα̇θ

∗α̇∂µ; Q̄α̇ = − ∂

∂θ̄α̇

+ iθ∗ασ
µ
αα̇∂µ. (9.9)

Note that the θs have mass dimension −1/2. It is easy to check that the Qαs obey
the algebra. For example,

{Qα, Qβ} =
{(

∂

∂θα

− iσµ
αα̇θ

∗α̇∂µ

)
,

(
∂

∂θβ

− iσ ν
ββ̇

θ∗β̇∂ν

)}
= 0, (9.10)

since the θs and their derivatives anticommute. With just slightly more effort, one
can construct the {Qα, Q∗

α̇} anticommutator.
One can think of the Qs as generating infinitesimal transformations in superspace

with Grassmann parameter ε. One can construct finite transformations as well by
exponentiating the Qs; because there are only a finite number of non-vanishing
polynomials in the θs, these exponentials contain only a finite number of terms.
The result can be expressed elegantly:

eεQ+ε∗ Q̄�(xµ, θ, θ̄) = �(xµ − iεσµθ∗ + iθσµε∗, θ + ε, θ̄ + ε∗). (9.11)

If one expands � in powers of θ , there are only a finite number of terms. These can
be decomposed into two irreducible representations of the algebra, corresponding
to the chiral and vector superfields described above. To understand these, we need
to introduce one more set of objects, the covariant derivatives, Dα and D̄α̇. These
are objects which anticommute with the supersymmetry generators, and thus are
useful for writing down invariant expressions. They are given by

Dα = ∂α + iσµ
αα̇θ

∗α̇∂µ; D̄α̇ = −∂α̇ − iθασ
µ
αα̇∂µ. (9.12)

They satisfy the anticommutation relations:

{Dα, D̄α̇} = −2iσµ
αα̇∂µ {Dα, Dα} = {D̄α̇, D̄β̇} = 0. (9.13)

We can use the Ds to construct irreducible representations of the supersymmetry
algebra. Because the Ds anticommute with the Qs, the condition

D̄α̇� = 0 (9.14)

is invariant under supersymmetry transformations. Fields that satisfy this condition
are called chiral superfields. To construct chiral superfields, we would like to find
combinations of xµ, θ and θ̄ which are annihilated by D̄α. Writing

yµ = xµ + iθσµθ̄, (9.15)



9.2 Superspace 143

then

� = �(y) = φ(y) +
√

2θψ(y) + θ2 F(y) (9.16)

is a chiral (scalar) superfield. Expanding in θ , the expansion terminates:

� = φ(x) + iθσµθ̄∂µφ + 1

4
θ2θ̄2∂2φ (9.17)

+
√

2θψ − i√
2
θθ∂µψσµθ̄ + θ2 F.

We can work out the transformation laws. Starting with

δ� = εα Qα� + εα Q̄α̇ (9.18)

the components transform as

δφ =
√

2εψ δψ =
√

2εF +
√

2iσµε∗∂µφ δF = i
√

2ε∗σ̄ µ∂µψ. (9.19)

Vector superfields form another irreducible representation of the algebra; they
satisfy the condition

V = V †. (9.20)

Again, it is easy to check that this condition is preserved by supersymmetry trans-
formations. V can be expanded in a power series in θs:

V = iχ − iχ † − θσµθ∗ Aµ + iθ2θ̄ λ̄ − i θ̄2θλ + 1

2
θ2θ̄2 D. (9.21)

Here χ is not quite a chiral field; it is a superfield which is a function of θ only, i.e.
it has terms with zero, one or two θs; χ∗ is its conjugate.

If V is to describe a massless field, the presence of Aµ indicates that there should
be some underlying gauge symmetry, which generalizes the conventional transfor-
mation of bosonic theories. In the case of a U (1) theory, gauge transformations act
by

V → V + i� − i�† (9.22)

where � is a chiral field. The θθ∗ term in � is precisely a conventional gauge
transformation of Aµ. In the case of a U (1) theory, one can define a gauge-invariant
field strength,

Wα = −1

4
D̄2 DαV . (9.23)

By a gauge transformation, we can set χ = 0. The resulting gauge is known
as the Wess–Zumino gauge. This gauge is analogous to Coulomb gauge in
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electrodynamics:

Wα = −iλα + θα D − σµνβ
α Fµνθβ + θ2σ

µ

αβ̇
∂µλ∗β̇ . (9.24)

The gauge transformation of a chiral field of charge q is:

� → e−iq��. (9.25)

One can form gauge-invariant combinations using the vector field (connection) V :

�†e+qV �. (9.26)

We can also define a gauge-covariant derivative by

Dα� = Dα� + DαV �. (9.27)

This construction has a non-Abelian generalization. It is most easily motivated
by generalizing first the transformation of �:

� → e−i�� (9.28)

where � is now a matrix-valued chiral field.
Now we want to combine φ† and φ in a gauge-invariant way. By analogy to what

we did in the Abelian case, we introduce a matrix-valued field, V , and require that

�†eV � (9.29)

be gauge-invariant. So we require:

eV → e−i�∗
eV ei�. (9.30)

From this, we can define a gauge-covariant field strength,

Wα = −1

4
D̄2e−V DαeV . (9.31)

This transforms under gauge transformations like a chiral field in the adjoint
representation:

Wα → ei�Wαe−i�. (9.32)

9.3 N = 1 Lagrangians

In ordinary field theories, we construct Lagrangians invariant under translations
by integrating densities over all of space. The Lagrangian changes by a deriva-
tive under translations, so the action is invariant. Similarly, if we start with a La-
grangian density in superspace, a supersymmetry transformation acts by differen-
tiation with respect to x or θ . So integrating the variation over the full superspace
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gives zero. This is the basic feature of the integration rules we introduced earlier. In
equations:

δ

∫
d4x

∫
d4θ h(�, �†, V ) =

∫
d4xd4θ (εα Qα + εα̇ Qα̇)h(�, �†, V ) = 0.

(9.33)
For chiral fields, integrals over half of superspace are invariant. If f (�) is a function
of chiral fields only, f itself is chiral. As a result,

δ

∫
d4x d2θ f (�) =

∫
d4x d2θ (εα Qα + εα̇ Qα̇) f (�). (9.34)

The integrals over the Qα terms vanish when integrated over x and d2θ . The Q∗

terms also give zero. To see this, note that f (�) is itself chiral (check), so

Q̄α̇ f ∝ θασµ
αα̇∂µ f. (9.35)

We can construct a general Lagrangian for a set of chiral fields, �i , and gauge
group G. The chiral fields have dimension one (again, note that the θs have di-
mension −1/2). The vector fields, V , are dimensionless, while Wα has dimension
3/2. With these ingredients, we can write down the most general renormalizable
Lagrangian. First, there are terms involving integration over the full superspace:

Lkin =
∫

d4θ
∑

i

�
†
i eV �i , (9.36)

where the eV is in the representation of the gauge group appropriate to the field �i .
We can also write an integral over half of superspace:

LW =
∫

d2θW (�i ) + c.c. (9.37)

W (�) is a holomorphic function of the �i s (it is a function of �i , not �
†
i ), called

the superpotential. For a renormalizable theory,

W = 1

2
mi j�i� j + 1

3
�i jk�

i� j�k . (9.38)

Finally, for the gauge fields, we can write:

Lgauge = 1

g(i)2

∫
d2θW (i)2

α . (9.39)

The full Lagrangian density is

L = Lkin + LW + Lgauge. (9.40)

The superspace formulation has provided us with a remarkably simple way to
write the general Lagrangian. In this form, however, the meaning of these various
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terms is rather opaque. We would like to express them in terms of component fields.
We can do this by using our expressions for the fields in terms of their components,
and our simple integration table. Let’s first consider a single chiral field, �, neutral
under any gauge symmetries. Then

Lkin = |∂µ�|2 + iψ�∂µσµψ∗
� + F∗

�F�. (9.41)

The field F is referred to as an “auxiliary field,” as it appears without derivatives
in the action. Its equation of motion will be algebraic, and can be easily solved. It
has no dynamics. For several fields, labeled with an index i , the generalization is
immediate:

Lkin = |∂µφi |2 + iψi∂µσµψ∗
i + F∗

i Fi . (9.42)

It is also easy to work out the component form of the superpotential terms. We
will write this for several fields:

LW = ∂W

∂�i
Fi + ∂2W

∂�i� j
ψiψ j . (9.43)

For our special choice of superpotential this is:

LW = Fi (mi j� j + λi jk� j�k) + (mi j + λi jk�k)ψiψ j + c.c. (9.44)

It is a simple matter to solve for the auxiliary fields:

F∗
i = − ∂W

∂�i
. (9.45)

Substituting back in the Lagrangian,

V = |Fi |2 =
∣∣∣∣ ∂W

∂�i

∣∣∣∣2 . (9.46)

To work out the couplings of the gauge fields, it is convenient to choose the
Wess–Zumino gauge. Again, this is analogous to the Coulomb gauge, in that it
makes manifest the physical degrees of freedom (the gauge bosons and gauginos),
but the supersymmetry is not explicit. We will leave performing the integrations
over superspace to the exercises, and just quote the full Lagrangian in terms of the
component fields:

L = −1

4
g−2

a Fa2
µν − iλaσµ Dµλa∗ + |Dµφi |2 − iψiσ

µ Dµψ∗
i

+ 1

2g2
(Da)2 + Da

∑
i

φ∗
i T aφi + F∗

i Fi − Fi
∂W

∂φi
+ c.c.

+
∑

i j

1

2

∂2W

∂φi∂φ j
ψiψ j + i

√
2
∑

λaψi T
aφ∗

i . (9.47)
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The scalar potential is found by solving for the auxiliary D and F fields:

V = |Fi |2 + 1

2g2
a

(Da)2 (9.48)

with

Fi = ∂W

∂φ∗
i

Da =
∑

i

(gaφ∗
i T aφi ). (9.49)

In the case there is a U (1) factor in the gauge group, there is one more term one can
include in the Lagrangian, known as the Fayet–Iliopoulos D term. In superspace,

ξ

∫
d4θV (9.50)

is supersymmetric and gauge invariant, since the integral
∫

d4θ� vanishes for any
chiral field. In components, this is simply a term linear in D, ξ D, so, solving for D
from its equations of motion,

D = ξ +
∑

i

qiφ
∗
i φi . (9.51)

9.4 The supersymmetry currents

We have written classical expressions for the supersymmetry generators, but for
many purposes it is valuable to have expressions for these objects as operators in
quantum field theory. We can obtain these by using the Noether procedure. We need
to be careful, though, because the Lagrangian is not invariant under supersymmetry
transformations, but instead transforms by a total derivative. This is similar to the
problem of translations in field theory. To see that there is a total derivative in the
variation, recall that the Lagrangian has the form, in superspace:∫

d4θ f (θ, θ̄) +
∫

d2θW (θ ) + c.c. (9.52)

The supersymmetry generators all involve a ∂/∂θ piece and a θ∂µ piece. The
variation of the Lagrangian is proportional to

∫
d4θεQ f + · · · . The piece involving

∂/∂θ integrates to zero, but the extra piece does not; only in the action, obtained by
integrating the Lagrangian density over space-time, does the derivative term drop
out.

So in performing the Noether procedure, the variation of the Lagrangian will
have the form:

δL = ε∂µK µ + (∂µε)T µ. (9.53)
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Integrating by parts, we have that K µ − T µ is conserved. Taking this into account,
for a theory with a single chiral field:

jµ
α =

√
2σ ν

αβ̇
σ̄ µβ̇γ ψγ ∂νφ

∗ + i
√

2Fσµαα̇ψ∗
α̇ , (9.54)

and similarly for jµ
α̇ . The generalization for several chiral fields is obvious;

one replaces ψ → ψi , φ → φi , etc., and sums over i . One can check that the
(anti)commutator of the Qs (integrals over j0) with the various fields gives the
correct transformations laws. One can do the same for gauge fields. Working with
the action written in terms of W , there are no derivatives, so the variation of the
Lagrangian comes entirely from the ∂µK µ term in Eq. (9.53). We have already seen
that the variation of

∫
d2θ is a total derivative. The current is worked out in the

exercises at the end of this chapter.

9.5 The ground-state energy in globally supersymmetric theories

One striking feature of the Lagrangian of Eq. (9.47) is that V ≥ 0. This fact can be
traced back to the supersymmetry algebra. Start with the equation

{Qα, Q̄β̇} = 2Pµσ
µ

αβ̇
, (9.55)

multiply by σ 0 and take the trace:

Qα Q̄α̇ + Q̄α̇ Qα = E . (9.56)

Since the left-hand side is positive, the energy is always greater than or equal to
zero.

In global supersymmetry, E = 0 is very special: the expectation value of the
energy is an order parameter for supersymmetry breaking. If supersymmetry is
unbroken, Qα|0〉 = 0, so the ground-state energy vanishes if and only if supersym-
metry is unbroken.

Alternatively, consider the supersymmetry transformation laws for λ and ψ . One
has, under a supersymmetry transformation with parameter ε,

δψ =
√

2εF + · · · δλ = iεD + · · · . (9.57)

In the quantum theory, the supersymmetry transformation laws become operator
equations

δψ = i{Q, ψ}, (9.58)

so taking the vacuum expectation value of both sides, we see that a non-vanishing
F means broken supersymmetry; again vanishing of the energy, or not, is an in-
dicator of supersymmetry breaking. So if either F or D has an expectation value,
supersymmetry is broken.
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The signal of ordinary (bosonic) symmetry breakdown is a Goldstone boson. In
the case of supersymmetry, the signal is the presence of a Goldstone fermion, or
goldstino. One can prove a goldstino theorem in almost the same way one proves
Goldstone’s theorem. We will do this shortly, when we consider simple models of
supersymmetry and its breaking.

9.6 Some simple models

In this section, we consider some simple models, to develop some practice with
supersymmetric Lagrangians and to illustrate how supersymmetry is realized in the
spectrum.

9.6.1 The Wess–Zumino model

One of the earliest, and simplest, models is the Wess–Zumino model, a theory of a
single chiral field (no gauge interactions). For the superpotential, we take:

W = 1

2
mφ2 + λ

3
φ3. (9.59)

The scalar potential is (using φ for the super and scalar field)

V = |mφ + λφ2|2 (9.60)

and the φ field has mass-squared |m|2. The fermion mass term is

1

2
mψψ (9.61)

so the fermion also has mass m.
Let’s consider the symmetries of the model. First, set m = 0. The theory then

has a continuous global symmetry. This is perhaps not obvious from the form of the
superpotential, W = (λ/3)φ3. But the Lagrangian is an integral over superspace of
W , so it is possible for W to transform and for the θs to transform in a compensating
fashion. Such a symmetry, which does not commute with supersymmetry, is called
an R symmetry. If, by convention, we take the θs to carry charge 1, than the dθs
carry charge −1 (think of the integration rules). So the superpotential must carry
charge 2. In the present case, this means that φ carries charge 2/3. Note that each
component of the superfield transforms differently:

φ → ei 2
3 αφ ψ → ei( 2

3 −1)αψ F → ei( 2
3 −2)α F. (9.62)

Now consider the problem of mass renormalization at one loop in this theory.
First suppose that m = 0. From our experience with non-supersymmetric theories,
we might expect a quadratically divergent correction to the scalar mass. But φ2
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carries charge 4/3, and this forbids a mass term in the superpotential. For the
fermion, the symmetry does not permit one to draw any diagram which corrects the
mass. But for the boson, there are two diagrams, one with intermediate scalars, one
with fermions. We will study these in detail later. Consistent with our argument,
however, these two diagrams cancel.

What if, at tree level, m �= 0? We will see shortly that there are still no corrections
to the mass term in the superpotential. In fact, perturbatively, there are no corrections
to the superpotential at all. There are, however, wave-function renormalizations;
rescaling φ corrects the masses. In four dimensions, the wave-function corrections
are logarithmically divergent, so there are logarithmically divergent corrections to
the masses, but there are no quadratic divergences.

9.6.2 A U (1) gauge theory

Consider a U (1) gauge theory, with two charged chiral fields, φ+ and φ−, with
charges ±1, respectively. First suppose that the superpotential vanishes. Our ex-
perience with ordinary field theories would suggest that we start developing a
perturbation expansion about the point in field space φ± = 0. But consider the
potential in this theory. In Wess–Zumino gauge:

V (φ±) = 1

2
D2 = g2

2
(|φ+|2 − |φ−|2)2. (9.63)

Zero energy, supersymmetric minima have D = 0. By a gauge choice, we can set

φ+ = v φ− = v′eiα. (9.64)

Then D = 0 if v = v′. In field theory, as discussed in Section 2.3, when one has
such a continuous degeneracy, just as in the case of global symmetry breaking, one
must choose a vacuum. Each vacuum is physically distinct – in this case, the spectra
are different – and there are no transitions between vacua.

It is instructive to work out the spectrum in a vacuum with a given v. One has,
first, the gauge bosons, with masses:

m2
v = 4g2v2. (9.65)

This accounts for three degrees of freedom. From the Yukawa couplings of the
gaugino, λ, to the φs, one has a term:

Lλ =
√

2gvλ(ψφ+ − ψφ−), (9.66)

so we have a Dirac fermion with mass 2gv. So we now have accounted for three
bosonic and two fermionic degrees of freedom. The fourth bosonic degree of free-
dom is a scalar; one can think of it as the “partner” of the Higgs which is eaten in
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the Higgs phenomenon. To compute its mass, note that, expanding the scalars as

φ± = v + δφ± (9.67)

D = gv(δφ+ + δφ+∗ − δφ− − δφ−∗). (9.68)

So D2 gives a mass to the real part of δφ+ − δφ−, equal to the mass of the gauge
bosons and gauginos. Since the masses differ in states with different v, these states
are physically inequivalent.

There is also a massless state: a single chiral field. For the scalars, this follows
on physical grounds: the expectation value, v, is undetermined and one phase is
undetermined, so there is a massless complex scalar. For the fermions, the linear
combination ψφ+ + ψφ− is massless. So we have the correct number of fields to
construct a massless chiral multiplet. We can describe this elegantly by introducing
the composite chiral superfield:

� = φ+φ− ≈ v2 + v(δφ+ + δφ−). (9.69)

Its components are precisely the massless complex scalar and chiral fermion which
we identified above.

This is our first encounter with a phenomenon which is nearly ubiquitous in
supersymmetric field theories and string theory. There are often continuous sets of
vacuum states, at least in some approximation. The set of such physically distinct
vacua is known as the “moduli space.” In this example, the set of such states is
parameterized by the values of the field, �; � is called a “modulus.”

In quantum mechanics, in such a situation, we would solve for the wave function
of the modulus, and the ground state would typically involve a superposition of the
different classical ground states. We have seen, though, that, in field theory, one
must choose a value of the modulus field. In the presence of such a degeneracy, for
each such value one has, in effect, a different theory – no physical process leads
to transitions between one such state and another. Once the degeneracy is lifted,
however, this is no longer the case, and transitions, as we will frequently see, are
possible.

9.7 Non-renormalization theorems

In ordinary field theories, as we integrate out physics between one scale and another,
we generate every term in the effective action permitted by symmetries. This is not
the case in supersymmetric field theories. This feature gives such theories surprising,
and possibly important, properties when we consider questions of naturalness. It
also gives us a powerful tool to explore the dynamics of these theories, even at
strong coupling. This power comes easily; in this section, we will enumerate these
theorems and explain how they arise.
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So far, we have restricted our attention to renormalizable field theories. But we
have seen that, in considering physics beyond the Standard Model, we may wish to
relax this restriction. It is not hard to write down the most general, globally super-
symmetric theory with at most two derivatives, using the superspace formalism:

L =
∫

d4θ K (φi , φ
†
i ) +

∫
d2θW (φi ) + c.c. +

∫
d2θ fa(φ)

(
W (a)

α

)2 + c.c. (9.70)

The function K is known as the Kahler potential. Its derivatives dictate the form of
the kinetic terms for the different fields. The functions W and fa are holomorphic
(what physicists would comfortably call “analytic”) functions of the chiral fields.
In terms of component fields (see the exercises) the real part of f couples to F2

µν ;
these functions thus determine the gauge couplings. The imaginary parts couple to
the now-familiar operator F F̃ . These features of the Lagrangian will be important
in much of our discussion of supersymmetric field theories and string theory.

Non-supersymmetric theories have the property that they tend to be generic;
any term permitted by symmetries in the theory will appear in the effective action,
with an order of magnitude determined by dimensional analysis.1 Supersymmetric
theories are special in that this is not the case. In N = 1 theories, there are non-
renormalization theorems governing the superpotential and the gauge coupling
functions, f , of Eq. (9.70). These theorems assert that the superpotential is not
corrected in perturbation theory beyond its tree level value, while f is at most
renormalized at one loop.2

Originally, these theorems were proven by detailed study of Feynman diagrams.
Seiberg has pointed out that they can be understood in a much simpler way. Both
the superpotential and the functions f are holomorphic functions of the chiral
fields, i.e. they are functions of the φi s and not the φ∗

i s. This is evident from
their construction. Seiberg argued that the coupling constants of a theory may be
thought of as expectation values of chiral fields and so the superpotential must be
a holomorphic function of these as well. For example, consider a theory of a single
chiral field, �, with superpotential

W = (m�2 + λ�3). (9.71)

We can think of λ and m as expectation values of chiral fields, λ(x, θ ) and m(x, θ ).
In the Wess–Zumino Lagrangian, if we first set λ to zero, there is an R symmetry

under which � has R charge 1 and λ has R charge −1. Now consider corrections
to the effective action in perturbation theory. For example, renormalizations of λ in

1 In some cases, there may be suppression by a few powers of coupling.
2 There is an important subtlety connected with these theorems. Both should be interpreted as applying only to

a “Wilsonian” effective action, in which one integrates out physics above some scale, µ. If infrared physics is
included, the theorems do not necessarily hold. This is particularly important for the gauge couplings.
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the superpotential necessarily involve positive powers of λ. But such terms (apart
from (λ)1) have the wrong R charge to preserve the symmetry. So there can be
no renormalization of this coupling. There can be wave-function renormalization,
since K is not holomorphic, so K = K (λ†λ) is allowed, in general.

There are many interesting generalizations of these ideas, and I won’t survey
them here, but I will mention two further examples. First, gauge couplings can be
thought of in the same way, i.e. we can treat g−2 as part of a chiral field. More
precisely, we define:

S = 8π2

g2
+ ia + · · · . (9.72)

The real part of the scalar field in this multiplet couples to F2
µν , but the imaginary

part, a, couples to F F̃ . Because F F̃ is a total derivative, in perturbation theory there
is a symmetry under constant shifts of a. The effective action should respect this
symmetry. Because the gauge coupling function, f , is holomorphic, this implies
that

f (g2) = S + const = 8π2

g2
+ const. (9.73)

The first term is just the tree level term. One-loop corrections yield a constant, but
there are no higher order corrections in perturbation theory! This is quite a striking
result. It is also paradoxical, since the two-loop beta functions for supersymmetric
Yang–Mills theories have been computed long ago, and are, in general, non-zero.
The resolution of this paradox is subtle and interesting. It provides a simple com-
putation of the two-loop beta function. In a particular renormalization scheme, it
gives an exact expression for the beta function. This is explained in Appendix D.

Before explaining the resolution of this paradox, there is one more non-
renormalization theorem which we can prove rather trivially here. This is the state-
ment that if there is no Fayet–Iliopoulos D term at tree level, this term can be
generated at most at one loop. To prove this, write the D term as∫

d4θd(g, λ)V . (9.74)

Here d(g, λ) is some unknown function of the gauge and other couplings in the
theory. But if we think of g and λ as chiral fields, this expression is only gauge
invariant if d is a constant, corresponding to a possible one-loop contribution. Such
contributions do arise in string theory.

In string theory, all of the parameters are expectation values of chiral fields.
Indeed, non-renormalization theorems in string theory, both for world sheet and
string perturbation theory, were proved by the sort of reasoning we have used
above.
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9.8 Local supersymmetry: supergravity

If supersymmetry has anything to do with nature, and if it is not merely an accident,
then it must be a local symmetry. There is not space here for a detailed exposition of
local supersymmetry. For most purposes, both theoretical and phenomenological,
there are, fortunately, only a few facts we will need to know. The field content (in
four dimensions) is like that of global supersymmetry, except that now one has a
graviton and a gravitino. Note that the number of additional bosonic and fermionic
degrees of freedom (a minimal requirement if the theory is to be supersymmetric) is
the same. The graviton is a traceless, symmetric tensor; in d − 2 = 2 dimensions,
this has two independent components. Similarly, the gravitino, ψµ, has both a vector
and a spinor index. It satisfies a constraint similar to tracelessness:

γ µψµ = 0. (9.75)

In d − 2 dimensions, this is two conditions, leaving two physical degrees of
freedom.

As in global supersymmetry (without the restriction of renormalizability), the
terms in the effective action with at most two derivatives or four fermions are
completely specified by three functions.

(1) The Kahler potential, K (φ, φ†), a function of the chiral fields.
(2) The superpotential, W (φ), a holomorphic function of the chiral fields.
(3) The gauge coupling functions, fa(φ), which are also holomorphic functions of the chiral

fields.

The Lagrangian which follows from these is quite complicated, including many
two- and four-fermion interactions. It can be found in the suggested reading. Our
main concern in this text will be the scalar potential. This is given by

V = eK

[(
∂W

∂φi
+ ∂K

∂φi
W

)
gi j̄

(
∂W ∗

∂φ∗̄
j

+ ∂K

∂φ∗̄
j

W

)
− 3|W |2

]
, (9.76)

where

gi j̄ = ∂2 K

∂φi∂φ j̄
(9.77)

is the (Kahler) metric associated with the Kahler potential. In this equation, we
have adopted units in which M = 1, where

G N = 1

8π M2
. (9.78)

M ≈ 2 × 1018 GeV is known as the reduced Planck mass.
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Suggested reading

The text by Wess and Bagger (1992) provides a good introduction to superspace,
the fields and Lagrangians of supersymmetric theories in four dimensions, and su-
pergravity. Other texts include those by Gates et al. (1983) and Mohapatra (2003).
Appendix B of Polchinski’s (1998) text provides a concise introduction to su-
persymmetry in higher dimensions. The supergravity Lagrangian is derived and
presented in its entirety in Cremmer et al. (1979) and Wess and Bagger (1992) and
is reviewed, for example, in Nilles (1984). Non-renormalization theorems were first
discussed from the viewpoint presented here by Seiberg (1993).

Exercises

(1) Verify the commutators of the Qs and the Ds.
(2) Check that with the definition, Eq. (9.15), � is chiral. Show that any function of chiral

fields is a chiral field.
(3) Verify that Wα transforms as in Eq. (9.32), and that TrW 2

α is gauge invariant.
(4) Derive the expression (9.47) for the component Lagrangian including gauge interactions

and the superpotential by doing the superspace integrals. For an SU (2) theory with a
scalar triplet, �φ, and singlet, X , take W = λ( �φ2 − µ2). Find the ground state and work
out the spectrum.

(5) Derive the supersymmetry current for a theory with several chiral fields. For a single
field, �, and W = 1/2 m�2, verify, using the canonical commutation relations, that the
Qs obey the supersymmetry algebra. Work out the supercurrent for a pure supersym-
metric gauge theory.
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A first look at supersymmetry breaking

If supersymmetry has anything to do with the real world, it must be a broken
symmetry. In the globally supersymmetric framework we have presented so far,
this breaking could be spontaneous or explicit. Once we promote the symmetry to
a local symmetry, as we will argue later, the breaking of supersymmetry must be
spontaneous. However, as we will also see, at low energies, the theory can appear to
be a globally supersymmetric theory with explicit, “soft,” breaking of the symmetry.
In this chapter, we will discuss some of the features of both spontaneous and explicit
breaking.

10.1 Spontaneous supersymmetry breaking

We have seen that supersymmetry breaking is signalled by a non-zero expectation
value of an F component of a chiral or D component of a vector superfield. Models
involving only chiral fields with no supersymmetric ground state are referred to as
O’Raifeartaigh models. A simple example has three singlet fields, A, B, and X ,
with superpotential:

W = λA(X2 − µ2) + m B X. (10.1)

With this superpotential, the equations

FA = ∂W

∂ A
= 0 FB = ∂W

∂ B
= 0 (10.2)

are incompatible. To actually determine the expectation values and the vacuum
energy, it is necessary to minimize the potential. There is no problem satisfying the
equation FX = 0. So we need to minimize

Veff = |FA|2 + |FB |2 = |λ2||X2 − µ2|2 + m2|X |2. (10.3)

157
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Assuming µ2 and λ are real, the solutions are:

X = 0 X2 = 2λ2µ2 − m2

2λ2
. (10.4)

The corresponding vacuum energies are:

V (a)
0 = |λ2µ4|; V (b)

0 = m2µ2 − m4

4λ2
. (10.5)

The vacuum at X �= 0 disappears at a critical value of µ.
Let’s consider the spectrum in the first of these (with X = 0). We focus, in par-

ticular, on the massless states. First, there is a massless scalar. This arises because,
at this level, not all of the fields are fully determined. The equation

∂W

∂ X
= 0 (10.6)

can be satisfied provided

2λAX + m B = 0. (10.7)

This vacuum degeneracy is accidental, and as we will later see, is lifted by quantum
corrections.

There is also a massless fermion, ψA. This fermion is the goldstino. Replacing
the auxiliary fields in the supersymmetry current for this model (Eq. (9.54)) gives

jα
µ = i

√
2FAσ

µ
αα̇ψ

∗α̇
A . (10.8)

You should check that the massive states do not form Bose–Fermi degenerate
multiplets.

10.1.1 The Fayet–Iliopoulos D term

It is also possible to generate an expectation value for a D term. In the case of a
U (1) gauge symmetry, we saw that

µ2
∫

d4θ V = µ2 D (10.9)

is gauge invariant. Under the transformation δV = � + �†, the integrals over the
chiral and anti-chiral fields, � and �†, are zero. This can be seen either by doing
the integration directly, or by noting that differentiation by Grassmann numbers
is equivalent to integration (recall our integral table). As a result, for example,∫

d2θ̄ ∝ (D̄)2. This Fayet–Iliopoulos D term can lead to supersymmetry breaking.
For example, if one has two charged fields, �±, with charges ±1, and superpoten-
tial m�+�−, one cannot simultaneously make the two auxiliary F fields and the
auxiliary D field vanish.
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One important feature of both types of models is that at tree level, in the context
of global supersymmetry, the spectra are never realistic. These spectra satisfy a sum
rule, ∑

(−1)F m2 = 0. (10.10)

Here (−1)F = 1 for bosons and −1 for fermions. This guarantees that there are
always light states, and often color and/or electromagnetism are broken. These
statements are not true of radiative corrections, and of supergravity, as we will
explain later.

It is instructive to prove this sum rule. Consider a theory of chiral fields only (no
gauge interactions). The potential is given by

V =
∑

i

∣∣∣∣∂W

∂φi

∣∣∣∣2 . (10.11)

The boson mass matrix has terms of the form φ∗̄
i φ j and φiφ j + c.c., where we are

using indices ī and j̄ for complex conjugate fields. The latter terms, as we will now
see, are connected with supersymmetry breaking. The various terms in the mass
matrix can be obtained by differentiating the potential:

m2
i j̄ = ∂2V

∂φi∂φ∗̄
j

= ∂2W

∂φi∂φk

∂2W ∗

∂φ∗̄
k ∂φ∗̄

j

, (10.12)

m2
i j = ∂2V

∂φi∂φ j
= ∂W

∂φ∗̄
k

∂3W

∂φk∂φi∂φ j
. (10.13)

The first of these terms has just the structure of the square of the fermion mass
matrix,

MFi j = ∂2W

∂φi∂φ j
. (10.14)

So writing the boson mass, M2
B matrix on the basis (φi φ∗̄

j ), we see that Eq. (10.10)
holds.

The theorem is true whenever a theory can be described by a renormalizable
effective action. Various non-renormalizable terms in the effective action can give
additional contributions to the mass. For example, in our O’Raifeartaigh model,∫

d4θ A†AZ †Z will violate the tree-level sum rule. Such terms arise in renor-
malizable theories when one integrates out heavy fields to obtain an effective
action at some scale. In the context of supergravity, such terms are present al-
ready at tree level. This is perhaps not surprising, given that these theories are
non-renormalizable and must be viewed as effective theories from the very begin-
ning (perhaps the effective low-energy description of string theory). Shortly, we will
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discuss the construction of realistic models. First, however, we turn to the issue of
non-renormalization theorems and dynamical supersymmetry breaking.

10.2 The goldstino theorem

In each of the examples of supersymmetry breaking, there is a massless fermion
in the spectrum. We might expect this, by analogy to Goldstone’s theorem. The
essence of the usual Goldstone theorem is the statement that, for a spontaneously
broken global symmetry, there is a massless scalar. There is a coupling of this scalar
to the symmetry current. From Lorentz invariance (see Appendix B):

〈0| jµ|π (p)〉 = f pµ. (10.15)

Correspondingly, in the low-energy effective field theory (valid below the scale of
symmetry breaking) the current takes the form:

jµ = f ∂µπ (x). (10.16)

The analogous statements for spontaneous breaking of global supersymmetry
are easy to prove. Suppose that the symmetry is broken by the F component of a
chiral field (this can be a composite field). Then we can study∫

d4x∂µeiq·x T
〈
jµ
α (x)ψ�(0)

〉 = 0. (10.17)

Here jµ
α is the supersymmetry current; its integral over space is the supersymmetry

charge. This expression vanishes because it is an integral of a total derivative.
Now taking the derivatives, there are two non-vanishing contributions: one from
the derivative acting on the exponential; one from the action on the time-ordering
symbol. Taking these derivatives, and then taking the limit q → 0, gives

〈{Q, ��(0)}〉 = iqµT
〈
jµ
α (x)ψ�(0)

〉
F.T.

. (10.18)

The left-hand side is constant, so the Green function on the right-hand side must
be singular as q → 0. By the usual spectral representation analysis, this shows
that there is a massless fermion coupled to the supersymmetry current. In weakly
coupled theories, we can understand this more simply. Recalling the form of the
supersymmetry current, if one of the Fs has an expectation value,

jµ
α = i

√
2(σµ)αα̇ψ

∗α̇ F. (10.19)

To leading order in fields, current conservation is just the massless Dirac equation.
F , here, is the “goldstino decay constant.” We can understand the massless fermion
which appeared in the O’Raifeartaigh model in terms of this theorem. It is easy to
check that:

ψG ∝ FAψA + FBψB . (10.20)
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10.3 Loop corrections and the vacuum degeneracy

We saw that in the O’Raifeartaigh model, at the classical level, there is a large
vacuum degeneracy. To understand the model fully, we need to investigate the fate
of this degeneracy in the quantum theory. Consider the vacuum with X = 0. In
this case, A is undetermined at the classical level. But A is only an approximate
modulus. At one loop, quantum corrections generate a potential for A. Our goal is
to integrate out the various massive fields to obtain the effective action for A. At
one loop, this is particularly easy. The tree-level mass spectrum depends on A. The
one-loop vacuum energy is:∑

i

(−1)F
∫

d3k

(2π )3

1

2

√
�k2 + m2

i . (10.21)

Here the sum is over all possible helicity states; again the factor (−1)F weights
bosons with 1 and fermions with −1. This expression, in field theory, is usually
very divergent in the ultraviolet, but in the supersymmetric case, it is far less so.
If supersymmetry is unbroken, the boson and fermion contributions cancel, and
the correction simply vanishes. If supersymmetry is broken, the divergence is only
logarithmic. To see this, we can simply study the integrand at large k, expanding
the square root in powers of m2/k2. The leading, quartically divergent term, is
independent of m2, and so vanishes. The next term is quadratically divergent, but
it vanishes because of the sum rule:

∑
(−1)F m2

i = 0.

So at one loop the potential behaves as:

V (A) = −
∑

(−1)F m4
i

∫
d3k

16(2π )3k3
≈

∑
(−1)F m4

i

1

64π2
ln
(
m2

i /�
2
)
.

(10.22)
To compute the potential precisely, we need to work out the spectrum as a function
of A. We will content ourselves with the limit of large A. Then the spectrum consists
of a massive fermion, ψX , with mass 2λA, and the real and imaginary parts of the
scalar components of X , with masses:

m2
s = 4|λ2 A2| ± 2µ2λ2x2. (10.23)

So

V (A) = |λ2|µ4

(
1 + λ2

8π2
ln(|λA|2/�2)

)
. (10.24)

This result has a simple interpretation. The leading term is the classical energy;
the correction corresponds to replacing λ2 by λ2(A), the running coupling at scale
A. In this theory, a more careful study shows that the minimum of the potential is
precisely at A = 0.
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Fig. 10.1. One-loop corrections to scalar masses arising from Yukawa couplings.

10.4 Explicit, soft supersymmetry breaking

Ultimately, if nature is supersymmetric, it is likely that we will want to understand
supersymmetry breaking through some dynamical mechanism. But we can be more
pragmatic, accept that supersymmetry is broken, and parameterize the breaking
through mass differences between ordinary fields and their superpartners. It turns
out that this procedure does not spoil the good ultraviolet properties of the theory.
Such mass terms are said to be “soft” for precisely this reason.

We will consider soft breakings in more detail in the next chapter when we
discuss the MSSM, but we can illustrate the main point simply. Take as a model
the Wess–Zumino model, with m = 0 in the superpotential. Add to the Lagrangian
an explicit mass term m2

soft|φ|2. Then we can calculate the one-loop correction to
the scalar mass from the two graphs of Fig. 10.1. In the supersymmetric case, these
two graphs cancel. With the soft breaking term, there is not an exact cancellation;
instead one obtains:

δm2 = − |λ|2
16π2

m2
soft ln

(
�2/m2

soft

)
. (10.25)

We can understand this simply on dimensional grounds. We know that, for m2
soft =

0, there is no correction. Treating the soft term as a perturbation, the result is
necessarily proportional to m2

soft; at most, then, any divergence must be logarithmic.
In addition to soft masses for scalars, one can also add soft masses for gauginos;

one can also include trilinear scalar couplings. We can understand how these might
arise at a more fundamental level, which also makes clear the sense in which these
terms are soft. Suppose that we have a field, Z , with non-zero F component, as in
the O’Raifeartaigh model (but more generally). Suppose at tree level, there are no
renormalizable couplings between Z and the other fields of the model, which we
will denote generically as φ. Non-renormalizable couplings, such as

LZ = 1

M2

∫
d4θ Z †Zφ†φ, (10.26)

can be expected to arise in the effective Lagrangian; they are not forbidden by any
symmetry. Replacing Z by its expectation value, 〈Z〉 = · · · + θ2〈FZ 〉, gives a mass
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term for the scalar component of φ:

LZ = |〈F〉|2
M2

|φ|2 + · · · (10.27)

This is precisely the soft scalar mass we described above; it is soft because it is
associated with a high-dimension operator. Similarly, the operator:∫

d2θ
Z

M
W 2

α = FZ

M
λλ + · · · (10.28)

gives rise to a mass for gauginos. The term∫
d2θ

Z

M
φφφ (10.29)

leads to a trilinear coupling of the scalars. Simple power counting shows that
loop corrections to these couplings due to renormalizable interactions are at most
logarithmically divergent.

To summarize, there are three types of soft breaking terms which can appear in
a low-energy effective action.

� Soft scalar masses, m2
φ|φ|2 and m̃φ2φφ + c.c.

� Gaugino masses, mλλλ.
� Trilinear scalar couplings, �φφφ.

All three types of couplings will play an important role in thinking about possible
supersymmetry phenomenologies.

10.5 Supersymmetry breaking in supergravity models

We stressed in the last chapter that, since nature includes gravity, if supersymmetry
is not simply an accident, it must be a local symmetry. If the underlying scale of
supersymmetry breaking is high enough, supergravity effects will be important.
The potential of a supergravity model will be sufficiently important to us that it is
worth writing again:

V = eK

[(
∂W

∂φi
+ ∂K

∂φi
W

)
gi j̄

(
∂W

∂φ∗̄
j

+ ∂K

∂φ∗̄
j

W ∗
)

− 3|W |2
]
. (10.30)

In supergravity, the condition for unbroken supersymmetry is that the Kahler
derivative of the superpotential should vanish:

Di W = ∂W

∂φi
+ ∂K

∂φi
W = 0. (10.31)
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When this is not the case, supersymmetry is broken. If we require vanishing of the
cosmological constant, then we have:

3|W |2 =
∑
i, j̄

Di W D j̄ W
∗gi j̄ . (10.32)

In this case, the gravitino mass turns out to be:

m3/2 = 〈
eK/2W

〉
. (10.33)

There is a standard strategy for building supergravity models. One introduces
two sets of fields, the “hidden sector fields,” which will be denoted by Zi , and the
“visible sector fields,” denoted by ya . The Zi s are assumed to be connected with
supersymmetry breaking, and to have only very small couplings to the ordinary
fields, ya . In other words, one assumes that the superpotential, W , has the form

W = W (Z ) + Wy(y), (10.34)

at least up to terms suppressed by 1/M . The y fields should be thought of as the
ordinary matter fields and their superpartners.

One also usually assumes that the Kahler potential has a “minimal” form,

K =
∑

Z †
i Zi +

∑
y†a ya. (10.35)

One chooses (tunes) the parameters of WZ so that

〈FZ 〉 ≈ MW M (10.36)

and

〈V 〉 = 0. (10.37)

Note that this means that

〈W 〉 ≈ MW M2. (10.38)

The simplest model of the hidden sector is known as the “Polonyi model.” In
this model,

W = m2(Z + β) (10.39)

β = (2 +
√

3)M. (10.40)

In global supersymmetry, with only renormalizable terms, this would be a rather
trivial superpotential, but not so in supergravity. The minimum of the potential for
Z lies at

Z = (
√

3 − 1)M (10.41)
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and

m3/2 = (m2/M)e(
√

3−1)2/2. (10.42)

This symmetry breaking also leads to soft breaking mass terms for the fields y.
There are terms of the form

m2
0|yi |2. (10.43)

These arise from the |∂i K W |2 = |yi |2|W |2 terms in the potential. For the simple
Kahler potential:

m2
0 = 2

√
3m2

3/2 A = (3 −
√

3)m3/2. (10.44)

If we now allow for a non-trivial Wy , we also find supersymmetry-violating
quadratic and cubic terms in the potential. These are known as the B and A terms,
and have the form:

Bi j m3/2φiφ j + Ai jkm3/2φiφ jφk . (10.45)

For example, if W is homogeneous, and of degree three, there are terms in the
supergravity potential of the form:

eK ∂W

∂ya

∂K

∂y∗
a

〈W 〉 + c.c. = 3m3/2W (y). (10.46)

Additional contributions arise from

eK

〈
∂W

∂zi

〉
〈z∗

i 〉W ∗ + c.c. (10.47)

There are analogous contributions to the B terms. In the exercises, these are worked
out for specific models.

Gaugino masses (both in local and global supersymmetry) can arise from a
non-trivial gauge coupling function,

f a = c
Z

M
, (10.48)

which gives

mλ = cFz

M
. (10.49)

These models have just the correct structure to build a theory of TeV-scale
supersymmetry, provided m3/2 ∼ TeV. They have soft breakings of the correct
order of magnitude. We will discuss their phenomenology further when we discuss
the Minimal Supersymmetric Standard Model in the next chapter.



166 10 A first look at supersymmetry breaking

Even without a deep understanding of local supersymmetry, there are a number
of interesting observations we can make. Most important, our arguments for the
renormalization of the superpotential in global supersymmetry remain valid here.
This will be particularly important when we come to string theory, which is a locally
supersymmetric theory.

Suggested reading

It was Witten (1981) who most clearly laid out the issues of supersymmetry break-
ing. This paper remains extremely useful and readable today. The notion that one
should consider adding soft breaking parameters to the MSSM was developed by
Dimopoulos and Georgi (1981). Good introductions to models with supersymmetry
breaking in supergravity are provided by a number of review articles and textbooks,
for example those of Mohapatra (2003) and Nilles (1984).

Exercises

(1) Work out out the spectrum of the O’Raifeartaigh model. Show that the spectrum is not
supersymmetric, but verify the sum rule,

∑
(−1)F m2 = 0.

(2) Work out the spectrum of a model with a Fayet–Iliopoulos D term and supersymmetry
breaking. Again verify the sum rule.

(3) Check Eqs. (10.40)–(10.44) for the Polonyi model.
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The Minimal Supersymmetric Standard Model

We can now very easily construct a supersymmetric version of the Standard Model.
For each of the gauge fields of the usual Standard Model, we introduce a vector
superfield. For each of the fermions (quarks and leptons) we introduce a chiral
superfield with the same gauge quantum numbers. Finally, we need at least two
Higgs doublet chiral fields; if we introduce only one, as in the simplest version of
the Standard Model, the resulting theory possesses gauge anomalies and is incon-
sistent. So the theory is specified by the gauge group (SU (3) × SU (2) × U (1)) and
enumerating the chiral fields:

Q f , ū f , d̄ f , L f , ē f f = 1, 2, 3 HU , HD. (11.1)

The gauge invariant kinetic terms, auxiliary D terms, and gaugino–matter Yukawa
couplings are completely specified by the gauge symmetries. The superpotential
can be taken to be

W = HU (�U ) f, f ′ Q f Ū f ′ + HD(�D) f, f ′ Q f D̄ f ′ + HD(�E ) f, f ′ L f ē f ′ . (11.2)

If the Higgs obtain suitable expectation values, SU (2) × U (1) is broken, and quarks
and leptons acquire mass, just as in the Standard Model.

There are other terms which can also be present in the superpotential. These
include the “µ-term,” µHU HD. This is a supersymmetric mass term for the Higgs
fields. We will see later that we need µ >∼ MZ to have a viable phenomenology. A
set of dimension four terms permitted by the gauge symmetries raise serious issues.
For example, one can have terms

ū f d̄ gd̄h�
f gh + Q f Lgd̄hλ

f gh. (11.3)

These couplings violate B and L! This is our first serious setback. In the Standard
Model, there is no such problem. The leading B and L violating operators permitted
by gauge invariance possess dimension six, and they will be highly suppressed if

167
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the scale of interactions which violate these symmetries is high, as in grand unified
theories.

If we are not going to simply give up, we need to suppress B and L violation at
the level of dimension-four terms. The simplest approach is to postulate additional
symmetries. There are various possibilities one can imagine.

(1) Global continuous symmetries. It is hard to see how such symmetries could be preserved
in any quantum theory of gravity, and in string theory, there is a theorem which asserts
that there are no global continuous symmetries.

(2) Discrete symmetries. As we will see later, discrete symmetries can be gauge symmetries.
As such, they will not be broken in a consistent quantum theory. They are common in
string theory. These symmetries are often “R-symmetries,” symmetries which do not
commute with supersymmetry.

A simple (though not unique) solution to the problem of baryon and lepton
number violation by dimension-four operators is to postulate a discrete symmetry
known as R-parity. Under this symmetry, all ordinary particles are even, while their
superpartners are odd. Imposing this symmetry immediately eliminates all of the
dangerous operators. For example,∫

d2θ ūd̄ d̄ ∼ ψūψd̄
˜̄d (11.4)

(we have changed notation again: the tilde here indicates the superpartner of the
ordinary field, i.e. the squark) is odd under the symmetry.

More formally, we can define this symmetry as the transformation on superfields:

θα → −θα (11.5)

(Q f , ū f , d̄ f , L f , ē f ) → −(Q f , ū f , d̄ f , L f , ē f ) (11.6)

(HU , HD) → (HU , HD). (11.7)

With this symmetry, the full, renormalizable superpotential is just that of Eq. (11.2).
In addition to solving the problem of very fast proton decay, R-parity has another

striking consequence: the lightest of the new particles predicted by supersymmetry
(the LSP) is stable. This particle can easily be neutral under the gauge groups. It is
then, inevitably, very weakly interacting. This in turn means the following.

� The generic signature of R-parity conserving supersymmetric theories is events with
missing energy.

� Supersymmetry is likely to produce an interesting dark-matter candidate.

This second point is one of the principal reasons that many physicists have
found the possibility of low-energy supersymmetry so compelling. If one calcu-
lates the dark-matter density, as we will see in the chapter on cosmology, one
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automatically finds a density in the right range if the scale of supersymmetry break-
ing is about 1 TeV. Later we will see an additional piece of circumstantial evidence
for low-energy supersymmetry: the unification of the gauge couplings within the
MSSM.

We can imagine more complicated symmetries which would have similar effects,
and we will have occasion to discuss these later. In most of what follows, we will
assume a conserved Z2 R-parity.

11.1 Soft supersymmetry breaking in the MSSM

If supersymmetry is a feature of the underlying laws of nature, it is certainly
broken. The simplest approach to model building with supersymmetry is to add
soft-breaking terms to the effective Lagrangian so that the squarks, sleptons and
gauginos have sufficiently large masses that they have not yet been observed (or, in
the event that they are discovered, to account for their values). On the other hand,
these masses shouldn’t be so large that they reintroduce the fine-tuning problem.

Without a microscopic theory of supersymmetry breaking, all of the soft terms
are independent. It is interesting to ask, in the MSSM, how many soft-breaking
parameters are there? More precisely, let’s count the parameters of the model beyond
those of the minimal standard model with a single Higgs doublet. Having imposed
R-parity, the number of Yukawa couplings is the same in both theories, as are the
number of gauge couplings and θ parameters. The quartic couplings of the Higgs
fields are completely determined in terms of the gauge couplings. So the “new”
terms arise from the soft-breaking terms, as well as the µ term for the Higgs fields.
We will speak loosely of all of this as the “soft-breaking” Lagrangian. Suppressing
flavor indices:

Lsb = Q̃∗m2
Q Q̃ + ˜̄u∗m2

ū
˜̄u + ˜̄d∗m2

d̄
˜̄d + L̃∗m2

L L̃ + ˜̄e∗m2
ē
˜̄e + HU Q̃ Au ˜̄u + HD Q̃ Ad

˜̄d

+HD L̃ Ãl̃ ē + c.c. + Miλλ + c.c. + m2
HU

|HU |2+m2
HD

|HD|2+µB HU HD

+ µψHψH . (11.8)

The matrices m2
Q , m2

ū , and so on are 3 × 3 Hermitian matrices, so they have 9
independent entries. The matrices Au , Ad , etc., are general 3 × 3 complex matrices,
so they each possess 18 independent entries. Each of the gaugino masses is a
complex number, so these introduce 6 additional parameters. The quantities µ and
B are also complex; this is 4 more. In total, then, there are 111 new parameters.
As in the standard model, not all of these parameters are meaningful; we are free
to make field redefinitions. The counting is significantly simplified if we just ask
how many parameters there are beyond the usual 18 of the minimal theory, since
this counting uses up most of this freedom.
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To understand what redefinitions are possible beyond the transformations on the
quarks and leptons which go into defining the KM parameters, we need to ask what
are the symmetries of the MSSM before introducing the soft-breaking terms and the
µ term (the µ term is more or less on the same footing as the soft-breaking terms,
since it is of the same order of magnitude; as we will discuss later, it might well
arise from the physics of supersymmetry breaking). Apart from the usual baryon
and lepton numbers, there are two more. The first is a Peccei–Quinn symmetry,
under which two Higgs superfields rotate by the same phase, while the right-handed
quarks and leptons rotate by the opposite phase. The second is an R-symmetry, a
generalization of the symmetry we found in the Wess–Zumino model. It is worth
describing this in some detail. By definition, an R-symmetry is a symmetry of the
Hamiltonian which does not commute with the supersymmetry generators. Such
symmetries can be continuous or discrete. In the case of continuous R-symmetries,
by convention, we can take the θs to transform by a phase eiα. Then the general
transformation law takes the form

λi → eiαλi (11.9)

for the gauginos, while for the elements of a chiral multiplet

�i (x, θ ) → eiri α�(x, θeiα), (11.10)

or, in terms of the component fields,

φi → eiri αφi ψi → ei(ri −1)αψi Fi → ei(ri −2)α Fi . (11.11)

In order that the Lagrangian exhibit a continuous R-symmetry, the total R charge
of all terms in the superpotential must be 2. In the MSSM, we can take ri = 2/3
for all of the chiral fields.

The soft-breaking terms, in general, break two of the three lepton number sym-
metries, the R-symmetry and the Peccei–Quinn symmetry. So there are 4 non-trivial
field redefinitions which we can perform. In addition, the minimal standard model
has 2 Higgs parameters. So from our 111 parameters, we can subtract a total of 6,
leaving 105 as the number of new parameters in the MSSM.

Clearly we would like to have a theory which predicts these parameters. Later,
we will study some candidates. To get started, however, it is helpful to make an
ansatz. The simplest thing to do is suppose that all of the scalar masses are the same,
all of the gaugino masses the same, and so on. It is necessary to specify also a scale
at which this Ansatz holds, since, even if true at one scale, it will not continue to
hold at lower energies. Almost all investigations of supersymmetry phenomenology
assume such a degeneracy at a large-energy scale, typically the reduced Planck
mass, Mp. It is often said that degeneracy is automatic in supergravity models, so
this is frequently called the supergravity (“SUGRA”) model but, as we will see,
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supergravity by itself makes no prediction of degeneracy. Some authors, similarly,
include this assumption as part of the definition of the MSSM, but in this text we will
use this term to refer to the particle content and the renormalizable interactions.
In any case, the ansatz consists of the following statements at the high-energy
scale.

(1) All of the scalar masses are the same, m̃2 = m2
0. This assumption is called universality

of scalar masses.
(2) The gaugino masses are the same, Mi = M0. This is referred to as the “GUT” relation,

since it holds in simple grand unified models.
(3) The soft-breaking cubic terms are assumed to be given by

Ltri = A(HU Qyuū + HD Qydd̄ + HD Lyl ē). (11.12)

The matrices yu , yd , etc., are the same matrices which appear in the Yukawa couplings.
This is the assumption of proportionality.

Note that with this ansatz, if we ignore possible phases, five parameters are
required to specify the model (m2

0, M0, A, Bµ, µ). One of these can be traded for
MZ , so this is quite an improvement in predictive power. In addition, this Ansatz
automatically satisfies all constraints from rare processes. As we will explain, rare
decays and flavor violation are suppressed (b → s + γ is not as strong a constraint,
but it requires other relations among soft masses). On the other hand, we will want
to ask: just how plausible are these assumptions? We will try to address this question
later.

11.1.1 Cancellation of quadratic divergences in gauge theories

We have already seen that soft supersymmetry-violating mass terms receive only
logarithmic divergences. While not essential to our present discussion, it is perhaps
helpful to see how the cancellation of quadratic divergences for scalar masses arises
in gauge theories like the MSSM.

Take, first, a U (1) theory, with (massless) chiral fields φ+ and φ−. Before doing
any computation, it is easy to see that provided we work in a way which preserves
supersymmetry, there can be no quadratic divergence. In the limit that the mass
term vanishes, the theory has a chiral symmetry under which φ+ and φ− rotate by
the same phase,

φ± → eiαφ±. (11.13)

This symmetry forbids a mass term in the superpotential, �φ+φ−, the only way a
supersymmetric mass term could appear. The actual diagrams we need to compute
are shown in Fig. 11.1. Since we are interested only in the mass, we can take the
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ψ

φ

λ

(c) (d)

(b)(a)

Aµ

Fig. 11.1. One-loop diagrams contributing to scalar masses in a supersymmetric
gauge theory.

external momentum to be zero. It is convenient to choose Landau gauge for the
gauge boson. In this gauge the gauge boson propagator is

Dµν = −i

(
gµν − qµqν

q2

)
1

q2
(11.14)

so the first diagram vanishes. The second, third and fourth are straightforward to
work out from the basic Lagrangian. One finds:

Ib = g2(i)(i)
3

(2π )4

∫
d4k

k2
, (11.15)

Ic = g2(i)(i)
(
√

2)2

(2π )4

∫
d4k

k4
tr(kµσµkνσ̄

ν) (11.16)

= − 4g2

(2π )4

∫
d4k

k2
, (11.17)

Id = g2(i)(i)
1

(2π )4

∫
d4k

k2
. (11.18)

It is easy to see that the sum, Ia + Ib + Ic + Id = 0.

Including a soft-breaking mass for the scalars, only Id changes:

Id → g2

(2π )4

∫
d4k

k2 − m̃2

= −i
g2

(2π )4

∫
d4kE

k2
E + m̃2

= m̃2
independent + ig2

16π2
m̃2 ln(�2/m̃2). (11.19)
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We have worked here in Minkowski space, and have indicated factors of i to assist
the reader in obtaining the correct signs for the diagrams. In the second line, we have
performed a Wick rotation. In the third, we have separated off a mass-independent
part, since we know that this is canceled by the other diagrams.

Summarizing, the one-loop mass shift is

δm̃2 = − g2

16π2
m̃2 ln(�2/m̃2). (11.20)

Note that the mass shift is proportional to m̃2, the supersymmetry breaking mass,
as we would expect since supersymmetry is restored as m̃2 → 0. In the context of
the Standard Model, we see that the scale of supersymmetry breaking cannot be
much larger than the Higgs mass scale itself without fine tuning. Roughly speaking,
it can’t be much larger than this scale by factors of order 1/

√
αW , i.e., factors of

order six. We also see that the correction has a logarithmic sensitivity to the cutoff.
So, just like the gauge and Yukawa couplings, the soft masses run with energies.

11.2 SU (2) × U (1) breaking

In the MSSM, there are a number of general statements which can be made about
the breaking of SU (2) × U (1). The only quartic couplings of the Higgs fields arise
from the SU (2) and U (1) D2 terms. The general form of the soft-breaking mass
terms has been described above. So, before worrying about any detailed Ansatz for
the soft breakings, the Higgs potential is given, quite generally, by

VHiggs = m2
HU

|HU |2 + m2
HD

|HD|2 − m2
3(HU HD + h.c.)

+ 1

8
(g2 + g′2)(|HU |2 − |HD|2)2 + 1

2
g2|HU HD|2. (11.21)

This potential by itself conserves CP; a simple field redefinition removes any phase
in m2

3. (As we will discuss shortly, there are many other possible sources of CP
violation in the MSSM.) The physical states in the Higgs sector are usually described
by assuming that CP is a good symmetry. In that case, there are two CP-even scalars,
H 0 and h0, where, by convention, h0 is the lighter of the two. There are a CP-odd
neutral scalar, A, and charged scalars, H±. At tree level, one also defines a parameter

tan(β) = |〈HU 〉|
|〈HD〉| ≡ v1/v2. (11.22)

Note that with this definition, as tan(β) grows, so does the Yukawa coupling of the
b quark.

To obtain a suitable vacuum, there are two constraints which the soft breakings
must satisfy.
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H

Z

Z

Fig. 11.2. Leading contribution to Higgs production in e+ e− annihilation.

(1) Without the soft-breaking terms, HU = HD (v1 = v2 = v) makes the SU (2) and U (1)
D terms vanish, i.e. there is no quartic coupling in this direction. So the energy is
unbounded below unless

m2
HU

+ m2
HD

− 2|m3|2 > 0. (11.23)

(2) In order to obtain symmetry breaking, the Higgs mass matrix must have a negative
eigenvalue. This gives the requirement:∣∣m2

3

∣∣2 > m2
HU

m2
HD

. (11.24)

When these conditions are satisfied, it is straightforward to minimize the potential
and determine the spectrum. One finds that

m2
A = m2

3

sin(β) cos(β)
. (11.25)

It is conventional to take m2
A as one of the parameters. Then one finds that the

charged Higgs masses are given by

m2
H± = m2

W + m2
A, (11.26)

while the neutral Higgs masses are:

m2
H 0,h0 = 1

2

(
m2

A + m2
Z ±

√(
m2

A + m2
Z

)2 − 4m2
Z m2

A cos(2β)

)
. (11.27)

Note the inequalities:

mh0 ≤ m A

mh0 ≤ m Z

m H± ≥ mW . (11.28)

The middle relation is particularly interesting since LEP II set a limit on the Higgs
mass of 115 GeV. The basic process through which one searches for the Higgs in
e+e− annihilation uses the Z–Z–h vertex and exploits a virtual Z , to avoid using
the tiny electron Yukawa coupling, as in Fig. 11.2. This limit is actually appropriate



11.3 Why is one Higgs mass negative? 175

to the Minimal Standard Model, but the limit in the MSSM is not significantly
different. Thus it would appear that the MSSM is ruled out. However, these are tree
level relations. We will turn shortly to the issue of radiative corrections, and will
see that these can be quite substantial – LEP II was not able to rule out the MSSM.

11.3 Why is one Higgs mass negative?

Within the simple ansatz, there is a natural way to understand why m2
HU

< 0 while
m2

HD
> 0. What is special about HU is that it has an O(1) coupling to the top

quark. (If tan(β) is very large, of order 40–50, HD has a comparable coupling to
the b-quark). We saw earlier in the Wess–Zumino model that, at one loop, there is
a negative renormalization of the soft-breaking scalar masses. This calculation can
be translated to the MSSM, with a modification for the color and SU (2) factors.
One obtains:

m2
HU

= (m HU )2
0 − 6y2

t

16π2
ln(�2/m2)

(
m̃2

t + m2
t̄

)
, (11.29)

m̃2
t = (m̃t )

2
0 − 4y2

t

16π2
ln(�2/m2)m̃2

H . (11.30)

So we see that loop corrections involving the top quark Yukawa coupling reduce
both the Higgs and the stop masses, but the reduction is larger for the Higgs. If � ∼
Mp, and the typical soft breakings are of order 1 TeV, these corrections are O(1),
so one needs a full renormalization group analysis to determine if SU (2) × U (1)
is broken. For this we need the full set of renormalization-group equations. These
can be derived along the lines of the calculations we have already presented for
the gauge and Yukawa contributions to the soft-mass renormalizations. If only yt

is large, the one-loop expressions can be written rather compactly:

µ
∂

∂µ
m2

HU
= 1

8π2

[
3y2

t

(
m2

HU
+ m2

t̄ + m2
Q3

+ ∣∣A33
U

∣∣2)] − 1

2π2

[|M2|2g2
2 + |M1|2g2

1

]
(11.31)

µ
∂

∂µ
m2

t̄ = 1

8π2

[
2y2

t

(
m2

HU
+ m2

t̄ + m2
Q3

+ ∣∣A33
U

∣∣2)] − 1

2π2

[|M3|2g2
3 + |M1|2g2

1

]
(11.32)

µ
∂

∂µ
m2

Q3
= 1

8π2

[
2y2

t

(
m2

HU
+ m2

t̄ + m2
Q3

+ ∣∣A33
U

∣∣2)]
− 1

2π2

[|M3|2g2
3 + |M2|2g2

2 + |M1|2g2
1

]
. (11.33)

Two- (and in some cases higher-) loop corrections to these equations have been
computed.
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For scalars besides HU and the third-generation squarks one has only the con-
tribution from diagrams involving intermediate gauginos

µ
∂

∂µ
m2

i = − 1

2π2

∑
a

g2
a |Ma|2cai , (11.34)

where cai denotes the appropriate Casimir (1/2 for particles in the fundamental
representation) while gaugino masses satisfy

µ
∂

∂µ

(
M2

a

g2
a

)
= 0. (11.35)

It is straightforward to integrate these equations numerically. For a significant
range of parameters, one does obtain suitable breaking of SU (2) × U (1). But with-
out analyzing these equations in great detail, one can see that, given the large value
of mt , there is a potential fine-tuning problem. Taking Eq. (11.30) as an approximate
solution, noting that yt ∼ 1 (its precise value depends on tan(β)), and allowing for
the two types of quark which appear, the coefficient of the logarithm is about 1/8.
At some point, the mass of the Higgs crosses zero. If, at that point, the squark
masses are, says 300 GeV2, then the Higgs mass will become of order 100 GeV
almost immediately. So the zero crossing must be almost exactly at the scale of the
susy-breaking masses.1

11.4 Radiative corrections to the Higgs mass limit

Despite the fact that we know M2
H is significantly larger than M2

Z , this does not (as of
this writing) rule out the MSSM. The actual upper limit on the Higgs mass is signif-
icantly above its tree-level value, MZ . At tree level, the form of the Higgs potential
is highly constrained. The quartic terms are exactly known. Once supersymmetry
is broken, however, there can be corrections to the quartic terms from radiative cor-
rections.2 These corrections are soft, in that the susy-violating four-point functions
vanish rapidly at momenta above the supersymmetry-breaking scale. Still, they are
important in determining the low-energy properties of the theory, such as the Higgs
vevs and the spectrum.

The largest effect of this kind comes from loops involving top quarks. It is
not hard to get a rough estimate of the effect. In the limit m̃t � mt , the effective
Lagrangian is not supersymmetric below m̃t . As a result, there can be corrections
to the Higgs quartic couplings. Consider the diagrams of Fig. 11.3. In this limit,

1 This version of the fine-tuning problem was elaborated by N. Arkani-Hamed.
2 In sufficiently complicated models, there can be tree-level corrections to the quartic couplings. This does not

occur in the MSSM, but it can occur in models with singlets.
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Fig. 11.3. Corrections to quartic Higgs couplings from top loops.

we can get a reasonable estimate by just keeping the top quark loop, cutting off the
integral at the mass of the stop. The result will be logarithmically divergent, and
we can take the cutoff to be m̃t . So we have

δλ = (−1)y4
t × 3

∫
d4k

(2π )4
Tr

1

(�k − mt )4
(11.36)

= − 12iy4
t

16π2
ln
(
m̃2

t /m2
t

)
. (11.37)

The implications of this result are left for the exercises at the end of this chapter.

11.5 Embedding the MSSM in supergravity

In the previous chapter, we introduced N = 1 supergravity theories. These theories
are not renormalizable, and must be viewed as effective theories, valid below some
energy scale, which might be the Planck scale or unification scale (or something
else).

The approach we introduced to model building is quite useful as a model for the
origin of supersymmetry breaking in the MSSM. The basic assumptions were as
follows.

� The theory consists of two sets of fields, the visible sector fields, ya , which in the context
of the MSSM would be the quarks and lepton superfields, and the hidden sector fields,
zi , responsible for supersymmetry breaking.

� The superpotential was taken to have the form:

W (z, y) = Wz(z) + Wy(y). (11.38)

� For the Kahler potential we took the simple Ansatz:

K =
∑

a

y†a ya +
∑

i

z†i zi . (11.39)
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In this case, we saw that if the supersymmetry-breaking scale was of order

Mint = m3/2 Mp, (11.40)

then there were an array of soft-breaking terms of order m3/2. In particular, there were
universal masses and A terms,

a m2
3/2|ya|2 + b m3/2Wab ya yb + c m3/2Wabc ya yb yc. (11.41)

Here Wab = ∂a∂bW ; Wabc = ∂a∂b∂cW .

Given that the theory is at best an effective-low-energy theory, one can ask how
natural are our assumptions, and what would be the consequences of relaxing them?
The assumption that there is some sort of hidden sector, and that the superpoten-
tial breaks up as we have hypothesized, we will see, is a reasonable one. It can
be enforced by symmetries. The assumption that the Kahler potential takes this
simple (often called “minimal”) form is a strong one, not justified by symmetry
considerations. It turns out not to hold, in any general sense, in string theory, the
only context in which presently we can compute it. If we relax this assumption,
we lose the universality of scalar masses and the proportionality of the A terms to
the superpotential. As we will see in the next section, without these, or something
close, the MSSM is not compatible with experiment.

11.6 The µ term

One puzzle in the MSSM is the µ term, the supersymmetric mass term for the Higgs
fields. In general, this term is not forbidden by any symmetry, so the first question
is: why is it small, of order TeV rather than, say, Mp or Mgut? One possibility is that
there is a symmetry. Another is related to the non-renormalization theorems. If, for
some reason, there is no mass term at lowest order for the Higgs fields, one will
not be generated perturbatively. The µ term, then, might be the result of the same
non-perturbative dynamics, for example, responsible for supersymmetry breaking.
In string theories, as we will see later, it is quite common to find massless particles
at tree level, simply by “accident.”

In such a situation, supersymmetry breaking can, quite easily, generate a µ term
of order m3/2. Consider, for example, the Polonyi model. The operator∫

d4θ
1

Mp
Z †HU HD (11.42)

would generate a µ term of just the correct size. In simple grand unified theories,
such a term is often generated.

When we discuss other models for supersymmetry breaking, such as gauge
mediation, we will see that the µ term can be more problematic.
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Fig. 11.4. Slepton production in e+ e− annihilation.

11.7 Constraints on soft breakings

While the number of soft-breaking parameters is large, they are subject to many
experimental constraints. These come from the failure of direct searches to see
superpartners of ordinary fields, and also from indirect effects.

11.7.1 Direct searches for supersymmetric particles

While have discussed limits on Higgs particles, there are many other states, and
much effort has been devoted at LEP II and the Tevatron to searching for them.
The limits are quite impressive. Among the states in the MSSM which are possible
discovery channels for supersymmetry, are the “charginos,” linear combinations of
the partners of the W ± and H±, and the neutralinos, linear combinations of the
partners of the Z and γ (B and W 3) and the neutral Higgs. The mass matrix for the
charginos, denoted w± and h̃±, is given by

Mχ± =
(

M2 gv1

gv2 µ

)
. (11.43)

For the neutralinos, w0, b, h̃0
U , h̃0

D, there is a 4 × 4 mass matrix. We will leave the
study of these for the exercises. The lightest of these states is a natural dark matter
candidate.

Direct searches at LEP II and the Tevatron strongly constrain the masses of
squarks, sleptons, charginos, neutralinos and gluinos. The direct searches are easy
to describe, and production and decay rates can be computed given knowledge of the
spectrum, since the couplings of the fields are known. If R-parity is conserved, the
LSP is stable and weakly interacting, so the characteristic signal for supersymmetry
is missing energy. For example, in e+e− colliders, one can produce slepton pairs, if
they are light enough, through the diagram of Fig. 11.4. These then decay, typically,
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Fig. 11.5. Contribution to µ → eγ .

to a lepton and a neutralino, as indicated. So the final state contains a pair of
acoplanar leptons, and missing energy. From such processes, one has (as of this
writing) limits of order MZ or larger, for all of the charged states of the MSSM.
One can obtain stronger limits – and in many cases greater discovery potential –
from hadron machines. For example, because they are strongly coupled and they
are octets of color, gluinos have very substantial production cross sections in hadron
collisions. They can be produced both by qq̄ and gg annihilation. Gluinos can decay
to a large number of channels, and many of these are used in searching for (and
setting limits on) the gluino and squark masses. For example, if squarks are heavier
than gluinos, gluinos decay through a diagram involving a virtual squark to a pair
of quarks and a chargino or neutralino; this particle, in turn, may decay to the LSP
and a pair of leptons. This is a quite distinctive signal. The limits on gluinos are
greater than 200 GeV.

11.7.2 Constraints from rare processes

Rare processes provide another set of strong constraints on the soft-breaking pa-
rameters. In the simple ansatz all of the scalar masses are the same at some very-
high-energy scale. However, if this is true at one scale, it is not true at all scales, i.e.
these relations are renormalized. Indeed, all 105 parameters are truly parameters,
and it is not obvious that the assumptions of universality and proportionality are
natural. On the other hand, there are strong experimental constraints which suggest
some degree of degeneracy.

As one example, there is no reason, a priori, why the mass matrix for the L̃s
(the partners of the lepton doublets) should be diagonal in the same basis as the
charged leptons. If it is not, there is no conservation of separate lepton numbers,
and the decay µ → eγ will occur (Fig. 11.5). To see that we are potentially in
serious trouble, we can make a crude estimate. The muon lifetime is proportional
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Fig. 11.6. Contribution to dn in supersymmetric theories.

to G2
F m5

µ. The decay, µ → eγ occurs due to the operator

Lµeγ = eC Fµν ūσµνe. (11.44)

If there is no particular suppression, we might expect

C = αw

π

mµ

m2
susy

. (11.45)

So the ratio of these rates would be of order

B R =
(αw

π

)2
(

MW

Msusy

)4

. (11.46)

This might be as small as 10−8 − 10−9 if the supersymmetry-breaking scale is large,
1 TeV or so. But the current experimental limit is 1.2 × 10−11. So even in this case,
it is necessary to suppress the off-diagonal terms. More detailed descriptions of the
limits are found in the material in the suggested reading at the end of the chapter.

Another troublesome constraint arises from the neutron and electron electric
dipole moments, dn and de. Any non-zero value of these quantities signifies CP-
violation. Currently, one has dn ≤ 10−25e cm, and de ≤ 1.6 × 10−27e cm. The soft-
breaking terms in the MSSM contain many new sources of CP-violation. Even with
the assumptions of universality and proportionality, the gaugino mass and the A,
µ and B parameters all are complex, and can violate CP. At the quark level, the
issue is that one-loop diagrams can generate a quark dipole moment, as in Fig. 11.6.
Note that this particular diagram is proportional to the phases of the gluino and the
A parameter. It is easy to see that even if msusy ∼ 500 GeV, these phases must be
smaller than about 10−2. More detailed estimates can be found in the suggested
reading at the end of the chapter.

CP is violated in the real world, so it is puzzling that all of the soft-
supersymmetry-violating terms should preserve CP to such a high degree. This
is in contrast to the Minimal Standard Model, with a single Higgs field, which can
reproduce the observed CP-violation with phases of order 1. It is thus a serious



182 11 The Minimal Supersymmetric Standard Model

s dW

W

d s

Fig. 11.7. Contribution to K ↔ K̄ in the Standard Model.

challenge to understand why CP should be such a good symmetry if nature is su-
persymmetric. Various explanations have been offered. We will discuss some of
these later, but it should be kept in mind that the smallness of CP violation sug-
gests that either the low-energy supersymmetry hypothesis is wrong, or that there is
some interesting physics which explains the surprisingly small values of the dipole
moments.

So far, we have discussed constraints on slepton degeneracy and CP-violating
phases. There are also constraints on the squark masses arising from various flavor-
violating processes. In the Standard Model, the most famous of these are strangeness
changing processes, such as K –K̄ mixing. One of the early triumphs of the Standard
Model was that it successfully explained why this mixing is so small. Indeed, the
Standard Model gives a quite good estimate for the mixing. This was originally used
to predict – amazingly accurately – the charmed quark mass. The mixing receives
contributions from box diagrams such as the one shown in Fig. 11.7. If we consider
first, only the first two generations and ignore the quark masses (compared to MW ),
we have that

M(K 0 → K̄ 0) ∝ (Vdi V
†

is)(V †
s j Vjd) = 0. (11.47)

Including fermion masses leads to terms in Leff of order

αW

4π

m2
c

M2
W

GF ln
(
m2

c/m2
u

)
(s̄γ µγ5d)(d̄γ µγ 5s) + · · · . (11.48)

The matrix element of the operator appearing here can be estimated in various ways,
and one finds that this expression roughly saturates the observed value (this was
the origin of the prediction by Gaillard and Lee of the value of the charmed quark
mass). Similarly, the CP-violating part (the “ε” parameter) is in rough accord with
observation, for reasonable values of the KM parameter δ.

In supersymmetric theories, if squarks are degenerate, there are similar can-
cellations. However, if they are not, there are new, very dangerous contributions.
The most serious is that indicated in Fig. 11.8, arising from exchange of gluinos
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Fig. 11.8. Gluino exchange contribution to kaon mixing in the MSSM.

and squarks. This is nominally larger than the Standard Model contribution by a
factor of (αs/αW )2 ≈ 10. Also, the Standard Model contribution vanishes in the
chiral limit, whereas the gluino exchange does not, and this leads to an additional
enhancement of nearly an order of magnitude. On the other hand, the diagram is
highly suppressed in the limit of exact universality and proportionality. Proportion-
ality means that the A terms in Eq. (11.8) are suppressed by factors of light quark
masses, while universality means that the squark propagator, 〈q̃∗q̃〉, is proportional
to the unit matrix in flavor space. So there are no appreciable off-diagonal terms
which can contribute to the diagram. On the other hand, there is surely some degree
of non-degeneracy. One finds that even if the characteristic susy scale is 500 GeV,
one needs degeneracy in the down-squark sector at the part in 102 level.

So K –K mixing tightly constrains the down-squark mass matrix. The imaginary
part provides further constraints. There are also strong limits on D–D mixing,
which significantly restrict the mass matrix in the up-squark sector. Other important
constraints on soft breakings come from other rare processes, such as b → sγ .
Again, more details can be found in the references in the suggested reading.

Suggested reading

The MSSM is described in most reviews of supersymmetry. Probably the best
place to look for up-to-date reviews of the model and the experimental constraints
is the Particle Data Group website. A useful collection of renormalization group
formulas for supersymmetric theories is provided in the review by Martin and
Vaughn (1994). Limits on rare processes are discussed in a number of articles, such
as that by Masiero and Silvestrini (1997).

Exercises

(1) Verify the expressions for Ia − Id (Eqs. (11.15)–(11.18)).
(2) Derive Eqs. (11.23)–(11.26).
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(3) Verify the formula for the top quark corrections to the Higgs mass. Evaluate yt in terms
of mt and sin(β). Show that, to this level of accuracy,

m2
h < m2

Z cos(2β) + 12g2

16π2

m4
t

m2
W

ln
(
m̃2m2

t

)
.

(4) Estimate the size of the supersymmetric contributions to the quark electric dipole mo-
ment, assuming that all of the superpartner masses are of order msusy, and δ is a typical
phase. Assuming, as well, that the neutron electric dipole moment is of order the quark
electric dipole moment, how small do the phases have to be if msusy = 500 GeV?
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Supersymmetric grand unification

In this brief chapter, we discuss one of the most compelling pieces of circumstantial
evidence in favor of supersymmetry: unification of coupling constants. Earlier, we
introduced grand unification without supersymmetry. In this chapter, we consider
how supersymmetry modifies that story.

12.1 A supersymmetric grand unified model

Just as in theories without supersymmetry, the simplest group into which one can
unify the gauge group of the Standard Model is SU (5). The quark and lepton
superfields of a single generation again fit naturally into a 5̄ and 10.

To break SU (5) to SU (3) × SU (2) × U (1), we can again consider a 24 of Higgs
fields, �. If we wish supersymmetry to be unbroken at high energies, the super-
potential for this field should not lead to supersymmetry breaking. The simplest
renormalizable superpotential is:

W (�) = mTr�2 + λ

3
Tr�3. (12.1)

Treating this as a globally supersymmetric theory (i.e. ignoring supergravity cor-
rections), the equations

∂W

∂�
= 0 (12.2)

are conveniently studied by introducing a Lagrange multiplier to enforce Tr� = 0.
The resulting equations have three solutions:

� = 0; � = m

λ
diag(1, 1, 1, −4); � = m

λ
diag(2, 2, 2, −3, −3). (12.3)

These solutions either leave SU (5) unbroken, or break SU (5) to SU (4) × U (1) or
to the Standard Model group. Each of these solutions is isolated; you can check

185
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that there are no massless fields from � in any of these states. At the classical level,
they are degenerate.

If we include supergravity corrections, these states are split in energy. Provided
the unification scale, m, is substantially below the Planck scale, these corrections
can be treated perturbatively. In order to make the cosmological constant vanish in
the SU (3) × SU (2) × U (1) ((3, 2, 1)) vacuum, it is necessary to include a constant
in the superpotential, such that, in this vacuum, the expectation value of the super-
potential is zero. As a result, the other two states have negative energy (as we will
see in the chapter on gravitation, they correspond to solutions in which space-time
is not Minkowski, but anti-de Sitter).

We will leave working out the details of these computations to the exercises, and
turn to other features of this model. It is necessary to include Higgs fields to break
SU (2) × U (1) down to U (1). The simplest choice for the Higgs representation is
the 5. As in the MSSM, it is actually necessary to introduce two sets of fields so as
to avoid anomalies: a 5 and 5̄ are the minimal choice. We denote these fields by H
and H̄ .

Once again, it is important that the color triplet Higgs fields in these multiplets
be massive in the (3, 2, 1) vacuum. The most general renormalizable superpotential
coupling the Higgs to the adjoint is:

m H H H̄ + y H̄�H. (12.4)

By carefully adjusting y (or m), we can arrange that the Higgs doublet is massless.
As a result, the triplet is automatically massive, with mass of order m H . Of course,
this represents an extreme fine tuning. We will see that the unification scale is about
1016 GeV, so this is a tuning of a part in 1013 or so. But it is curious that this tuning
only need be done classically. Because the superpotential is not renormalized,
radiative corrections do not lead to large masses for the doublets.

12.2 Coupling constant unification

The calculation of coupling constant unification in supersymmetric theories is quite
similar to that in non-supersymmetric ones. We assume that the threshold for the
supersymmetric particles is somewhere around 1 TeV. So up to that scale, we run
the renormalization group equations just as in the Standard Model. Above that
scale, there are new contributions from the superpartners of ordinary particles. The
leading terms in the beta functions are:

SU(3) : b0 = 3; SU(2) : b0 = −1; U(1) : b0 = −33/5. (12.5)

One can be more thorough, including two loop corrections and threshold effects.
The result of such an analysis are shown in Fig. 12.1. One has:

Mgut = 1.2 × 1016GeV; αgut ≈ 1

25
. (12.6)
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Fig. 12.1. In the Standard Model, the couplings do not unify at a point. In the
MSSM, they do, provided that the threshold for new particle production is at
about 1 TeV. Reprinted with permission from P. Langacker and N. Polonsky.
Uncertainties in coupling constant unification. Phys. Rev. D, 47, 4028 (1993).
Copyright (1993) by the American Physical Society.
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The agreement in the figure is striking. One can view this as a successful prediction
of αs , given the values of the SU (2) and U (1) couplings.

12.3 Dimension-five operators and proton decay

We have seen that in supersymmetric theories, there are dangerous dimension four
operators. These can be forbidden by a simple Z2 symmetry, R-parity. But there are
also operators of dimension five which can potentially lead to proton decay rates
far larger than the experimental limits. The MSSM possesses B- and L-violating
dimension-five operators which are permitted by all symmetries. For example, R-
parity doesn’t forbid such operators as

Oa
5 = 1

M

∫
d2θ ūūd̄e+ Ob

5 = 1

M

∫
d2θ Q Q QL . (12.7)

These are still potentially very dangerous. When one integrates out the squarks
and gauginos, they will lead to dimension-six B- and L-violating operators in the
Standard Model with coefficients (optimistically) of order

α

4π

1

Mmsusy
. (12.8)

Comparing with the usual minimal SU (5) prediction, and supposing that M ∼
1016 GeV, one sees that one needs a suppression of order 109 or so.

Fortunately, such a suppression is quite plausible, at least in the framework of
supersymmetric GUTs. In a simple SU (5) model, for example, the operators of
Eq. (12.7) will be generated by exchange of the color triplet partners of ordinary
Higgs fields, and thus one gets two factors of Yukawa couplings. Also, in order
that the operators be SU (3)-invariant, the color indices must be completely anti-
symmetrized, so more than one generation must be involved. This suggests that
suppression by factors of order Cabibbo angles is plausible. So we can readily
imagine a suppression by factors of 10−9–10−11. Proton decay can be used to re-
strict – and does severely restrict – the parameter space of particular models. But
what is quite striking is that we are automatically in the right range to be compatible
with experimental constraints, and perhaps even to see something. It is not obvious
that things had to be this way.

So far we have phrased this discussion in terms of baryon-violating physics
at Mgut. But whatever the underlying theory at Mp may be, there is no reason to
think that it should preserve baryon number. So one expects that already at scales
just below Mp, these dimension-five terms are present. If their coefficients were
simply of order 1/Mp, the proton decay rate would be enormous, five orders of
magnitude or more faster than the current bounds. But in any such theory, one
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must also explain the smallness of the Yukawa couplings. One popular approach
is to postulate approximate symmetries. Such symmetries could well suppress the
dangerous operators at the Planck scale. One might expect that there would be
further suppression, in any successful underlying theory. After all, the rate from
Higgs exchange in GUTs is so small because the Yukawa couplings are small. We
do not really know why Yukawa couplings are small, but it is natural to suspect
that this is a consequence of (approximate) symmetries. These same symmetries, if
present would also suppress dimension-five operators from Planck scale sources,
presumably by a comparable amount.

Finally, we mentioned earlier that one can contemplate symmetries to suppress
dimension-four operators beyond a Z2 R-parity. Such symmetries, as we will see,
are common in string theory. One can write down R-symmetries which forbid,
not only all of the dangerous dimension four operators, but some or all of the
dimension-five operators as well. In this case, proton decay could be unobservable
in feasible experiments.

Suggested reading

A good introduction to supersymmetric GUTs is provided in Witten (1981). The
reviews and texts which we have mentioned on supersymmetry and grand unifica-
tion all provide good coverage of the topic. The Particle Data Group website has
an excellent survey, including up-to-date unification calculations and constraints
on dimension-five operators (see Eidelman et al. 2004).

Exercises

(1) Work through the details of the simplest SU (5), supersymmetric grand unified model.
Solve the equations

∂W

∂�
= 0.

Couple the system to supergravity, and determine the value of the constant in the
superpotential required to cancel the cosmological constant in the (3, 2, 1) mini-
mum. Determine the resulting value of the vacuum energy in the SU (5) symmetric
minimum.

(2) In the simplest SU (5) model, include a 5 and 5̄ of Higgs fields. Write the most general
renormalizable superpotential for these fields and the 24, �. Find the condition on the
parameters of the superpotential so that there is a single light doublet. Using the fact
that only the Kahler potential is renormalized, show that this tuning of parameters at
tree level assures that the doublet remains massless to all orders of perturbation theory.
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Now consider the couplings of quarks and leptons required to generate masses for the
fermions. Show that exchanges of 5 and 5̄ Higgs lead to baryon and lepton number
violating dimension-five couplings.

(3) Show how various B-violating four-Fermi operators are generated by squark and
slepton exchange, starting with the general set of B- and L-violating terms in the
superpotential.
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Supersymmetric dynamics

In the previous chapter, we understood how to build realistic particle-physics mod-
els based on supersymmetry. There are already significant constraints on such
theories, and experiments at the LHC will test whether these sorts of ideas are
correct.

If supersymmetry is discovered, the question will become: how is supersymmetry
broken? Supersymmetry breaking offers particular promise for explaining large
hierarchies. Consider the non-renormalization theorems. Suppose we have a model
consisting of chiral fields and gauge interactions. If the superpotential is such that
supersymmetry is unbroken at tree level, the non-renormalization theorems for the
superpotential which we proved in Section 9.7 guarantee that supersymmetry is not
broken to all orders of perturbation theory. But they do not necessarily guarantee
that effects smaller than any power of the couplings don’t break supersymmetry.
So, if we denote the generic coupling constants by g2, there might be effects of
order, say, e−c/g2

which break the symmetry. In the context of a theory like the
MSSM, supposing that soft breakings are of this order, this might account for the
wide disparity between the weak scale (correlated with the susy-breaking scale)
and the Planck or unification scale.

So one reason that the dynamics of supersymmetric theories is of interest is
to understand dynamical supersymmetry breaking, and perhaps to study a whole
new class of phenomena in nature. But there are other reasons to be interested,
as first most clearly appreciated by Seiberg. Supersymmetric Lagrangians are far
more tightly constrained than ordinary Lagrangians. It is often possible to make
strong statements about dynamics which would be difficult if not impossible to
study in conventional field theories. We will see this includes phenomena like
electric–magnetic duality and confinement.
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13.1 Criteria for supersymmetry breaking: the Witten index

We will consider a variety of theories, many of them strongly coupled. One might
imagine that it is a hard problem to decide if supersymmetry is or is not broken.
Even in weakly coupled theories, one might wonder whether one could establish
reliably that supersymmetry is not broken, since, unless one solved the theory
exactly, it would seem hard to assert that there was no tiny non-perturbative effect
which did not break the symmetry. One of the things we will learn in this chapter
is that this is not a particularly difficult problem. We will exploit several tools.
One is known as the Witten index. Consider the field theory of interest in a finite
box. At finite volume, the supersymmetry charges are well defined, whether or not
supersymmetry is spontaneously broken. Because of the supersymmetry algebra,

Q|B〉 =
√

E |F〉, Q|F〉 =
√

E |B〉, (13.1)

i.e. non-zero-energy states come in Fermi–Bose pairs. Zero-energy states are spe-
cial; they need not be paired. In the infinite-volume limit, the question of supersym-
metry breaking is the question of whether there are or are not zero-energy states.
To count these, Witten suggested evaluating:

� = Tr(−1)F e−β H . (13.2)

Non-zero-energy states do not contribute to the index. The exponential is present to
provide an ultraviolet regulator: � is independent of β. More strikingly, the index
is independent of all of the parameters of the theory. The only way � can change
as some parameter is changed is by some zero energy state acquiring non-zero
energy, or a non-zero-energy state acquiring zero energy. But, because of Eq. (13.1),
whenever the number of zero-energy bosonic states changes, the number of zero-
energy fermionic states changes by the same amount. The index is thus topological
in character, and it is from this that it derives its power, as well as its applications
in a number of areas of mathematics. What can we learn from the index? If � �= 0,
we can say with confidence that supersymmetry is not broken. If � = 0, we don’t
know.

Let’s consider an example: a supersymmetric gauge theory, with gauge group
SU (2), and no chiral fields. Since � is independent of parameters, we can consider
the theory in a very tiny box, with very small coupling. We can evaluate�, somewhat
heuristically, as follows. Work in A0 = 0 gauge. Consider, first, the bosonic degrees
of freedom, the Ai s, where the Ai s are matrix valued. In order for the energy to be
small, we need the Ai s to be constant, and to commute. So take Ai to lie in the third
dimension in the isospin space, and ignore the other bosonic degrees of freedom.
One might try to remove these remaining variables by a gauge transformation,
g = exp(i Ai xi ), but g is only a sensible gauge transformation if it is single-valued,
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which means that A3
i = 2πn/L . So A3

i is a compact variable. This reduces the
problem to the quantum mechanics of a rotor. So in the lowest state the wave
function is a constant. Because the A3

i s are non-zero, the lowest energy states will
only involve the gluinos in the 3 direction. There are two of them, λ3

1 and λ3
2 (again

independent of coordinates).
Now recall that, in A0 = 0 gauge, the states must be gauge invariant. One inter-

esting gauge transformation is multiplication by σ2. This flips the sign of A3 and
λ3. If we assume that our Fock ground state is even under this transformation, the
only invariant states are |0〉 and λ3

1λ
3
2|0〉. So we find � = 2. If we assume that the

state is odd, then we obtain � = −2.
As we indicated, this argument is heuristic. A more detailed, but still heuristic,

argument was provided by Witten in his paper on the index. But Witten also provided
a more rigorous argument, which yields the same result. For general SU (N ), one
finds � = N .

This already establishes that a vast array of interesting supersymmetric field
theories do not break supersymmetry: not only all of the pure gauge theories, but
any theory with massive matter fields. This follows from the independence of �

of parameters. If the mass is finite, one can take it to be large; if it is sufficiently
large, we can ignore the matter fields and recover the pure gauge result. Later, we
will understand the dynamics of these theories in some detail, and will reproduce
the result for the index. But we will also see that the limit of zero mass is subtle,
and the index calculation is not directly relevant.

13.2 Gaugino condensation in pure gauge theories

Our goal in this section is to understand the dynamics of a pure SU (N ) gauge
theory, with massless fermions in the adjoint representation. Without thinking about
supersymmetry, one might expect the following, from our experience with real
QCD.

(1) The theory has a mass gap, i.e. the lowest excitations of the theory are massive.
(2) Gauginos, like quarks, condense, i.e.

〈λλ〉 = c�3 = ce−(8π2/b0g2). (13.3)

Note that there is no Goldstone boson associated with the gluino (gaugino)
condensate. The theory has no continuous global symmetry; the classical symmetry,

λ → eiαλ, (13.4)

is anomalous. However, a discrete subgroup,

λ → e
2π i
N λ, (13.5)
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is free of anomalies. One can see this by considering instantons in this theory. The
instanton has 2N zero modes; this would appear to preserve a Z2N symmetry. But
the transformation λ → −λ is actually equivalent to a Lorentz transformation (a
rotation by 2π ). Multi-instanton solutions also preserve this symmetry, and it is
believed to be exact. So the gaugino condensate breaks the Z N symmetry; there
are N degenerate vacua. This neatly accounts for the N of the index. Later we will
show that, even though the theory is strongly coupled, we can demonstrate by a
controlled semiclassical computation the existence of the condensate.

Gluino condensation implies a breakdown of the non-renormalization theorems
at the non-perturbative level. Recall that the Lagrangian is:

L =
∫

d2θ SW 2
α (13.6)

so 〈λλ〉 gives rise to a superpotential, i.e.

L =
∫

d2θ S〈λλ〉. (13.7)

This is our first example of a non-perturbative correction to the superpotential.
Note, however, that 〈λλ〉 depends on S, since it depends on g2:

S〈λλ〉 = e− 3S
b0 . (13.8)

So we actually have a superpotential for S:

W (S) = e− S
N . (13.9)

This superpotential violates the continuous shift symmetry which we used to prove
the non-renormalization theorem, but it is compatible with the non-anomalous R-
symmetry:

S → S + iαN , λ → λeiα. (13.10)

Under this symmetry, the superpotential transforms with charge 2.

13.3 Supersymmetric QCD

A rich set of theories for study are collectively referred to as “supersymmetric
QCD.” These are gauge theories with gauge group SU (N ), Nf fields, Q f , in the
N representation, and Nf fields, Q̄ f , in the N̄ representation. We will see that the
dynamics is quite sensitive to the value of Nf. First consider the theory without any
classical superpotential for the quarks. In this case, the theory has a large global
symmetry. We can transform the Qs and Q̄s by separate SU (N ) transformations.
We can also multiply the Qs by a common phase, and the Q̄s by a separate common
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phase:

Q f → eiα Q f Q̄ f → eiβ Q̄ f . (13.11)

Finally, the theory possesses an R-symmetry, under which the Qs and Q̄s are
neutral. In terms of component fields, under this symmetry:

ψQ → e−iαψQ ψQ̄ → e−iαψQ̄ λa → eiαλa. (13.12)

Now consider the question of anomalies. The SU (N ) symmetries are free of
anomalies, as is the vector-like symmetry,

Q f → eiα Q f Q̄ f → e−iα Q̄ f . (13.13)

The R-symmetry, and the axial U (1), are both anomalous. But we can define a
non-anomalous R by combining the two. The gauginos give a contribution to the
anomaly proportional to N ; so we need the fermions to carry R-charge −N/Nf.
Since the bosons (and the chiral multiplets) carry R-charge larger by 1, we have

Q f (x, θ ) → eiα Nf−N
Nf Q f (x, θe−iα) Q̄ f (x, θ ) → eiα Nf−N

Nf Q̄ f (x, θe−iα), (13.14)

so the symmetry of the quantum theory is SU (Nf)L × SU (Nf)R × U (1)R × U (1)V.
We have seen that supersymmetric theories often have, classically, a large vacuum

degeneracy, and this is true of this theory. In the absence of a superpotential, the
potential is completely determined by the D terms for the gauge fields. It is helpful
to treat D as a matrix-valued field,

D =
∑

T a Da. (13.15)

As a matrix, D can be expressed elegantly in terms of the scalar fields. We start
with the identity:

(T a) j
i (T a)l

k = δl
iδ

j
k − 1

N
δ

j
i δl

k . (13.16)

One can derive this result a number of ways. Consider propagators for fields (like
gauge bosons) in the adjoint representation of the gauge group. Take the group,
first, to be U (N ). The propagator of the matrix-valued fields〈

A j
i Al

k

〉 ∝ δl
iδ

j
k . (13.17)

But this is the same thing as 〈
Aa Ab(T a) j

i (T b)l
k

〉
. (13.18)

So we obtain the identity without the 1/N terms. Now remembering that A must
be traceless, we see that we need to subtract the trace as above. (This identity
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is important in understanding the 1/N expansion in QCD.) So a field, φ, in the
fundamental representation, makes a contribution:

δD j
i = φ∗

i φ j − 1

N
δ

j
i φ∗

k φk . (13.19)

In the anti-fundamental representation, the generators are −T aT (this follows
from the fact that the generators in the anti-fundamental are minus the complex
conjugates of those in the fundamental, and the fact that the T as are Hermitian).
So the full D term is:

D j
i =

∑
f

Q∗
i Q j − Q̄i Q̄∗ j − Tr terms. (13.20)

In this matrix form it is not difficult to look for supersymmetric solutions, i.e.
solutions of D j

i = 0. A simple strategy is first to construct

D̂ j
i =

∑
f

Q∗
i Q j − Q̄i Q̄∗ j (13.21)

and demand that D̂ either vanish or be proportional to the identity. Let’s start with
the case Nf ≤ N . For definiteness, take N = 3, Nf = 2; the general case is easy to
work out. By a sequence of SU (3) transformations, we can bring Q to the form:

Q =
v11 v12

0 v22

0 0

. (13.22)

By a sequence of SU (Nf) transformations, we can bring this to a similar form:

Q =
v1 0

0 v2

0 0

. (13.23)

At this point we have used up our freedom to make further symmetry transforma-
tions on Q̄. But it is easy to find the most general Q̄ which makes the D terms
vanish. The contribution of Q to D j

i is simply

D = diag(|v1|2, |v2|2). (13.24)

So, in order that D vanish, Q̄ must make an equal and opposite contribution. In
order that there be no off-diagonal contributions, Q̄ can have entries only on the
diagonal, so

Q̄ =
 eiα1v1 0

0 eiα2v2

0 0

. (13.25)
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In general, in these directions, the gauge group is broken to SU (N − Nf). The
unbroken flavor group depends on the values of the vi s. We have exhibited Nf

complex moduli above, but actually there are more; these are associated with the
generators of the broken flavor symmetries (SU (Nf) × U (1)) so there are N 2

f + 2Nf

complex moduli. Note that there are 2N Nf − N 2
f broken gauge generators, which

gain mass by “eating” the components of Q, Q̄ that are not moduli. This leaves,
of the original 2N Nf chiral fields, precisely N 2

f + 2Nf massless fields, so we have
correctly identified the number of moduli.

Our discussion, so far, does not look gauge invariant. But this is easily, and
elegantly, rectified. The moduli can be written as the gauge-invariant combinations:

M f
f̄ = Q̄ f̄ Q f . (13.26)

Expanding the fields Q and Q̄ about their expectation values gives back the explicit
form for the moduli in terms of the underlying, gauge-variant fields. This feature,
we will see, is quite general.

The case Nf = N is similar to the case Nf < N , but there is a significant new
feature. In addition to the flat directions with Q = Q̄ (up to phases), the potential
also vanishes if Q = vI, where I is the identity matrix. This possibility can also be
described in a gauge-invariant way, since now we have an additional pair of gauge
invariant fields, which we will refer to as “baryons”:

B = εi1...iN εa1...aN Qa1
i1

. . . QaN
iN

, (13.27)

and similarly for B̄.
In the case Nf > N , there is a larger set of baryon-like objects, corresponding

to additional flat directions. We will describe them in greater detail later. Before
closing this section, we should stress that, for Nf ≥ N − 1, the gauge symmetry
is completely broken. For large values of the moduli, the effective coupling of the
theory is g2(v), since infrared physics cuts off at the scale of the gauge field masses.
By taking v as large enough that g2(v) is small, the theories can be analyzed by
perturbative and semiclassical methods. Strong coupling is more challenging, but
much can be understood. We will see that the dynamics naturally divides into three
cases: Nf < N , Nf = N , and Nf > N .

13.4 Nf < N : a non-perturbative superpotential

Our problem now is to understand the dynamics of these theories. Away from the
origin of the moduli spaces, this turns out to be a tractable problem. We consider first
the case Nf < N . Suppose that the vs are large and roughly uniform in magnitude.
Even here, we have to distinguish two cases. If Nf = N − 1, the gauge group is
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completely broken; the low-energy dynamics consists of the set of chiral fields,
M f̄ , f . If Nf < N − 1, there is an unbroken gauge group, SU (N − Nf), with no
matter fields (chiral fields) transforming under this group at low energies. The
gauge theory is an asymptotically free theory, essentially like ordinary QCD with
fermions in the adjoint representation. Such a theory is believed to have a mass
gap, of order the scale of the theory, �N−Nf . Below this scale, again, the only
light fields are the moduli M f

f̄ . In both cases, we can try to guess the form of the
very-low-energy effective action for these fields from symmetry considerations.

We are particularly interested in whether there is a superpotential in this effective
action. If not, the moduli have, exactly, no potential. In other words, even in the full
quantum theory, they correspond to an exact, continuous set of ground states. What
features should this superpotential possess? Most important, it should respect the
flavor symmetries of the original theory (because the fields M are gauge invariant,
it automatically respects the gauge symmetry). Among these symmetries are the
SU (Nf) × SU (Nf) non-Abelian symmetry. The only invariant we can construct
from M is

� = det M. (13.28)

The determinant is invariant because it transforms under M → V MU as
det V det U det M , and, for SU (Nf) transformations, the determinant is unity. Un-
der the baryon number symmetry, M is invariant. But, under the U (1)R symmetry,
its transformation law is more complicated:

� → e2iα(Nf−N ). (13.29)

Under this R-symmetry, any would-be superpotential must transform with charge
2, so the form of the superpotential is unique:

W = �(3N−Nf)/(N−Nf)�−1/(N−Nf). (13.30)

Here we have inserted a factor of �, the scale of the theory, on dimensional grounds.
Our goal in the next two sections will be to understand the dynamical origin of

this superpotential, known as the ADS (after Affleck, Dine and Seiberg) superpo-
tential. We will see that there is a distinct difference between the cases Nf = N − 1
and Nf < N − 1. First, though, consider the case N = Nf. Then the field, �, has
R-charge zero, and no superpotential is possible. So no potential can be generated,
perturbatively or non-perturbatively. Similarly, in the case Nf > N , we cannot con-
struct a gauge-invariant field which is also invariant under the SU (N f ) × SU (N f )
flavor symmetry. This may not be obvious, since it would seem that we could again
construct � = det(M). But in this case, � = 0, by antisymmetry.

From the perspective of ordinary, non-supersymmetric field theories, what we
have established here is quite surprising. Normally, we would expect that, in an
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interacting theory, even if the potential vanished classically, there would be quantum
corrections. For theories with N ≥ Nf, we have just argued that this is impossible.
So this is a new feature of supersymmetric theories: there are often exact moduli
spaces, even at the quantum level.

In the next few sections, we will demonstrate that non-perturbative effects do
indeed generate the superpotential of Eq. (13.30). The presence of the superpo-
tential means that, at least at weak coupling (large v), there is no stable vacuum
of the theory. At best, we can think about time-dependent, possibly cosmological,
solutions. If we add a mass term for the quarks, however, we find an interesting
result. If the masses are the same, we expect that all of the vi s will be the same,
vi = v. Suppose that the mass term is small. Then the full superpotential, at low
energies, is

W = m Q̄ Q + �(3N−Nf)/(N−Nf)�−1/(N−Nf). (13.31)

Remembering that � ∼ v2Nf , the equation for a supersymmetric minimum has the
form:

v2N/(N−NF ) =
(m

�

)
�2N/(N−NF ). (13.32)

Note that v is a complex number; this equation has N roots:

v = e
2π ik

N �
(m

�

)(N−Nf)/2N
. (13.33)

What is the significance of these N solutions? The mass term breaks the
SU (Nf) × SU (Nf) symmetry to the vector sum. It also breaks the U (1)R . But it
leaves unbroken a Z N subgroup of the U (1). In Eq. (13.14), α = 2Nf/N is a sym-
metry of the mass term. So these N vacua are precisely those expected from breaking
the Z N . This Z N is the same Z N expected for a pure gauge theory, as one can see
by thinking of the case where the mass of the Qs and Q̄s is large.

13.4.1 The �-dependence of the superpotential

Previously, we proved a non-renormalization theorem for the gauge couplings by
thinking of the gauge coupling itself as a background field, S. This relied on the
shift symmetry,

S → S + iα.

This symmetry, however, is only a symmetry of perturbation theory. Since the
imaginary part of S, a, couples to F F̃ , instanton and other non-perturbative effects
violate the symmetry. On the other hand, the theory also has an anomalous chiral
symmetry, the R-symmetry, under which we can take all of the scalar fields to
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be neutral. So the theory is symmetric under this R-symmetry, combined with a
simultaneous shift:

S → S + i(N − Nf)α. (13.34)

Any superpotential must transform with charge 2 under this symmetry. The field �

is neutral. But the � parameter transforms:

� = e
− 8π2

b0g2 = e− 8π2

3N−Nf
S (13.35)

so

�
3N−Nf
N−Nf → e2iα�

3N−Nf
N−Nf . (13.36)

13.5 The superpotential in the case Nf < N − 1

Consider first the case Nf < N − 1. At energies well below the scale v, the theory
consists of a pure (supersymmetric) SU (N − Nf) gauge theory, and a number of
neutral chiral multiplets. The chiral multiplets can couple to the gauge theory only
through non-renormalizable operators. Because the moduli are neutral, there are no
dimension-four couplings. There are possible dimension-five couplings; they are
of the form

δφW 2
α (13.37)

where δφ represents the fluctuations of the moduli fields about their expectation
values; the coefficient of this operator will be of order 1/v.

We can be more precise about the form of this coupling by noting that it must
respect the various symmetries, if it is written in terms of the original, unshifted
fields (this is similar to our argument for the form of the superpotential). In particular,
a coupling of the form:

Lcoup = (S + a ln(�))W 2
α (13.38)

respects all of the symmetries. It clearly respects the SU (Nf) symmetries. It respects
the non-anomalous U (1)R symmetry as well, for a suitable choice of a, since

ln(�) → ln(�) + (N − Nf)/Nfα. (13.39)

It is not hard to see how this coupling is generated.

� ≈ vN + vN−1φ. (13.40)

Im φ couples to F F̃ through the anomaly diagram, just like an axion. The real part
couples to F2. One can see this by a direct calculation, or by noting that the masses
of the heavy fields are proportional to v, so the gauge coupling of the SU (N − Nf)
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theory depends on v:

α−1
N−Nf

(µ) = α−1
N (v) + b(N−Nf)

0

4π
ln(µ/v). (13.41)

Since � ∼ vNf , we see that we have precisely the correct coupling. It is easy to see
which Feynman graphs generate the couplings to the real and imaginary parts.

But we have seen that in the SU (N − NF ) theory, gaugino condensation gives
rise to a superpotential for the coefficient of W 2

α ; in this case, this is precisely

W = �
3N−Nf
N−Nf

�
1

N−Nf

. (13.42)

So we have understood the origin of the superpotential in these theories.

13.6 Nf = N − 1: the instanton-generated superpotential

In the case Nf = N − 1, the superpotential is generated by a different mechanism:
instantons. Before describing the actual computation, we give some circumstantial
evidence for this fact. Consider the instanton action. This is

e
−8π2

g2(v) . (13.43)

Here we have assumed that the coupling is to be evaluated at the scale of the
scalar vevs. The gauge group is, after all, completely broken, so provided that the
computation is finite, this is the only relevant scale (we are also assuming that all of
the vevs are of the same order). So any superpotential we might compute behaves
as

W ∼ v3

(
�

v

)2N+1

∼ �2N+1

v2N−2
, (13.44)

which is the behavior predicted by the symmetry arguments.
To actually compute the instanton contribution to the superpotential, we need to

develop further than in Chapter 5 the instanton computation and the structure of the
supersymmetry zero modes. The required techniques were developed by ’t Hooft,
when he computed the baryon-number-violating terms in the effective action of the
standard model; ’t Hooft started by noting that, in the presence of the Higgs field,
there is no instanton solution. This can be seen by a simple scaling argument. The
instanton solution will now involve Aµ and φ. Suppose one has such a solution.
Now simply do a rescaling of all lengths:

xµ → ρxµ; Aµ → 1

ρ
Aµ; φ → φ (13.45)
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(because φ must tend to its expectation value at ∞, we cannot rescale it). Then
the gauge kinetic terms are invariant, but the scalar kinetic terms are not; |Dφ|2 →
ρ2|Dφ|2. So the action is changed, and there is no solution.

However, the instanton configuration, while not a solution, is still distinguished
by its topology; ’t Hooft argued that it makes sense to integrate over solutions
of a given topology. This just means that we write a configuration for each value
of ρ, and integrate over ρ. For small ρ, we can understand this in the following
way. The non-zero modes of the instanton, before turning on the scalar vevs, all
have eigenvalues of order 1/ρ or larger, and can be ignored. There are also zero
modes. Those associated with rotations and translations will remain at zero, even
in the presence of the scalar, since they correspond to exact symmetries. But this
is not the case for the dilatational zero mode; this mode is slightly lifted. The
scaling argument above shows that the action is smallest at small ρ; we will see in
a moment that the action of the interesting configurations vanishes as ρ → 0. We
know from our earlier studies of QCD, on the other hand, that the renormalization
of the coupling tends to make the action large at small ρ. Together, these effects
yield a minimum of the action at small, finite ρ, giving a self-consistent justification
of the approximation.

To proceed with the computation, we review ’t Hooft’s notation for the instanton.
Recall that the instanton preserves an SU (2), which is a combination of rotations
and gauge transformations. Since the instanton solution is a Euclidean solution, the
original spatial symmetry is O(4), so it is valuable to understand how the rotational
SU (2) is embedded in this group. More precisely, SU (2) × SU (2) ⊂ O(4). Our
two-component notation is convenient for this. After the rotation to Euclidean
space, we can write the matrices σµ and σ̄ µ as

σµ = (i, �σ ) σ̄ µ = (i, −�σ ). (13.46)

The O(4) generators are:

σ 4i = σ i σ i j = εi jkσ
k

σ̄ 4i = −σ i σ i j = εi jkσ
k .

(13.47)

Note we have separated out the indices 4 and i . The matrices σµν and σ̄ µν are
self-dual and anti-self-dual respectively, as can be seen from these equations.

Then ’t Hooft introduced a symbol, ηaµν = 1/2Tr (σ aσµν), and a similar symbol
η̄. These symbols are self-dual and anti-self-dual, and define an embedding of the
two SU (2) subgroups. The detailed components are:

ηaµν = εaµν if µ, ν = 1, 2, 3 ηa4ν = −δaν ηaµ4 = δaµ ηa44 = 0. (13.48)

Note that η̄ differs by:

η̄aµν = (−1)δµ4+δν4ηaµν (13.49)
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Also, η has the properties:

ηaµν = −ηaνµ ηaµν = 1

2
εµναβηaαβ (13.50)

In terms of η, the instanton solution is:

Aa
µ(x) = 2ηaµνxν

(x2 + ρ2)
. (13.51)

It is straightforward to work out Fµν (see the exercises):

Fa
µν = ηaµν

(x2 + ρ2)2
. (13.52)

F is self-dual, since η is, so this is a solution of the Euclidean equations.
A second-rank antisymmetric tensor (Fµν) is a six-dimensional representation

of SO(4); under SU (2) × SU (2), it decomposes as a (3, 1) + (1, 3), where these
are the self-dual and anti-self-dual parts of the tensor. The η symbol is essentially
a Clebsch–Gordan coefficient, which describes a mapping of one SU (2) subgroup
of SO(4) into SU (2). Other important properties of these symbols include

εabcηbµνηcκλ = δµκηaνλ − δµληaνκ − δνκηaµλ + δνληaµκ. (13.53)

At large distances, the instanton is a gauge transformation of “nothing.” The
gauge transformation is just

gi
j = i σ̄ µ i

j xµ. (13.54)

This can be thought of as a mapping of S3 into SU (2); the winding number of the
instanton just counts the number of times space is mapped onto the group.

In this form, it is useful to note another way to describe the instanton solution.
By an inversion of coordinates, one can write:

Aa
µ = 2

g2

ρ2

(x2 + ρ2)
ηaµν

xν

x2
. (13.55)

This singular gauge instanton is often useful since it falls off more rapidly at large
x than the original instanton solution.

Now for the doublets we solve the equation:

D2 Q = D2 Q̄ = 0. (13.56)

This has the solutions

Qi = Q̄i † = i σ̄ µi
j xµ

(
1

x2 + ρ2

)1/2

〈Q j 〉, (13.57)
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and similarly for Q̄. Like the solution for Aµ, these solutions are “pure gauge”
configurations as r → ∞, i.e. they are gauge transformations by g of the constant
vev. (Note here and above, the σµs are the Euclidean versions of the two-component
Dirac matrices, σµ = (i, �σ ), σ̄ µ = (i, −�σ ).)

The action of this configuration is:

S(ρ) = 1

g2
(8π2 + 4π2ρ2v2). (13.58)

Some features of this result are worth noting.

(1) The integral over ρ now converges for large ρ, since it is exponentially damped.
(2) Terms in the potential, involving |Q|4, make smaller contributions to the action, by

powers of ρ. Rescaling x → ρx , one sees that these terms are of order ρ4. But ρ is at
most of order gv−1 = mw (item (1) above), so these terms are suppressed. This justifies
our neglect of these terms in the equations of motion.

Our goal is to compute the instanton contribution to the effective action. We
particularly want to see if the instanton generates the conjectured non-perturbative
superpotential. In order to compute the effective action, we need to ask about
the fermion zero modes. Before turning on the vevs for the scalars, there are six
zero modes. Two of these are generated by supersymmetry transformations of the
instanton solution:

δλ = σµν β
α Fµνεβ (13.59)

so

λSS [β]
α a = 8σµ a β

α

(x2 + ρ2)2
. (13.60)

Note that, because of the anti-self-duality of σ̄ µν , two of the supersymmetry gen-
erators annihilate the lowest-order solution, i.e. there are only two supersymmetry
zero modes. If we neglect the Higgs, the classical Yang–Mills action has a con-
formal (scale) symmetry. This is the origin of the ρ zero mode in the classical
solution. In the supersymmetric case, there is, apart from supersymmetry, an ad-
ditional fermionic symmetry called superconformal invariance. In superspace, the
corresponding generators are

QSC =�x Q (13.61)

so

λSC [β]
α a = 8 �xσµ a β

α

(x2 + ρ2)2
. (13.62)
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There are also two matter-field zero modes, one for each of the quark doublets:

ψ i
Q α = δi

α

(x2 + ρ2)3/2
= ψQ̄ (13.63)

(in the last equation we are treating Q̄ also as a doublet; one can treat this as a 2∗

representation by multiplying by εi j ).
When we turn on the scalar vevs, these modes are corrected. The superconformal

symmetry is broken by these vevs and, not surprisingly, the superconformal zero
modes are lifted. In fact, they pair with the two quark zero modes. We can compute
this pairing by treating the Yukawa terms in the Lagrangian as a perturbation,
replacing the scalar fields by their classical values. Expanding to second order, i.e.
including ∫

d4x Q∗ψQλ

∫
d4x ′ Q̄∗ψQ̄λ (13.64)

and expanding the fields in the lowest-order eigenmodes, the superconformal and
matter-field zero modes can be absorbed by these terms. Note, in particular, that both
Qcl and λSC are odd under x → −x , while the matter-field zero modes are even,
so the integral is non-zero. The supersymmetry zero modes, being even, cannot be
soaked up in this way.

The wave functions of the supersymmetry zero modes are altered in the presence
of the Higgs fields, and they now have components in the ψ∗

Q and ψ ∗̄
Q directions.

For ψQ , for example, we need to solve the equation

Dµσ̄ µψSS∗
Q = λSS Q∗. (13.65)

But this equation is easy to solve, starting with our solution of the scalar equation.
If we simply take:

ψSS
Q = DµσµQ∗, (13.66)

plugging back in, the left-hand side becomes

D2 Q + σµν Fµν Q, (13.67)

but the first term vanishes on the classical solution, while the second is, indeed, just
λSS Q∗.

With these ingredients, we can compute the superpotential terms in the effective
action. In particular, the non-perturbative superpotential predicts a non-zero term
in the component form of the effective action proportional to:

∂2W

∂ Q∂ Q̄
= 1

v4
ψQψQ̄ . (13.68)
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We can calculate this term by studying the corresponding Green function. We need
to be careful, now, about the various collective coordinates. We want to study the
gauge-invariant correlation function

〈Q̄(x)ψQ(x)ψQ̄(y)Q(y)〉 (13.69)

in the presence of the instanton. Since we are interested in the low-momentum limit
of the effective action, we can take x and y to be widely separated. We need to
integrate over the instanton location, x0, and the instanton orientation and scale
size. Because the gauge fields are massive, we can take x and y both to be far away
from the instanton. Then, from our explicit solution for the supersymmetry zero
modes

ψQ(x) ∝ �DQ ∝ �D iσµ
(
xµ − xµ

0

)
((x − x0)2 + ρ2)1/2

→ g(x − x0)SF (x − x0), (13.70)

with a similar equation for ψQ̄ . The g and g† factors are canceled by corresponding
factors in Q and Q̄, at large distances. Substituting these expressions into the path
integral and integrating over x0 gives a convolution, v2

∫
d4x0SF (x − x0)SF (y −

y0). Extracting the external propagators, we obtain the effective action. Integrating
over ρ gives a term of precisely the desired form. If we contract the gauge and spinor
indices in a gauge- and rotationally invariant manner, the integral over rotations just
gives a constant factor. It is some work to do all of the bookkeeping correctly. The
evaluation of the determinant is greatly facilitated by supersymmetry: there is a
precise fermion–boson pairing of all of the non-zero modes. In the exercises, you
are asked to work out more details of this computation; further details can also be
found in the References.

Without working through all of the details we can see the main features.

(1) The perturbative lifting of the zero modes gives rise to a contribution proportional to v2

(see Fig. 13.1).
(2) The matter-field component of the supersymmetry zero modes studied above gives a

contribution to the gauge-invariant correlation function:

v4
∫

d4x0S f (x − x0)S f (y − y0) (13.71)

(3) The integral over the gauge collective coordinates (equivalently the rotational collective
coordinates) simply gives a constant, since we have computed a gauge- and rotationally
invariant quantity.

(4) The scale size collective coordinate integral behaves as

W = A
∫

dρv4e
−
(

8π2

g2(ρ)
+4π2ρ2v2

)
(13.72)
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λ
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λ

λ

Q

Q

Fig. 13.1. Schematic description of the instanton computation of the superpoten-
tial. Four zero modes are tied together by the scalar vevs; two gluino zero modes
turn into ψ zero modes as well.

where the power of ρ has been determined from dimensional analysis, and A is a
constant.

(5) Extracting the constant requires careful attention to the normalization of the zero modes
and to the Jacobians for the collective coordinates. However, the non-zero modes come
in Fermi–Bose pairs, and their contribution to the functional integral cancels.

(6) The final ρ integral gives

W = A′ �
5

v2
(13.73)

consistent with the expectations of the symmetry analysis.

This analysis generalizes straightforwardly to the case of general Nc.

13.6.1 An application of the instanton result: gaugino condensation

The instanton calculation for the case Nf = N − 1 is a systematic, weak-coupling
computation of the superpotential which appears in the low-energy-effective action.
Seiberg has noted that this result, plus holomorphy, allows systematic study of the
strongly coupled regime of other theories. To understand this, take N = 2, and add
a mass term for the quark. In this case, for very small mass, the superpotential is:

W = m Q̄ Q + �2N+1

Q̄ Q
. (13.74)



208 13 Supersymmetric dynamics

We can solve the equation for Q,

Q1 =
(

0
v

)
v =

(
�5

m

)1/4

. (13.75)

Using this, we can evaluate the expectation value of the superpotential at the
minimum:

W (m, �) = �5/2m1/2. (13.76)

Because W is holomorphic, this result also holds for large m. For large m, the
low-energy theory is just a pure SU (2) gauge theory. We expect, there, that the
superpotential is 〈λλ〉 = �3

le. But this is equal to:

W = 〈λλ〉 = m3e
− 8π2

2g2(m) . (13.77)

The right-hand side is nothing but �3
le. We have, in fact, done a systematic, reliable

computation of the gluino condensate in a strongly interacting gauge theory!

Suggested reading

Excellent treatments of supersymmetric dynamics appear in the text by Weinberg
(1995), and in Michael Peskin’s lectures (1997). We have already mentioned
’t Hooft’s original instanton paper (1976). The instanton computation of the
superpotential is described in Affleck et al. (1984).

Exercises

(1) Verify that σµν and σ̄µν are self-dual and anti-self-dual, respectively. This means
Trσ aσµν is a self-dual tensor. Verify the connection to η; do the same thing for η̄.

(2) Verify Eq. (13.52), so F is self-dual, and so solves the Euclidean Yang–Mills equations.
Check that asymptotically the instanton potential is a gauge transform of “nothing.”

(3) Verify the solution of the scalar field equation (Eq. (13.57)). Compute the action of this
field configuration.

(4) Do the zero-mode counting for the case of general Nc, Nf = Nc − 1. Show that, again, all
but two zero modes pair with matter-field zero modes; two supersymmetry zero modes
contain matter-field components which can give rise to the expected superpotential.
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Dynamical supersymmetry breaking

One of the original reasons for interest in supersymmetry was the possibility of
dynamical supersymmetry breaking. So far, however, we have exhibited models in
which supersymmetry is unbroken, as in the case of QCD with only massive quarks,
or models with moduli spaces or approximate moduli spaces. In this section, we
describe a number of models in which non-trivial dynamics breaks supersymmetry.
We will see that the dynamical supersymmetry breaking occurs under special,
but readily understood, conditions. In some cases, we will be able to exhibit this
breaking explicitly, through systematic calculations. In others, we will have to
invoke more general arguments.

14.1 Models of dynamical supersymmetry breaking

We might ask why, so far, we have not found supersymmetry to be dynamically
broken. In supersymmetric QCD with massive quarks, we might give the index as
an explanation. We might also note that there is not a promising candidate for a
goldstino. With massless quarks, we have flat directions, and as the fields get larger,
the theory becomes more weakly coupled, so any potential tends to zero.

This suggests two criteria for finding models with dynamical supersymmetry
breaking.

(1) The theory should have no flat directions at the classical level.
(2) The theory should have a spontaneously broken global symmetry.

The second criterion implies the existence of a Goldstone boson. If supersymmetry
is unbroken, any would-be Goldstone boson must lie in a multiplet with another
scalar, as well as a Weyl fermion. This other scalar, like the Goldstone particle, has
no potential, so the theory has a flat direction. But by assumption, the theory classi-
cally (and therefore almost certainly quantum mechanically) has no flat direction.

209
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So supersymmetry is likely to be broken. These criteria are heuristic but, in practice,
when a systematic analysis is possible, they are always correct.

Perhaps the simplest model with these features is a supersymmetric SU (5) theory
with a single 5̄ and 10. In the Exercises, you will show that this theory, in fact, has
no flat directions, and that it has two non-anomalous U (1) symmetries. One can
give arguments that these symmetries are broken. So it is likely that this theory
breaks supersymmetry.

However, this is a strongly coupled model, and it is difficult to prove that super-
symmetry is broken. In the next section, we will describe a simple weakly coupled
theory in which dynamical supersymmetry breaking occurs within a controlled
approximation.

14.1.1 The (3, 2) model

A model in which supersymmetry turns out to be broken is the “3–2 model.” This
theory has gauge symmetry SU (3) × SU (2), and matter content:

Q(3, 2) Ū (3̄, 1) L(1, 2) D̄(3̄, 1). (14.1)

This is similar to the field content of a single generation of the standard model, with-
out the extra U (1) and the positron. The most general renormalizable superpotential
consistent with the symmetries is

W = λQLŪ . (14.2)

This model admits an R-symmetry that is free of anomalies. There is also a conven-
tional U (1) symmetry, under which the charges of the various fields are the same as
in the standard model (one can gauge this symmetry if one also adds an e+ field).

While this model has global symmetries, it is different from supersymmetric
QCD in that it does not have classical flat directions. To see this, note that by
SU (3) × SU (2) transformations, one can bring Q to the form

Q =
a 0

0 b
0 0

. (14.3)

Now the vanishing of the SU (2) D term forces

L =
(

0,
√

|a2| − |b2|
)

. (14.4)

The vanishing of the F terms for ū require |a| = |b|. Then the vanishing of the
SU (3) D term forces

Ū =
a′

0
0

 D̄ =
 0

a′′

0

 (14.5)
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(up to interchange of the two vevs), with

|a′| = |a′′| = |a|.
Finally, the ∂W/∂L equations lead to a = 0.

To analyze the dynamics of this theory, consider first the case that �3 � �2.

Ignoring, at first, the superpotential term, this is just SU (3) with two flavors. In the
flat direction of the D terms, there is a non-perturbative superpotential,

Wnp = �5

det Q Q
∼ 1

v4
. (14.6)

The full superpotential in the low-energy theory is a sum of this term and the
perturbative term. It is straightforward to minimize the potential, and establish that
supersymmetry is broken. One finds

a = 1.287�/λ1/7 b = 1.249�/λ1/7 E = 3.593λ10/7�4. (14.7)

If �2 � �3, supersymmetry is still broken, but the mechanism is different. In
this case, before including the classical superpotential, the strongly coupled theory
is SU (2) with two flavors. This is an example of a model with a quantum moduli
space. This notion will be explained in the next chapter, but it implies that 〈QL〉 �= 0,
so at low energies there is a superpotential (F-term) for Ū .

There does not, at the present time, exist an algorithm to generate all models
which exhibit dynamical supersymmetry breaking, but many classes are known. A
generalization of the SU (5) model, for example, is provided by an SU (N ) model
with an antisymmetric tensor field, Ai j , and N − 4 F̄s. It is also necessary to include
a superpotential,

W = λab AF̄a F̄b. (14.8)

Other broad classes are known, including generalizations of the (3, 2) model.
A somewhat different, and particularly interesting set of models, is described in
Section 15.4. Catalogs of known models, as well as studies of their dynamics, are
given in some of the references in the Suggested reading at the end of this chapter.

We have seen, in this section, that dynamical breaking of supersymmetry is
common. Flat directions are often lifted, and in many instances, supersymmetry is
broken with a stable ground state. So we are ready to address the question: how
might supersymmetry be broken in the real world?

14.2 Particle physics and dynamical supersymmetry breaking

14.2.1 Gravity mediation and dynamical supersymmetry breaking:
anomaly mediation

One simple approach to model building which we explored in Chapter 11 was to
treat a theory which breaks supersymmetry as a “hidden sector.” This construction,
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as we presented it, was rather artificial. If we replace, say, the Polonyi sector, by
a sector which breaks supersymmetry dynamically, the situation is dramatically
improved. If we suppose that there are some fields transforming under only the
Standard Model gauge group, and some transforming under only the gauge group
responsible for symmetry breaking, the visible/hidden sector division is automatic.
As we will see, this sort of division can arise rather naturally in string theory.

In such an approach the scale of supersymmetry breaking is again m3/2 Mp, where
we now understand this scale as arising as the exponential of a small coupling at
a high-energy scale (presumably the Planck, GUT, or string scale). For scalars,
soft-supersymmetry-breaking masses and couplings arise just as they did previ-
ously. There is no symmetry reason why these masses should exhibit any sort of
universality.

One puzzle in this scenario is related to gluino masses. Examining the super-
gravity Lagrangian, the only terms which can lead to gaugino masses are

Lλλ = eK/2 f ′
αβk(Dk W )λαλβ. (14.9)

Here f is the gauge coupling function. So in order to obtain a substantial gaugino
mass, it is necessary that there be gauge-single fields with non-zero F terms. In
most models of dynamical supersymmetry breaking, there are no scalars which are
singlets under all of the gauge interactions. Even when there are, it is necessary to
suppose that there is some sort of discrete symmetry which accounts for the absence
of certain couplings. These symmetries will forbid coupling of hidden sector fields
to visible sector gauge fields through low-dimension operators. In other words, we
don’t have couplings of the form

S

M
W 2

α (14.10)

where the F component of S has a non-zero vev. This suggests that gaugino masses
would be suppressed relative to squark and slepton masses by powers of Mint/Mp.

But this turns out not to be quite correct; gaugino masses, in supergravity theories,
can arise as a result of certain anomalous behavior. Suppose that the low-energy
gauge group is just that of the Standard Model, and that there is some very massive
field, �, say an octet of SU (3). The � superpotential might take the form:

W� = M�

2
�a�a. (14.11)

As a result of supersymmetry breaking, there will in general be a term in the
potential for the � scalars:

VB(�) = b m3/2 M��2 + c.c. (14.12)
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λλ

Σ

ψΣ

Fig. 14.1. Feynman diagram associated with anomaly mediation.

As a result, there is a one-loop contribution to the gluino masses upon integrating
out the � field, as in Fig. 14.1. This contribution is of order b(αs/π )m3/2. But we
have just argued that there can be no such term from a supersymmetric effective
action.

There is a simple resolution to this paradox. The puzzling contribution to the
gaugino mass is independent of M . Suppose, then, we “regulated” this finite dia-
gram with a Pauli–Villars regulator field. Then the gaugino mass would vanish, as
expected from symmetry arguments, and the paradox would seem to disappear.

But now we have a different problem. Suppose, for a moment, that the light
squark fields were also vector-like. Then we might expect that we would have to
regulate these with Pauli–Villars fields as well. But then, these Pauli–Villars fields
would give contributions to gaugino masses, of order (αs/π )m3/2. In fact, we would
obtain:

mλi = b0
αi

π
m3/2, (14.13)

where b0 is the one-loop beta function. This mechanism for generating gaugino
masses is known as anomaly mediation.

In the framework we have described, there is no reason to expect that the leading
contribution to scalar masses should vanish. But one might speculate that this could
occur in some circumstances. If it does, and if the one-loop contributions to scalar
masses vanish as well, there are two-loop contributions, analogous to those we have
found above. They can be obtained by a similar analysis. The result is proportional
to two powers of the couplings, αi , and the beta functions. At one level, this for-
mula is quite appealing. It appears highly predictive. It is also universal, so flavor
changing processes are suppressed. It is also, unfortunately, phenomenologically
unsuccessful, as it predicts tachyonic masses for slepton doublets.

To build models along these lines, then, two ingredients are required. First, one
must explain why there are almost no contributions to scalar masses as large as these
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two-loop effects. Then one must explain why there are some which can give larger
masses to the lepton doublets. The first turns out to be problematic. In string theory
and in certain large extra dimension models, the leading-order Kahler potential
is often of a special form which can give vanishing scalar masses even in the
presence of hidden sector supersymmetry breaking. But in these situations, there
are corrections to the Kahler potential which usually swamp the anomalous two-
loop contributions.

14.2.2 Low-energy dynamical supersymmetry breaking: gauge mediation

An alternative to the conventional supergravity approach is to suppose that super-
symmetry is broken at some much-lower energy, with gauge interactions serving
as the messengers of supersymmetry breaking. The basic idea is simple. One again
supposes that one has some set of new fields and interactions which break su-
persymmetry. Some of these fields are taken to carry ordinary Standard Model
quantum numbers, so that “ordinary” squarks, sleptons and gauginos can couple to
them through gauge loops. This approach, which is referred to as “gauge mediated
supersymmetry breaking” (GMSB), has a number of virtues.

(1) It is highly predictive: as few as two parameters describe all soft breakings.
(2) The degeneracies required to suppress flavor-changing neutral currents are automatic.
(3) GMSB easily incorporates DSB, and so can readily explain the hierarchy.
(4) GMSB makes dramatic and distinctive experimental predictions.

The approach, however, also has drawbacks. Perhaps most serious is related to
the “µ problem,” which we discussed in the MSSM. In theories with high-scale-
supersymmetry breaking, we saw that there is not really a problem at all; a µ term of
order the weak scale is quite natural. The µ problem, however, finds a home in the
framework of low-energy breaking. The difficulty is that, if one is trying to explain
the weak scale dynamically, one does not want to introduce the µ term by hand.
Various solutions have been offered for this problem, but none is yet compelling. In
the rest of our discussion, we will simply assume that a µ term has been generated
in the effective theory, and not worry about its origin.

Minimal Gauge Mediation (MGM)

The simplest model of gauge mediation contains, as messengers, a vector-like set
of quarks and leptons, q, q̄ , � and �̄. These have the quantum numbers of a 5 and 5̄
of SU (5). The superpotential is taken to be

Wmgm = λ1qq̄ + λ2S��̄. (14.14)
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Fig. 14.2. Two-loop diagrams contributing to squark masses in a simple model of
gauge mediation.

We suppose that some dynamics gives rise to non-zero expectation values for S
and FS . Here we won’t provide a complete microscopic model, which explains the
origin of the parameters FS and 〈S〉 that will figure in our subsequent analysis;
some constructions are described in the suggested reading. It is a good research
problem to find a compelling model of the underlying dynamics. Instead, we will
go ahead and immediately compute the superparticle spectrum for such a model.
Ordinary squarks and sleptons gain mass through the two-loop diagrams shown in
Fig. 14.2. While the prospect of computing a set of two-loop diagrams may seem
intimidating, the computation is actually quite easy. If one treats FS/S as small,
there is only one scale in the integrals. It is a straightforward matter to write down
the diagrams, introduce Feynman parameters, and perform the calculation. There
are also various non-trivial checks. For example, the sum of the diagrams must
vanish in the supersymmetric limit.

One obtains the following expressions for the scalar masses:

m̃2 = 2�2

[
C3

( α3

4π

)2
+ C2

( α2

4π

)2
+ 5

3

(
Y

2

)2 ( α1

4π

)2
]
, (14.15)

where � = FS/S, and C3 = 4/3 for color triplets and zero for singlets, C2 = 3/4
for weak doublets and zero for singlets. For the gaugino masses one obtains:

mλi = Ci
αi

4π
�. (14.16)

This expression is valid only to lowest order in �. Higher-order corrections have
been computed; it is straightforward to compute exactly in �.

All of these masses are positive, and they are described in terms of a single new
parameter, �. The lightest new particles are the partners of the SU (3) × SU (2)
singlet leptons. If their masses are of order 100 GeV, we have that � ∼ 30 TeV.
The spectrum has a high degree of degeneracy. In this approximation, the masses
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of the squarks and sleptons are functions only of their gauge quantum numbers,
so flavor-changing processes are suppressed. Flavor violation arises only through
Yukawa couplings, and these can appear only in graphs at high loop order. It is
further suppressed because all but the top Yukawa coupling is small.

Apart from the parameter �, one has the µ and Bµ parameters (both complex),
for a total of five. This is three beyond the minimal Standard Model. If the underlying
susy-breaking theory conserves CP, this can eliminate the phases, reducing the
number of parameters by two.

SU (2) × U (1) breaking

At lowest order, all of the squark and slepton masses are positive. The large top
quark Yukawa coupling leads to large corrections to m2

HU
, however, which drive

SU (2) × U (1) breaking. The calculation is just a repeat of one we have done in
the case of the MSSM. Treating the mass of t̃ as independent of momentum is
consistent, provided we cut the integral off at a scale of order � (at this scale, the
calculation leading to Eq. (14.15) breaks down, and the propagator falls rapidly
with momentum) and we have

m2
HU

= (
m2

HU

)
0 − 6y2

t

16π2
ln
(
�2/m̃2

t

)(
m̃2

t

)
0. (14.17)

While the loop correction is nominally a three-loop effect, because the stop mass
arises from gluon loops while the Higgs mass arises at lowest order from W loops,
we have a substantial effect(

m̃2
t

m2
HU

)
0

= 16

9

(
α3

α2

)2

∼ 20 (14.18)

and the Higgs mass-squared is negative. These contributions are quite large, and
it is usually necessary to tune the µ-term and other possible contributions to the
Higgs mass to obtain sufficiently small W and Z masses.

Light gravitino phenomenology

There are other striking features of these models. One of the more interesting is
that the lightest supersymmetric particle, or LSP, is the gravitino. Its mass is

m3/2 = 2.5

(
F

(100 TeV)2

)
eV. (14.19)

The next-to-lightest supersymmetric particle, or NLSP, can be a neutralino, or
a charged right-handed slepton. The NLSP will decay to its superpartner plus a
gravitino in a time long compared with typical microscopic times, but still quite
short. The lifetime can be determined from low-energy theorems, in a manner
reminiscent of the calculation of the pion lifetime. Just as the chiral currents are
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Fig. 14.3. Decay leading to e+e−γ γ events.

linear in the (nearly massless) pion field,

jµ5 = fπ∂µπ ∂µ jµ5 = ∂2π ≈ 0, (14.20)

so the supersymmetry current is linear in the goldstino, G:

jµ
α = Fγ µG + σµνλFµν + · · · , (14.21)

where F , here, is the goldstino decay constant. From this, if one assumes that the
LSP is mostly photino, one can calculate the amplitude for γ̃ → G + γ in much
the same way one considers processes in current algebra. From Eq. (14.21), one
sees that ∂µ jµ

α is an interpolating field for G, so:

〈Gγ |γ̃ 〉 = 1
F

〈
γ
∣∣∂µ jµ

α

∣∣γ̃ 〉. (14.22)

The matrix element can be evaluated by examining the second term in the current,
Eq. (14.21), and noting that ∂ �λ = mλλ.

Given the matrix element, the calculation of the NLSP lifetime is straightforward,
and yields

�(γ̃ → Gγ ) = cos2 θW m5
γ̃

16π F2
. (14.23)

This yields a decay length:

cτ = 130

(
100 GeV

m γ̃

)5
( √

F

100 TeV

)4

µm. (14.24)

In other words, if F is not too large, the NLSP may decay in the detector. One
even has the possibility of measurable displaced vertices. The signatures of such
low decay constants would be quite spectacular. Assuming the photino (bino) is
the NLSP, one has processes such as e+e− → γ γ + /Et and pb̄ → e+e−γ γ + /Et ,
as indicated in Fig. 14.3, where /Et is the missing transverse energy.
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Suggested reading

There are a number of good reviews of dynamical supersymmetry breaking, in-
cluding those of Shadmi and Shirman (2000) and Terning (2003). The former
includes catalogs of models and mechanisms. There is a large literature on gauge-
mediated models and their phenomenology; a good review is provided by Giudice
and Rattazzi (1999). A clear exposition of the origin of anomaly mediation is pro-
vided by Bagger et al. (2000) and in Weinberg’s text (1995).

Exercises

(1) Check that the SU (N ) models, with an antisymmetric tensor and N − 4 anti-
fundamentals, have no flat directions, and that they have a non-anomalous U (1)
symmetry.

(2) Verify Eq. (14.13) using the Pauli–Villars procedure suggested in this chapter.
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Theories with more than four conserved supercharges

In theories with more than four conserved supercharges (extended supersymmetry),
the supersymmetry generators obey relations:{

QI
α, Q J

α̇

} =� pδ I J
{

QI
α, Q J

β

} = Z I J εα,β. (15.1)

The quantities Z I J are known as central charges. We will see that these can arise
in a number of physically interesting ways.

In theories with four supersymmetries, we have seen that supersymmetry pro-
vides powerful constraints on the possible dynamics. Theories with more than four
supercharges (N > 1 in four dimensions) are not plausible as models of the real
world, but they do have a number of remarkable features. As in some of our N = 1
examples, these theories typically have exact moduli spaces. Gauge theories with
N = 4 supersymmetry exhibit an exact duality between electricity and magnetism.
Theories with N = 2 supersymmetry have a rich – and tractable – dynamics, closely
related to important problems in mathematics. In all of these cases, supersymmetry
provides remarkable control over the dynamics, allowing one to address questions
which are inaccessible in theories without supersymmetry. Supersymmetric theo-
ries in higher dimensions generally have more than four supersymmetries, and a
number of the features of the theories we study in this chapter will reappear when
we come to higher-dimensional field theories and string theory.

15.1 N = 2 theories: exact moduli spaces

Theories with N = 1 supersymmetry are tightly constrained, but theories with
more supersymmetry are even more highly constrained. We have seen that often in
perturbation theory N = 1 theories have moduli; non-perturbatively, sometimes,
these moduli are lifted. In theories with N = 1 supersymmetry, detailed analysis is
usually required to determine whether the moduli acquire potentials at the quantum
level. For theories with more supersymmetries (N > 1 in four dimensions; N ≥ 1

219



220 15 Theories with more than four conserved supercharges

in five or more dimensions), one can show rather easily that the moduli space is
exact. Here we consider the case of N = 2 supersymmetry in four dimensions.
These theories can also be described by a superspace, in this case built from two
Grassmann spinors, θ and θ̃ . There are two basic types of superfields, called vector
and hypermultiplets. The vectors are chiral with respect to both Dα and D̃α, and
have an expansion, in the case of a U (1) field:

ψ = φ + θ̃ αWα + θ̃2 D̄2φ†, (15.2)

where φ is an N = 1 chiral multiplet and Wα is an N = 1 vector multiplet. The fact
that φ† appears as the coefficient of the θ̃2 term is related to an additional constraint
satisfied by ψ . This expression can be generalized to non-Abelian symmetries; the
expression for the highest component of ψ is then somewhat more complicated;
we won’t need this here.

The theory possesses an SU (2) R-symmetry under which θ and θ̃ form a doublet.
Under this symmetry, the scalar component of φ, and the gauge field, are singlets,
while ψ and λ form a doublet.

I won’t describe the hypermultiplets in detail, except to note that from the per-
spective of N = 1, they consist of two chiral multiplets. The two chiral multiplets
transform as a doublet of the SU (2). The superspace description of these multiplets
is more complicated.

In the case of a non-Abelian theory, the vector field, ψa , is in the adjoint rep-
resentation of the gauge group. For these fields, the Lagrangian has a very simple
expression as an integral over half of the superspace:

L =
∫

d2θd2θ̃ ψaψa, (15.3)

or, in terms of N = 1 components,

L =
∫

d2θ W 2
α +

∫
d4θφ†eV φ. (15.4)

The theory with vector fields alone has a classical moduli space, given by the values
of the fields for which the scalar potential vanishes. Here this just means that the
D fields vanish. Written as a matrix,

D = [φ, φ†], (15.5)

which vanishes for diagonal φ, i.e. for

φ = a

2

(
1 0
0 −1

)
. (15.6)
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For many physically interesting questions, one can focus on the effective theory
for the light fields. In the present case, the light field is the vector multiplet, ψ .
Roughly,

ψ ≈ ψaψa = a2 + aδψ3 + · · · . (15.7)

What kind of effective action can we write for ψ? At the level of terms with up to
four derivatives, the most general effective Lagrangian has the form:1

L =
∫

d2θd2θ̃ f (ψ) +
∫

d8θH(ψ, ψ†). (15.8)

Terms with covariant derivatives correspond to terms with more than four deriva-
tives, when written in terms of ordinary component fields.

The first striking result we can read off from this Lagrangian, with no knowledge
of H and f , is that there is no potential for φ, i.e. the moduli space is exact. This
statement is true perturbatively and non-perturbatively.

One can next ask about the function f . This function determines the effective
coupling in the low-energy theory, and is the object studied by Seiberg and Witten
that we will discuss in Section 15.4.

15.2 A still simpler theory: N = 4 Yang–Mills

The N = 4 Yang–Mills theory is an interesting theory in its own right: it is finite and
conformally invariant. It also plays an important role in our current understanding
of non-perturbative aspects of string theory. The N = 4 Yang–Mills has 16 super-
charges, and is even more tightly constrained than the N = 2 theories. First, we
should describe the theory. In the language of N = 2 supersymmetry, it consists
of one vector multiplet and one hypermultiplet. In terms of N = 1 superfields, it
contains three chiral superfields, φi , and a vector multiplet. The Lagrangian is

L =
∫

d2θW 2
α +

∫
d4θφ

†
i eV φi +

∫
d2θφa

i φb
j φ

c
kεi jkε

abc. (15.9)

In the above description, there is a manifest SU (3) × U (1) R-symmetry. Under
this symmetry, the φi s have U (1)R charge 2/3, and form a triplet of the SU (3).
But the real symmetry is larger – it is SU (4). Under this symmetry, the four Weyl
fermions form a 4, while the 6 scalars transform in the 6. Thinking of these theories
as the low-energy limits of toroidal compactifications of the heterotic string will
later give us a heuristic understanding of this SU (4): it reflects the O(6) symmetry
of the compactified 6 dimensions. In string theory, this symmetry is broken by

1 This, and essentially all of the effective actions we will discuss, should be thought of as Wilsonian effective
actions, obtained by integrating out heavy fields and high-momentum modes.
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the compactification manifold; this reflects itself in higher-derivative, symmetry-
breaking operators.

In the N = 4 theory, there is, again, no modification of the moduli space, per-
turbatively or non-perturbatively. This can be understood in a variety of ways. We
can use the N = 2 description of the theory, defining the vector multiplet to contain
the N = 1 vector and one (arbitrarily chosen) chiral multiplet. Then an identical
argument to that given above insures that there is no superpotential for the chiral
multiplet alone. The SU (3) symmetry then insures that there is no superpotential
for any of the chiral multiplets. Indeed, we can make an argument directly in the
language of N = 1 supersymmetry. If we try to construct a superpotential for the
low energy theory in the flat directions, it must be an SU (3)-invariant, holomorphic
function of the φi s. But there is no such object.

Similarly, it is easy to see that there are no corrections to the gauge couplings.
For example, in the N = 2 language, we want to ask what sort of function, f , is
allowed in

L =
∫

d2θd2θ̃ f (ψ). (15.10)

But the theory has a U (1) R-invariance under which

ψ → e2/3iαψ θ → eiαθ θ̃ → e−iαθ̃ . (15.11)

Already, then, ∫
d2θd2θ̃ψψ (15.12)

is the unique structure which respects these symmetries. Now we can introduce a
background dilaton field, τ . Classically, the theory is invariant under shifts in the real
part of τ , τ → τ + β. This insures that there are no perturbative corrections to the
gauge couplings. More work is required to show that there are no non-perturbative
corrections either.

One can also show that the quantity H in Eq. (15.8) is unique in this theory,
again using the symmetries. The expression:

H = c ln(ψ) ln(ψ†), (15.13)

respects all of the symmetries. At first sight, it might appear to violate scale in-
variance; given that ψ is dimensionful, one would expect a scale, �, sitting in the
logarithm. However, it is easy to see that if one integrates over the full superspace,
any �-dependence disappears, since ψ is chiral. Similarly, if one considers the
U (1) R-transformation, the shift in the Lagrangian vanishes after the integration
over superspace. To see that this expression is not renormalized, one merely needs
to note that any non-trivial τ -dependence spoils these two properties. As a result, in
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the case of SU (2), the four derivative terms in the Lagrangian are not renormalized.
Note that this argument is non-perturbative. It can be generalized to an even larger
class of higher-dimension operators.

15.3 A deeper understanding of the BPS condition

In our study of monopoles, we saw that under certain circumstances, the complicated
second-order non-linear differential equations reduced to first-order differential
equations. The main condition is that the potential should vanish. We are now quite
used to the idea that supersymmetric theories often have moduli, and have seen
that this is an exact feature of N = 4 and many N = 2 theories. In the case of
an N = 2 supersymmetric gauge theory, the potential is just that arising from the
D-term, and one can construct a Prasad–Sommerfield solution. We will now see
that the BPS condition is not simply magic, but is a consequence of the extended
supersymmetry of the theory. The resulting mass formula, as a consequence, is
exact; it is not simply a feature of the classical theory, but a property of the full
quantum theory. This sort of BPS condition is relevant not only to the study of
magnetic monopoles but to topological objects in various dimensions and contexts,
particularly in string theory. Here we will give the flavor of the argument, without
worrying carefully about factors of two. More details are worked out in the Exercises
and the References.

First, we show that the electric and magnetic charges enter in the supersymmetry
algebra of this theory as central charges. Thinking of this as an N = 1 theory, we
have seen that the supercurrents take the form:

Sµ
α = σ

µ

αβ̇
(σρσ )β̇γ̇ Fρσλγ̇ + ∂ρφ

iσ
ρ

αβ̇
(σµ)β̇γ ψ i

γ + F-term pieces. (15.14)

In this theory, however, there is an SU (4) symmetry, and the supercurrents should
transform as a 4. It is not hard to guess the others, even without writing down the
transformation laws of the fields:

Si
µα = σ

µ

αβ̇
(σρσ )β̇γ̇ Fρσψ i

γ̇ + εi jk∂ρφ
jσ

ρ

αβ̇
(σµ)β̇γ ψk

γ + F-term pieces. (15.15)

We are interested in proving bounds on the mass. It is useful to define Hermitian
combinations of the Qs, since we want to study positivity constraints. In this case,
it is more convenient to write a four-component expression, using a Majorana (real)
basis for the γ matrices. Taking an N = 2 subgroup, and carefully computing the
commutators of the charges:

{Qαi , Qβ j } = δi jγ
µ
αβ Pµ + εi j (δαβUk + (γ5)αβ Vk). (15.16)
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Here

Uk =
∫

d3x∂i
(
φa

re k Ea
i + φa

im k Ba
i

)
Vk =

∫
d3x∂i

(
φa

im k Ea
i + φa

re k Ba
i

)
. (15.17)

In the Higgs phase, the integrals are, by Gauss’s theorem, electric and magnetic
charges, multiplied by the Higgs expectation value.

From these relations, we can derive bounds on masses, using the fact that Q2
α is a

positive operator. Taking the expectation of both sides, we have, for an electrically
neutral system of mass M in its rest frame,

M ± Qmv ≥ 0. (15.18)

This bound is saturated when Q annihilates the state. Examining the form of Qα,
this is just the BPS condition.

15.3.1 N = 4 Yang–Mills theories and electric–magnetic duality

This is a theory which, from the point of view of N = 1 supersymmetry, contains a
gauge multiplet and three chiral multiplets in the adjoint representation. In addition
to the interactions implied by the gauge symmetry, there is a superpotential:

W = 1

6
fabcεi jk�

a
i �

b
j�

c
k . (15.19)

We have normalized the kinetic terms for the fields � with a 1/g2 out front. So
this interaction has strength related to the strength of the gauge interactions. This
theory has a global SU (4) symmetry. Under this symmetry, the 4 adjoint fermions
transform as a 4; the scalars transform as a 6, and the gauge bosons are invariant.
The theory has a large set of flat directions. If we simply take all of the � fields
as matrices, to be diagonal the potential vanishes. As a result, this theory has
monopoles of the BPS type.

This theory has a symmetry even larger than the Z2 duality symmetry we con-
templated when we examined Maxwell’s equations; the full symmetry is SL(2, Z ).
We might guess this, first, by remembering that the coupling constant is part of the
holomorphic variable:

τ = θ

2π
+ 4π i

e2
. (15.20)

So in addition to our conjectured e → 1/e symmetry, there is a symmetry θ →
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θ + 2π . So in terms of τ , we have the two symmetry transformations,

τ → −1

τ
τ → τ + 1. (15.21)

Together, these transformations generate the group SL(2, Z ):

τ → aτ + b

cτ + d
ad − bc = 1. (15.22)

Now we can look at our BPS formula. To understand whether it respects the
SL(2, Z ) symmetry we need to understand how this symmetry acts on the states.
Writing

M = eQev + Qmv

e
(15.23)

with

Qe = ne − nm
θ

2π
Qm = 4π

nm

e
(15.24)

the spectrum is invariant under the SL(2, Z ) transformation of τ , accompanied by:(
ne

nm

)
→

(
d −b
c −d

)(
ne

nm

)
. (15.25)

Because it follows from the underlying supersymmetry, the mass formula is exact,
so this duality of the spectrum of BPS objects is a non-perturbative statement about
the theory.

15.4 Seiberg–Witten theory

We have seen that N = 4 theories are remarkably constrained, and this allowed us,
for example, to explore an exact duality between electricity and magnetism. Still,
these theories are not nearly as rich as field theories with N ≤ 1 supersymmetry.
The N = 2 theories are still quite constrained, but exhibit a much more interesting
array of phenomena. They illustrate the power provided by supersymmetry over
non-perturbative dynamics. They will also allow us to study phenomena associated
with magnetic monopoles in a quite non-trivial way. In this section, we will provide
a brief introduction to the subject known as Seiberg–Witten theory. This subject
has applications not only in quantum field theory, but also for our understanding of
string theory and, perhaps most dramatically, in mathematics.

It is convenient to describe the N = 2 theories in N = 1 language. The basic
N = 2 multiplets are the vector multiplet and the tensor (or hyper) multiplet. From
the point of view of N = 1 supersymmetry, the vector contains a vector multiplet



226 15 Theories with more than four conserved supercharges

and a chiral multiplet. The tensor contains two chiral fields. We will focus mainly
on theories with only vector multiplets, with gauge group SU (2). In the N = 1
description, the fields are a vector multiplet, V , and a chiral multiplet, φ, both in
the adjoint representation. The Lagrangian density is:

L =
∫

d4θ
1

g2
φ†eV φ − i

16π

∫
d2θτW aαW a

α + h.c. (15.26)

Here

τ = θ

2π
+ i4πg−2. (15.27)

The 1/g2 in front of the chiral field kinetic term is somewhat unconventional, but it
makes the N = 2 supersymmetry more obvious. As we indicated earlier, one way
to understand the N = 2 supersymmetry is to note that the Lagrangian we have
written has a global SU (2) symmetry. Under the symmetry, the scalar fields, φa ,
and the gauge fields Aa

µ are singlets, while the gauginos, λa , and the fermionic
components of φ, ψa , transform as a doublet. Acting on the conventional N = 1
generators, the SU (2) produces four new generators. So we have generators Q A

α ,
with A = 1, 2.

As it stands, the model has flat directions, with

φ = a

2

(
1 0
0 −1

)
. (15.28)

In these directions, the spectrum consists of two massive and one massless gauge
bosons, a massive complex scalar, degenerate with the gauge bosons, and a massive
Dirac fermion, as well as a massless vector and a massless chiral multiplet. The
masses of all of these particles are

MW =
√

2a. (15.29)

This is precisely the right number of states to fill an N = 2 multiplet. Actually, this
multiplet is a BPS multiplet. It is annihilated by half of the supersymmetry gener-
ators. The classical theory possesses, in addition to the global SU (2) symmetry, an
anomalous U (1) symmetry:

φ → eiαφ ψ → eiαψ. (15.30)

Under this symmetry,

θ → θ − 4α (15.31)

or

τ → τ − 2πα. (15.32)
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Because physics is periodic in θ with period 2π , α = π/2 is a symmetry, i.e. the
theory has a Z4 symmetry:

φ → e
iπ
2 φ. (15.33)

Note that φ is not gauge-invariant. A suitable gauge-invariant variable for the anal-
ysis of this theory is:

u = 〈Tr φ3〉. (15.34)

Under the discrete symmetry, u → −u; at weak coupling,

u ≈ a2. (15.35)

The spectrum of this theory includes magnetic monopoles, in general with elec-
tric charges. At the classical level, the monopole solutions in this theory are precisely
those of Prasad and Sommerfield, with mass

MM = 4π
√

2
a

g2
. (15.36)

As in the N = 4 theory, there is a BPS formula for the masses:

m =
√

2|aQe + aD QM|. (15.37)

At tree level,

aD = 4π

g2
ia = τa, (15.38)

where the last equation holds if θ = 0. The i in this formula is not immediately
obvious. To see that it must be present, consider the case of dyonic excitations of
monopoles. These should have energy of order the charge, with no factors of 1/g2.
This is insured by the relative phase between a and aD. These formulas will receive
corrections in perturbation theory and beyond; our goal is to understand the form
of these corrections and their (dramatic) physical implications.

Equation (15.38) is not even meaningful as it stands; τ is a function of scale.
Instead, Seiberg and Witten suggested that

τ = daD

da
. (15.39)

They also proposed the existence of a duality symmetry, under which

aD ↔ a τ → −1

τ
. (15.40)

To formulate our questions more precisely, and to investigate this proposal, it is
helpful, as always, to consider a low-energy effective action. This action should re-
spect the N = 2 supersymmetry; in N = 1 language, this means that the Lagrangian
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should take the form:

L =
∫

d4θ K (a, ā) − i

16π2

∫
d2θτ (a)W αWα. (15.41)

The N = 2 supersymmetry implies a relation between K and τ ; without it, these
would be independent quantities. Both quantities can be obtained from a holomor-
phic function called the prepotential, F(a):

τ = d2F
da2

K = 1

4π

dF
da

a∗. (15.42)

From

τ = daD

da
= d

da

(
dF
da

)
(15.43)

we have
dF
da

= iaD, (15.44)

so

K = 1

4π
Im aDa∗. (15.45)

Our goal will be to obtain a non-perturbative description ofF . At weak coupling,
the beta function of this theory is obtained from b0 = 3N − N = 2N = 4, so

τ = i

π
ln(u/�2). (15.46)

As a check on this formula, note that, under u → e2iαu, θ → θ − 4α, so

τ = θ

2π
+ 4π ig−2 → τ − 2iα

π
(15.47)

and this is precisely the behavior of the formula (Eq. (15.46)).
This is similar to phenomena we have seen in N = 1 theories. But when we

consider the monopoles of the theory, the situation becomes more interesting. First,
note that, using the leading order result for τ ,

aD = 2i

π

(
a ln

( a

�

)
− a

)
. (15.48)

So, under the transformation of u, u → eiαu ,

aD → eiα/4
(

aD − α

2π
a
)
. (15.49)

Our BPS mass formula transforms to:

m →
√

2

∣∣∣∣a (Qe − 4α

2π
Qm

)
+ aD QM

∣∣∣∣. (15.50)
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This is the Witten effect, which we have discussed earlier: in the presence of θ , a
magnetic monopole acquires an electric charge. More generally, the spectrum of
dyons is altered.

Consider now what happens when we do a full 2π change of θ (u → −u). This
should be a symmetry. This is true in this case, but in a subtle way: the spectrum of
the dyonic excitations of the theory is unchanged, but the charges of the dyons have
shifted by one fundamental unit. This, in turn, is related to the branched structure
of τ .

At the non-perturbative level, the structure is even richer. We might expect

τ (u) = i

π
ln(u/�2) + αe

− 8π2

g2 + βe
− 8π2

g2 + · · · . (15.51)

Note that, interpreting exp(−8π2/g2) as exp(2π iτ ), each term in this series has the
correct periodicity in θ . Moreover,

exp(2π iτ ) = �2

u2
. (15.52)

These corrections have precisely the correct structure to be instanton corrections,
and these instanton corrections have been computed. But we can, following Seiberg
and Witten, be bolder and consider what happens when g becomes large. Naively, we
might expect that some monopoles become light. Associated with this, τ may have a
singularity at some point, u0 = γ�2, where � is the renormalization group invariant
mass of the theory. In light of the Z2 symmetry, there must also be a singularity at
−u0. Such a singularity arises because a particle is becoming massless. If we think
of τD as the dual of τ , then there is an electrically charged light field of unit charge;
more precisely, there must be two particles of opposite charge, in order that they
can gain mass. So τD has the structure:

τD = − 2i

2π
ln(mM). (15.53)

Assuming that aD has a simple zero,

aD ≈ b(u − u0); mM =
√

2aD, (15.54)

then

τD = − i

π
ln(u − u0) = − 1

τ (u)
. (15.55)

Starting with the relation

da

daD
= −τD = − i

π
ln(aD) (15.56)
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we have

a = i

π
(aD ln aD − aD). (15.57)

Similarly, we can consider the behavior at the point −u0. This is the mirror of
the previous case, but we must be careful about the relation of a, aD. These are
connected by the symmetry transformation:

ã = ia ãD = i(aD − a). (15.58)

Now:

τD = − 1

τ (u)
= − i

π
ln(u + u0) (15.59)

and

ã = 1

π
(ãD ln ãD − ãD). (15.60)

Going around the singularities, at u0,

a → a − 2aD; aD → aD, (15.61)

while at −u0,

a → 3a − 2aD; aD → 2a − aD. (15.62)

This should be compared with the effect of going around 2π at large u: a → −a;
aD → −(aD − a). Assuming that these are the only singularities, we can, from
this information, reconstruct τ . We won’t give the full solution of Seiberg and
Witten here, but the basic idea is to note that τ (u) is the modular parameter of a
two-dimensional torus and to reconstruct the torus.

This analysis has allowed us to study the theory deep in the non-perturbative re-
gion. Seiberg and Witten uncovered a non-trivial duality, a limit in which monopoles
become massless, and provided insight into confinement. These sorts of ideas have
been extended to other theories, to theories in higher dimensions, and have pro-
vided insight into many phenomena in string theory, quantum gravity and pure
mathematics.

Suggested reading

The lectures by Lykken (1996) provide a brief introduction to aspects of N > 1
supersymmetry. Olive and Witten (1978) first clarified the connection of the BPS
condition and extended supersymmetry, in a short and quite readable paper. Harvey
(1996) provides a more extensive introduction to monopoles and the BPS condition.



Exercises 231

The original papers of Seiberg and Witten (1994) are quite clear; Peskin’s lectures,
which we have borrowed from extensively here, provide a brief and very clear
introduction to the subject.

Exercises

(1) Check the supersymmetry commutators in extended supersymmetry (Eq. (15.16)).
(2) Rewrite the supersymmetry commutators in a real basis for the Dirac matrices. Using

this, verify the BPS inequality.
(3) Check that the monopole/dyon spectrum in Eq. (15.23) is invariant under SL(2, Z )

transformations.
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More supersymmetric dynamics

While motivated in part by the hopes of building phenomenologically successful
models of particle physics, we have uncovered in our study of supersymmetric
theories a rich trove of field theory phenomena. Supersymmetry provides powerful
constraints on dynamics. In this chapter, we will discover more remarkable features
of supersymmetric field theories. We will first study classes of (super)conformally
invariant field theories. Then we will turn to the dynamics of supersymmetric
QCD with Nf ≥ Nc, where we will encounter new, and rather unfamiliar, types of
behavior.

16.1 Conformally invariant field theories

In quantum field theory, theories which are classically scale-invariant typically are
not scale invariant at the quantum level. QCD is a familiar example. In the absence
of quark masses, we believe the theory confines and has a mass gap. The CPN

models are an example where we were able to show systematically how a mass gap
can arise in a scale-invariant theory. The breaking of scale invariance in all of these
cases is associated with the need to impose a cutoff on the high-energy behavior of
the theory. In a more Wilsonian language, one needs to specify a scale where the
theory is defined, and this requirement breaks the scale invariance.

There is, however, a subset of field theories which are scale invariant. We have
seen this in the case of N = 4 supersymmetric field theories in four dimensions.
In this section, we will see that this phenomenon can occur in N = 1 theories, and
explore some of its consequences. In the next section we will discuss a set of dualities
among N = 1 supersymmetric field theories, in which conformal invariance plays
a crucial role.

In order that a theory exhibit conformal invariance, it is necessary that its beta
(β-)function vanish. At first sight, it would seem difficult to use perturbation theory
to find such theories. For example, one might try to choose the number of flavors

233
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and colors so that the one-loop beta function vanishes. But then the two-loop beta
function will generally not vanish. One could try to balance the first term against
the second, but this would generally require g4 ∼ g2, and there would not be a
good perturbation expansion. Banks and Zaks pointed out that one can find such
theories by adopting a different strategy. By taking the number of flavors and colors
large, one can arrange that the coefficient of the one-loop beta function almost
vanishes, and choose the coupling so that it cancels the two-loop beta function. In
this situation, one can arrange a cancellation perturbatively, order by order. The
small parameter is 1/N , where N is the number of colors.

We can illustrate this idea in the framework of supersymmetric theories with N
colors and Nf flavors. The beta function, through two loops, is given by

β(g) = − g3

16π2
b0 − g5

(16π2)2
b1 (16.1)

where

b0 = 3N − Nf b1 = 6N 2 − 2N NF + 4NF
(N 2 − 1)

2N
. (16.2)

In the limit of very large N , Nf, we write: Nf = 3N − ε, where ε is an integer of
order one. Then, to leading order in 1/N , the beta function vanishes for a particular
coupling, g0:

g2
0

16π2
= ε

6N 2
. (16.3)

Perturbative diagrams behave as (g2 N )n , and g2 N is small. So at each order, one
can make small adjustments in g2 so as to make the beta function vanish.

A theory in which the beta function vanishes is genuinely conformally invariant.
We will not give a detailed discussion of the conformal group here; the exercises
at the end of this chapter guide the reader through some of the features of the
conformal group; good reviews are described in the suggested reading. Here we
will just mention a few general features, and then perform some computations at
our Banks–Zaks fixed point theories to verify these.

Without supersymmetry, the generators of the conformal group include the
Lorentz generators and the translations:

Mµν = −i(xµ∂ν − xν∂µ) Pµ = −i∂µ (16.4)

and the generators of “special conformal transformations” and dilatations:

Kµ = −i(x2∂µ − 2xµxα∂
α) D = i xα∂

α. (16.5)

In the presence of supersymmetry, the group is enlarged. In addition to the
bosonic generators above and the supersymmetry generators, there are a group
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of superconformal generators, of the form

Sα = Xµσ
µ
αα̇ Qα̇ . (16.6)

We encountered these in our analysis of the zero modes of the Yang–Mills instanton.
The superconformal algebra also includes an R-symmetry current.

Conformal invariance implies the vanishing of T µ
µ . In the superconformal case,

the superconformal generators and the divergence of the R current also vanish. One
can prove a relation between the dimension and the R charge:

d ≥ 3

2
|R|. (16.7)

States for which the inequality is satisfied are known as chiral primaries. An inter-
esting case is provided by the fixed point theories we have introduced above. For
these, the charge of the chiral fields, Q and Q̄, under the non-anomalous symmetry
is

RQ,Q̄ = Nf − N

Nf
. (16.8)

Assuming that these fields are chiral primaries, it follows that their dimension
satisfies:

d − 1 = −3N − Nf

2Nf
= − ε

6N
. (16.9)

At weak coupling, on the other hand, the anomalous dimensions of these fields are
known:

γ = − g2

16π2
N = − ε

6N
. (16.10)

In this chapter, we will see that supersymmetric QCD, for a range of Nf and N ,
exhibits conformal fixed points for which the coupling is not small.

16.2 More supersymmetric QCD

We have studied the dynamics of supersymmetric QCD with Nf < N , and observed
a range of phenomena: non-perturbative effects which lift the degeneracy among
different vacua and non-perturbative supersymmetry breaking. In the cases Nf ≥
Nc, there are exact moduli, even non-perturbatively. For phenomenology, such
theories are probably of no relevance, but Seiberg realized that from a theoretical
point of view, these theories are a bonanza. The existence of moduli implies a great
deal of control over the dynamics. One can understand much about the strongly
coupled regimes of these theories, allowing insights into non-perturbative dynamics
unavailable in theories without supersymmetry. We will be able to answer questions
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such as: are there unbroken global symmetries in some region of the moduli space?
In regions of strong coupling, are there massless composite particles?

16.3 Nf = Nc

The case Nf = Nc already raises issues beyond those of Nf < Nc. First, we have
seen that there is no invariant superpotential one can write. As a result, there is
an exact moduli space, perturbatively and non-perturbatively. But there is still an
interesting quantum modification of the theory, first discussed by Seiberg.

Consider, first, the classical moduli space. Now, in addition to the vacua with
Q = Q̄ (up to flavor transformations) which we found previously, we can also have

Q = v I Q̄ = 0 or Q ↔ Q̄. (16.11)

This is referred to as the “baryonic branch,” since now the operator:

B = εi1...iN ε j1... jN Qi1
j1

. . . QiN
jN

(16.12)

is non-vanishing (or the corresponding “anti-baryon”).
Classically, these two classes of possibilities can be summarized in the condition:

Det(Q̄ Q) = B̄ B. (16.13)

Now this condition is subject to quantum modifications. Both sides are completely
neutral under the various flavor symmetries; in principle any function of B B̄ or
the determinant would be permitted as a modification. But we can use anomalous
symmetries (with the anomalies canceled by shifts in S) to constrain any possi-
ble corrections. Consider, in particular, possible instanton corrections. These are
proportional to

v2N e
−8π2

g2(v) ∼ �2N (16.14)

and transform just like the left-hand side under the anomalous R-symmetry for
which:

Q → eiαQ . (16.15)

So at the quantum level, the moduli space satisfies the condition:

Det(Q̄ Q) − B̄ B = c�2N . (16.16)

This is of just the right form to be generated by a 1-instanton correction. We
will not do the calculation here which shows that the right-hand side is gener-
ated. But we can outline the main features. There are now 2 superconformal zero
modes, 2 supersymmetry zero modes, 4N − 4 zero modes associated with the
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gluinos in the (2, N − 2) representation of the SU (2) × SU (N − 2) subgroup of
SU (N ) distinguished by the instanton, and 2N matter zero modes. We want to
compute the expectation value of an operator involving N scalars. To obtain a non-
vanishing result, it is necessary to replace some of these fields with their classical
values. Others must be contracted with Yukawa terms. The scalar field propaga-
tors in the instanton background are known, and the full calculation reasonably
straightforward. Because the classical condition which defines the moduli space
is modified, the moduli space of the Nf = Nc theory is referred to as the “quan-
tum moduli space.” This phenomenon appears for other choices of gauge group as
well.

16.3.1 Supersymmetry breaking in quantum moduli spaces

We have mentioned that in the 3−2 model, in the limit that the SU (2) gauge group
is the strong group, supersymmetry breaking can be understood as resulting from
an expectation value for QL . The QL vev is non-zero since N = Nf = 2. A larger
class of models in which a quantum moduli space is responsible for dynamical
supersymmetry is due to Intriligator and Thomas.

Consider a model with gauge group SU (2) and four doublets, QI , I = 1 . . . 4
(two “flavors”). Classically, this model has a moduli space labelled by the expec-
tation values of the fields MI J = QI Q J . These satisfy Pf〈MI J 〉 = 0,1 but, as have
have just seen, the quantum moduli space is different, and satisfies:

Pf〈MI J 〉 = �4. (16.17)

Now add a set of singlets to the model, SI J , with superpotential couplings

W = λI J SI J QI Q J . (16.18)

Unbroken supersymmetry now requires

∂W

∂SI J
= QI Q J = 0. (16.19)

However, this is incompatible with the quantum constraint. So supersymmetry is
broken.

On the other hand, the model, classically, has flat directions in which SI J = sI J ,
and all of the other fields vanish. So one might worry that there is runaway behavior
in these directions, similar to that we saw in supersymmetric QCD. However, for
large s, it turns out that the energy grows at infinity. This can be established as

1 In this expression, Pf denotes Pfaffian. The Pfaffian is defined for 2N × 2N antisymmetric matrices; it is
essentially the square root of the determinant of the matrix.
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follows. Suppose all of the components of S are large, S ∼ s � �2. In this limit,
the low-energy theory is a pure SU (2) gauge theory. In this theory, gluinos condense,

〈λλ〉 = �3
LE = λs�2

2. (16.20)

Here, �LE is the � parameter of the low-energy theory.
At this level, then, the superpotential of the model behaves as

Weff ∼ λS�2
2, (16.21)

and the potential is a constant,

V = |�2|4|λ|2. (16.22)

The natural scale for the coupling, λ, which appears here is λ(s). This is the correct
answer in this case, and implies that for large s the potential grows, since λ is not
asymptotically free. So the potential has a minimum, in a region of small s.

16.3.2 Nf = Nc + 1

For Nf > Nc, the classical moduli space is exact. But Seiberg has, again, pointed
out a rich set of phenomena and given a classification of the different theories. As
in the case of Nf < Nc, different phenomena occur for different values of Nf.

First, we need to introduce a new tool: the ’t Hooft anomaly matching conditions.
’t Hooft was motivated by the following question. When one looks at the repetitive
structure of the quark and lepton generations, it is natural to wonder if the quarks
and leptons themselves are bound states of some simpler constituents. ’t Hooft
pointed out that if this idea is correct, the masses of the quarks and leptons are far
smaller than the scale of the underlying interactions; even at that time, it was known
that if these particles have any structure, it is on scales shorter than 100 GeV−1.
’t Hooft argued that this could only be understood if the underlying interactions left
an unbroken chiral symmetry.

One could go on and simply postulate that the symmetry is unbroken, but ’t Hooft
realized that there are strong – and simple – constraints on such a possibility. As-
suming that the underlying interactions are some strongly interacting non-Abelian
gauge theory, ’t Hooft imagined gauging the global symmetries of the theory. In
general, the resulting theory would be anomalous, but one could always cancel the
anomalies by adding some “spectator” fields, fields transforming under the gauged
flavor symmetries but not the underlying strong interactions. Below the confine-
ment scale of the strong interactions, the flavor symmetries might be spontaneously
broken, giving rise to Goldstone bosons, or there might be massless fermions. In
either case, the low-energy theory must be anomaly-free, so the anomalies of ei-
ther the Goldstone bosons or the massless fermions must be the same as in the
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original theory. ’t Hooft added another condition, which he called the “decoupling”
condition: he asked what happened if one added mass terms for some of the con-
stituent fermions. He went on to show that these conditions are quite powerful, and
that it is difficult to obtain a theory with unbroken chiral symmetries.

As we will see, Seiberg conjectured various patterns of unbroken symmetries
for SUSY QCD. For these the ’t Hooft anomaly conditions provide a strong self-
consistency check. In the case Nf = Nc, there is no point in the moduli space where
the chiral symmetries are all unbroken. So let’s move on to the case Nf = Nc + 1.
The global symmetry of the model is:

SU (Nf)L × SU (Nf)R × U (1)B × U (1)R (16.23)

where under U (1)R , the quarks and antiquarks transform as:

Q f , Q̄ f → e
iα

N+1 Q f , Q̄ f . (16.24)

In this theory, there two various sorts of gauge invariant objects: the mesons, M f̄ f =
Q̄ f̄ Q and the baryons, B f = ε

α1···αN
f εi1···in Qi1

α1
Qi2

α2
· · · QiN

αN
.From these, we can build

a superpotential invariant under all of the symmetries:

W = (det M − B f̄ M f̄ f B f )
1

�b0
. (16.25)

As in all of our earlier cases, the power of � is determined by dimensional argu-
ments, but can also be verified by demanding holomorphy in the gauge coupling.

This superpotential has several interesting features. First, it has flat directions,
as we would expect, corresponding to the flat directions of the underlying the-
ory. But also, for the first time, there is a vacuum at the point where all of the
fields vanish, B = B̄ = M = 0. At this point, all of the symmetries are unbro-
ken. The ’t Hooft anomaly conditions provide an important consistency check
on this whole picture. There are several anomalies to check (SU (Nf)3

L, SU (Nf)3
R,

SU (Nf)2
LU (1)R, TrU (1)R , U (1)2

BU (1)R, U (1)3
R , etc.). The cancellations are quite

non-trivial. In the exercises, the reader will have the opportunity to check these.
Another test comes from considering decoupling. If we add a mass for one set of

fields, the theory should reduce to the Nf = N case. As in examples with smaller
numbers of fields, we take advantage of holomorphy, writing expressions for small
values of the mass and continuing to large values. So we add to the superpotential
a term:

m Q̄N+1 QN+1 = mMN+1,N+1. (16.26)

We want to integrate out the massive fields. Because of the global symmetry, it is
consistent to set M f,N+1 to zero, where f ≤ N . Similarly, it is consistent to set
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B f = 0, f ≤ N . So we take the M and B fields to have the form:

M =
(

M 0
0 m

)
B f =

 0
· · ·
B

 B̄ f =
 0

· · ·
B̄

. (16.27)

Consider the equation ∂W/∂m = 0. This yields:

(detM − B̄ B) = m�b0 (16.28)

or

(detM − B̄ B) = m�b0 = �2N
Nf

. (16.29)

In the last line, we have used the relation between the � parameter of the theory
with Nf quarks and that with Nf + 1 flavors. This is precisely the expression for the
quantum modified moduli space of the N -flavor theory. Decoupling works perfectly
here.

16.4 Nf > N + 1

The case Nf > N + 1 poses new challenges. We might try to generalize our analysis
of the previous section. Take, for example, Nf = N + 2. Then the baryons are in
the second-rank antisymmetric tensor representations of the SU (Nf) gauge groups,
B f g, B̄ f̄ ḡ. If we write a term in the superpotential

W ∼ B f g B̄k̄l̄ M
f k̄ Mgl̄ (16.30)

this does not respect the non-anomalous R symmetry.
Seiberg suggested a different equivalence. The baryons, in general, have Ñ =

Nf − N indices. So baryons in the same representation of the flavor group can
be constructed in a theory with gauge group SU (Ñ ) and quarks q f , q̄ f in the
fundamental representation. Seiberg postulated that, in the infrared, this theory is
dual to the original theory. This is not quite enough. One needs to add a set of
gauge-singlet meson fields, M f̄ f , with superpotential:

W = q f̄ M f̄ f q f . (16.31)

To check this picture, we can first check that the symmetries match. There is an
obvious SU (Nf)L × SU (Nf) f × U (1)B . There is also a non-anomalous U (1)R sym-
metry. It is important that the dual theory not be asymptotically free, i.e. that it is
weakly coupled in the infrared. This is the case N > 3Nf/2. So again, this duality
can only apply for a range of Nf, N .
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There are a number of checks on the consistency of this picture. Holomorphic
decoupling is again one of the most persuasive. Take the case Nf = N + 2, so that
the dual gauge group is SU (2). In this case, working in the flat directions of the
SU (2) theory, one can do an instanton computation. One finds a contribution to the
superpotential:

Winst = detM. (16.32)

This is consistent with all of the symmetries; it is not difficult to see that one can
close up all of the fermion zero modes with elements of M and q. So one has a
superpotential: ∫

d2θ (q Mq̄ − detM). (16.33)

16.5 Nf ≥ 3/2N

We have noted that Seiberg’s duality can’t persist beyond Nf = 3/2N . Seiberg also
made a proposal for the behavior of the theory in this regime: for 3/2N ≤ Nf ≤ 3N ,
the theories are conformally invariant. Our Banks–Zaks fixed point lies in one corner
of this range. As a further piece of evidence, consider the dimension of the operator
Q̄ Q. Under the non-anomalous R-symmetry,

Q → eiα Nf−N
2Nf Q. (16.34)

If the theory is superconformal, the dimension of this chiral operator satisfies d =
3/2R. As explained in Appendix D, the exact beta function of the theory is:

β = − g3

16π2

3N − NF + Nfγ (g2)

1 − N (g2/8π2)
. (16.35)

By assumption, this is zero, so

γ = −3N − Nf

Nf
. (16.36)

The dimension of Q̄ Q is 2 + γ , which is precisely 3/2R.
We will not pursue this subject further, but there is further evidence one can

provide for all of these dualities. They can also be extended to other gauge groups.

Suggested reading

The original papers of Seiberg (1994a,b, 1995a,b; see also Seiberg and Witten
1994) are quite accessible and essential reading on these topics, as is the review
by Intriligator and Seiberg (1996). Good introductions are provided by the lecture
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notes of Peskin (1997) and Terning (2003). The use of quantum moduli spaces to
break supersymmetry was introduced in Intriligator and Thomas (1996).

Exercises

(1) Discuss the renormalization of the composite operator Q̄ Q, and verify that the relation
d = 3/2R is again satisfied.

(2) Check the anomaly cancellation for the case Nf = N + 1. You may want to use an
algebraic manipulation program, like maple or Mathematica, to expedite the algebra.
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An introduction to general relativity

Even as the evidence for the Standard Model became stronger and stronger in
the 1970s and beyond, so the evidence for general relativity grew in the latter
half of the twentieth century. Any discussion of the Standard Model and physics
beyond must confront Einstein’s theory at two levels. First, general relativity and
the Standard Model are very successful at describing the history of the universe
and its present behavior on large scales. General relativity gives rise to the big
bang theory of cosmology, which, coupled with our understanding of atomic and
nuclear physics, explains – indeed predicted – features of the observed universe.
But there are features of the observed universe which cannot be accounted for
within the Standard Model and general relativity. These include the dark matter
and the dark energy, the origin of the asymmetry between matter and antimatter,
the origin of the seeds of cosmic structure (inflation), and more. Apart from these
observational difficulties, there are also serious questions of principle. We cannot
simply add Einstein’s theory onto the Standard Model. The resulting structure is not
renormalizable, and cannot represent in any sense a complete theory. In this book
we will encounter both of these aspects of Einstein’s theory. Within extensions of
the Standard Model, in the next few chapters, we will attempt to explain some of the
features of the observed universe. The second, more theoretical, level, is addressed
in the third part of this book. String theory, our most promising framework for
a comprehensive theory of all interactions, encompasses general relativity in an
essential way; some would even argue that what we mean by string theory is the
quantum theory of general relativity.

The purpose of this chapter is to introduce some of the concepts and formulas
that are essential to the applications of general relativity in this text. No previous
knowledge of general relativity is assumed. We will approach the subject from the
perspective of field theory, focussing on the dynamical degrees of freedom and
the equations of motion. We will not give as much attention to the beautiful – and
conceptually critical – geometric aspects of the subject, though we will return to

243
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some of these in the chapters on string theory. Those interested in more serious
study of general relativity will eventually want to study some of the excellent texts
listed in the suggested reading at the end of the chapter.

Einstein put forward his principle of relativity in 1905. At that time, one might
quip that half the known laws, those of electricity and magnetism, already satisfied
this principle, with no modification. The other half, Newton’s laws, did not. In
considering how one might reconcile gravitation and special relativity, Einstein was
guided by the observed equality of gravitational and inertial mass. Inertia has to do
with how objects move in space-time in response to forces. Operationally, the way
we define space-time – our measurements of length, time, energy and momentum –
depends crucially on this notion. The fact that gravity couples to precisely this mass
suggests that gravity has a deep connection to the nature of space-time. Considering
this equivalence, Einstein noted that an observer in a freely falling elevator (in
a uniform gravitational field) would write down the same laws of nature as an
observer in an inertial frame without gravity. Consider, for example, an elevator
full of particles interacting through a potential V (�xi − �x j ). In the inertial frame,

m
d2�xi

dt2
= m�g − �∇i V (�xi − �x j ). (17.1)

The coordinates of the accelerated observer are related to those of the inertial
observer by

�xi = �x ′
i + 1

2
�gt2 (17.2)

so, plugging in the equations of motion:

m
d2�x ′

i

dt2
= −�∇i V (�x ′

i − �x ′
j ). (17.3)

Einstein abstracted from this thought experiment a strong version of the equivalence
principle: the equations of motion should have the same form in any frame, inertial
or not. In other words, it should be possible to write the laws so that in two coordi-
nate systems, xµ and x ′µ(x), they take the same form. This is a strong requirement.
We will see that it is similar to gauge invariance, where the requirement that the
laws take the same form after gauge transformations determines the dynamics.

17.1 Tensors in general relativity

To implement the equivalence principle, we begin by thinking about the invariant
element of distance. In an inertial frame, in special relativity

ds2 = d�x2 − dt2 = ηµνdxµdxν. (17.4)
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Note here that we have changed the sign of the metric, as we said we would do,
from that used earlier in this text. This is the convention of most workers and
texts in general relativity and string theory. The coordinate transformation above
for the accelerated observer alters the line element. This suggests we consider the
generalization:

ds2 = gµν(x)dxµdxν. (17.5)

The metric tensor, gµν , will encode the dynamics and physical effects of gravitation.
We will know that there is a non-trivial gravitational field when we cannot find
coordinates which make gµν = ηµν everywhere.

To develop a dynamical theory, we would like to write invariant actions (which
will yield covariant equations). This problem has two parts. We need to couple the
fields we already have to the metric in an invariant way. We also require the analog
of the field strength for gravity, which will determine the dynamics of gµν in much
the same way as Fµν determines the dynamics of Aµ. This object is the Riemann
tensor, Rµ

νρσ . We will see later that the formal analogy can be made very precise,
with an object, the spin connection ωµ, constructed out of the metric tensor, playing
the role of Aµ. The close analogy will also be seen when we discuss Kaluza–Klein
theories, where higher-dimensional general coordinate transformations become the
lower-dimensional gauge transformations.

We first describe how derivatives and gµν transform under coordinate transfor-
mations. Writing

xµ = xµ(x ′) (17.6)

we have

∂ ′
µφ(x ′) = ∂xρ

∂xµ′ ∂ρφ(x) = � ρ
µ (x)∂ρφ(x). (17.7)

An object which transforms like ∂ρφ is said to be a covariant vector. An object
which transforms like ∂ρ1φ∂ρ2φ . . . ∂ρnφ is said to be an nth rank covariant tensor;
gµν is an important example of a tensor. We can obtain the transformation law for
gµν from the invariance of the line element:

g′
µνdxµ′

dxν ′ = gµν

∂xµ

∂xρ′
∂xν

∂xσ ′ dxρ′dxσ ′. (17.8)

So

g′
µν = gρσ

∂xρ

∂xµ′
∂xσ

∂xν′ . (17.9)

Now dxµ transforms with the inverse of �:

dx ′µ = ∂x ′µ

∂xρ
dxρ, (17.10)
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where dxµ is said to be a “contravariant” vector. Indices can be raised and lowered
with gµν ; gµνV ν transforms like a covariant vector, for example.

Another important object is the volume element, d4x . Under a coordinate trans-
formation,

d4x =
∣∣∣∣ ∂x

∂x ′

∣∣∣∣ d4x ′. (17.11)

The object in between the vertical lines is the Jacobian of the coordinate transfor-
mation, |det�|. The quantity

√−det(g) transforms in exactly the opposite fashion.
So ∫

d4x
√

−det(g), (17.12)

the proper four-volume is invariant.
Let’s consider a real scalar field, φ. The action, before including gravity, is

S =
∫

d4x
1

2
[−∂µφ∂νφηµν − m2φ2]. (17.13)

To make this invariant, we can replace ηµν by gµν , and include a factor
√

det(−g)
along with the d4x . So

S =
∫

d4x
√

det(−g)
1

2
[−∂µφ∂νφgµν − m2φ2]. (17.14)

The equations of motion should be covariant. They must generalize the equation

∂2φ = −V ′(φ). (17.15)

The first derivative of φ, we have seen, transforms as a vector, Vµ, under coordinate
transformations, but the second derivative does not transform simply:

∂µVν = ∂µ

(
∂xρ′

∂xν
V ′

ρ

)
= ∂xρ′

∂xν

∂xσ ′

∂xµ
∂ ′
σ V ′

ρ + ∂2xρ′

∂xµ∂xν
Vρ. (17.16)

To compensate for the extra, inhomogeneous term, we need a covariant derivative,
as in gauge theories. Rather than look at the equations of motion directly, however,
we can integrate by parts in the scalar field Lagrangian so as to obtain second
derivatives. This yields:

√−g(gµν∂µ∂νφ + ∂µgµν∂νφ) + gµν∂µ

√−gφ∂νφ. (17.17)

To bring this into a convenient form, we need a formula for the derivative of a
determinant. We can work this out using the same trick we have used repeatedly in
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the case of the path integral. Write:

det(M) = exp(Tr ln(M)) (17.18)

so

det(M + δM) ≈ exp(Tr ln(M) + ln(1 + M−1δM))

= det(M)(1 + M−1δM). (17.19)

So, for example,

d det(M)

d Mi j
= M−1

i j det(M). (17.20)

Putting this all together, we have the quadratic term in the action for the scalar
field:

φ

(
gµν∂µ∂νφ + ∂µgµν∂νφ + gµν 1

2
gρσ ∂µgρσ ∂νφ

)
. (17.21)

Writing this as

φgµν Dµ∂νφ, (17.22)

we have for the covariant derivative

DµVν = ∂µVν − �λ
µνVλ. (17.23)

Here

�λ
µν = 1

2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν). (17.24)

Note that �λ
µν is symmetric in µ, ν. The covariant derivative is often denoted by a

semicolon and a Greek letter in the subscript or superscript:

DµVν = Vµ;ν. (17.25)

The reader can check that

�λ
µν = �λ′

µν − ∂2xλ

∂xµ∂xν
, (17.26)

which just compensates the extra term in the transformation law. Here � is known
as the affine connection (the components of � are also sometimes referred to as the
Christoffel symbols, and � as the Christoffel connection; it is sometimes written
as

{
µ

ν ρ

}
). With this definition:

DµVν = ∂µVν − �λ
µνVλ (17.27)
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transforms like a tensor with two indices, Vµν . Similarly, acting on contravariant
vectors:

DµV ν = ∂µV ν + �ν
µλV λ (17.28)

transforms properly. You can also check that Vµ;ν;ρ transforms as a third-rank
covariant tensor, and so on.

To get some practice, and to see how the metric tensor can encode gravity, let’s
use the covariant derivative to describe the motion of a free particle. In an inertial
frame, without gravity,

d2xµ

dτ 2
= 0. (17.29)

We make this equation covariant by first rewriting it as:

dxρ

dτ

∂

∂xρ

(
dxµ

dτ

)
. (17.30)

We need to replace the derivative of the vector in the last term by a covariant
derivative. The covariant version of the equation is:

dxρ

dτ
Dρ

(
∂xµ

∂τ

)
(17.31)

= ∂xρ

∂τ

∂2xµ

∂xρ∂τ
+ �µ

ρσ

∂xσ

∂τ

∂xρ

∂τ
. (17.32)

So the equation of motion is:

d2xµ

dτ 2
+ �µ

ρσ

∂xσ

∂τ

∂xρ

∂τ
= 0. (17.33)

This is known as the geodesic equation. Viewed as Euclidean equations, the so-
lutions are geodesics. For a sphere embedded in flat three-dimensional space, for
example, the solutions of this equation are easily seen to be great circles. We should
be able to recover Newton’s equation for a weak gravitational field. For a weak,
static gravitational field we might expect

gµν = ηµν + hµν (17.34)

with hµν small. Since the gravitational potential in Newton’s theory is a scalar, we
might further guess:

g00 = −(1 + 2φ) gi j = δi j (17.35)

Then the non-vanishing components of the affine connection are:

�i
00 = 1

2
gi j [∂0gi0 + ∂0g0i − ∂i g00]

= ∂iφ (17.36)
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and similarly

�0
0i = −∂iφ. (17.37)

In the non-relativistic limit, we can replace τ by t , and we have the equation of
motion:

d2xi

dt2
= −∂iφ. (17.38)

17.2 Curvature

Using the covariant derivative, we can construct actions for scalars and gauge
fields. Fermions require some additional machinery; we will discuss this towards
the end of the chapter. Instead, we turn to the problem of finding an action for the
gravitational field itself. In the case of gauge fields, the crucial object was the field
strength, Fµν = [Dµ, Dν]. For the gravitational field, we will also work with the
commutator of covariant derivatives. We write

[Dµ, Dν]Vρ = Rσ
ρµνVσ , (17.39)

where R is known as the curvature tensor. For a Euclidean space, it measures what
we would naturally call the curvature of the space. It is straightforward to work out
an expression for R in terms of the affine connection:

Rλ
µνκ = ∂κ�

λ
µν − ∂ν�

λ
µκ + �η

µν�
λ
κη − �η

µκ�
λ
νη. (17.40)

Unlike F , which is first order in derivatives of A, R is second order in derivatives
of g. As a result, the gravitational action will be first order in R.

Note that R transforms as a tensor under coordinate transformations. It has im-
portant symmetry and cyclicity properties. These are most conveniently described
by lowering the first index on R:

Rλµνκ = Rνκλµ (17.41)

Rλµνκ = −Rµλνκ = −Rλµκν = Rµλκν (17.42)

Rλµνκ + Rλκµν + Rλνκµ = 0. (17.43)

Starting withR, we can define other tensors. The most important is the Ricci tensor.
This has two indices:

Rµκ = gλνRλµνκ . (17.44)

R is a symmetric tensor,

Rµκ = Rκµ. (17.45)
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Also very important is the Ricci scalar:

R = gµκRµκ. (17.46)

Note that R also satisfies an important identity, similar to the Bianchi identity for
Fµν (which gives the homogeneous Maxwell equations):

Rλµνκ;η + Rλµην;κ + Rλµκη;ν = 0. (17.47)

17.3 The gravitational action

Having introduced, through the Riemann tensor, a description of curvature, we are
in a position to write a generally covariant action for the gravitational field. Linear
terms in R, as we noted, will be second order in the derivatives of the metric, so
they can provide a suitable action. The action must be a scalar, so we take

Sgrav = 1

2κ2

∫
d4x

√−gR. (17.48)

To obtain the equations of motion, we need to vary the complete action, including
the parts involving matter fields, with respect to gµν . We first consider variation
of the terms involving the matter fields. The variation of the matter action with
respect to gµν turns out to be nothing but the stress-energy tensor, T µν . Once one
knows this fact, this is often the easiest way to find the stress–energy tensor for a
system. To see that this identification is correct, we first show that Tµν is covariantly
conserved, i.e.

DνT νµ = T µν
;ν = 0. (17.49)

By assumption, the fields solve the equations of motion in the gravitational back-
ground, so the variation of the action, for any variation of the fields, is zero. Consider,
then, a space-time translation:

xµ′ = xµ + εµ. (17.50)

Starting with

g′
µν(x ′) = ∂xρ

∂xµ′ gρσ

∂xσ

∂xν′ , (17.51)

we have

g′
µν(x + ε) = gµν(x) − ∂µερgρν − ∂νε

σ gσµ. (17.52)

So

δgµν(x) = −gµλ∂νε
λ − gλν∂µελ − ∂λgµνε

λ. (17.53)
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Defining

δSmatt

δgµν

= T µν, (17.54)

under this particular variation of the metric we have:

δSmatt = −
∫

d4x
√−gT µν[gµλ∂νε

λ + gλν∂µελ + ∂λgµνε
λ]. (17.55)

Integrating by parts on the first two terms, and using the symmetry of the metric
(and consequently the symmetry of T µν):

δSmatt =
∫

d4x[∂µ(T µλ
√−g) − 1

2
∂λgµνT µν

√−g]ελ. (17.56)

The coefficient of ελ vanishes for fields which obey the equations of motion. This
object is T µν

;µ. The reader can verify this last identification painstakingly, or by
noting that:

�
µ
µλ = 1√−g

∂λ

√−g (17.57)

so, for a general vector, for example,

V µ
;µ = 1√−g

∂µ(
√−gV µ), (17.58)

and similarly for higher-rank tensors.
As a check, consider the stress tensor for a free massive scalar field. Once more,

the action is:

S =
∫

d4x
√−g

(
−1

2
gµν∂µφ∂νφ − 1

2
m2φ2

)
. (17.59)

So, recalling our formula for the variation of the determinant:

Tµν = 1

2
∂µφ∂νφ − 1

4
gµν(gρσ ∂ρφ∂σφ − m2φ2). (17.60)

To find the full gravitational equations – Einstein’s equations – we need to vary
also the gravitational term in the action. This is best done by explicitly constructing
the variation of the curvature tensor under a small variation of the field. We leave
the details for the exercises, and quote the final result:

Rµν − 1

2
gµνR = κ2Tµν. (17.61)

We will consider many features of this equation, but it is instructive to see how we
obtain Newton’s expression for the gravitational field, in the limit that gravity is
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not too strong. We have already argued that in this case we can write

g00 = −(1 + 2φ) gi j = δi j . (17.62)

As we have seen, the non-vanishing components of the connection are:

�i
00 = ∂iφ �0

i0 = −∂iφ. (17.63)

Correspondingly, the non-zero components of the curvature tensor are:

Ri
00 j = ∂i∂ jφ = −Ri

0 j0 = R0
i j0 (17.64)

where the relations between the various components follow from the symmetries
of the curvature tensor. From these we can construct the Ricci tensor and the Ricci
scalar:

R00 = ∇2φ R = −∇2φ. (17.65)

So we obtain

−∇2φ = κ2T00. (17.66)

Note, from this, we can identify Newton’s constant in terms of κ ,

GN = κ2

8π
. (17.67)

17.4 The Schwarzschild solution

Not long after Einstein wrote down his equations for general relativity,
Schwarzschild constructed the solution of the equations for a static, isotropic metric.
Such a metric can be taken to have the form:

ds2 = −B(r )dt2 + A(r )dr2 + r2(dθ2 + sin2 θdφ2). (17.68)

Actually, rotational invariance would allow other terms. In terms of vectors, d�x ,
the most general metric has the form

−B(r )dt2 + D(r )�x · d�xdt + C(r )d�x · d�x + D(r )(�x · d�x)2. (17.69)

By a sequence of coordinate transformations, however, one can bring the metric to
the form above.

We will solve Einstein’s equations with Tµν = 0. Corresponding to ds2, we have
the non-vanishing metric components:

grr = A(r ) gφφ = r2 sin2 θ gtt = −B(r ) gθθ = r2. (17.70)
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Our goal is to determine A and B. The equations for A and B follow from Einstein’s
equations. We first need to evaluate the non-vanishing Christoffel symbols. This
is done in the exercises. While straightforward, the calculation of the connection
and the curvature is slightly tedious, and this is an opportunity to practice with the
computer packages described in the exercises. The non-vanishing components of
the affine connection are:

�r
rr = 1

2A(r )
A′(r ) �r

θθ = − r

A(r )
�r

φφ = −r sin2(θ )

A(r )

�r
φφ = r sin2 θ

A(r )
�r

tt = 1

2A(r )
B ′(r ), (17.71)

where the primes denote derivatives with respect to r . Similarly

�θ
rφ = �θ

θr = 1

r
�θ

φφ = − sin(θ) cos(θ )

�
φ
φr = �

φ
rφ = 1

r
�

φ
φθ = �

φ
θφ = cos(θ )

�t
tr = �t

r t = B ′

2B
. (17.72)

The non-vanishing components of the Ricci tensor are:

Rrr = B ′′

2B
− 1

4

B ′′

B

(
A′

A
+ B ′

B

)
− 1

r

A′

A
(17.73)

Rθθ = −1 + r

2A

(
− A′

A
+ B ′

B

)
+ 1

A
(17.74)

Rφφ = sin2 θ Rθθ Rtt = − B ′′

2A
+ 1

4

B ′

A

(
A′

A
+ B ′

B

)
− 1

r

B ′

A
. (17.75)

For empty space, Einstein’s equation reduces to

Rµν = 0. (17.76)

We will require that asymptotically, the space-time is just flat Minkowski space, so
we will solve these equations with the requirement

Ar→∞ = Br→∞ = 1. (17.77)

Examining the components of the Ricci tensor, we see that it is enough to set
Rrr = Rθθ = Rtt = 0. We can simplify the equations with a little cleverness:

Rrr

A
+ Rtt

B
= − 1

r A

(
A′

A
+ B ′

B

)
. (17.78)
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From this it follows that A = 1/B. Then, from Rθθ = 0, we have

d

dr
(r B) − 1 = 0. (17.79)

So

r B = r + const. (17.80)

Now B = −gtt , so, far away, where the space-time is nearly flat, B = 1 + 2φ,
where φ is the gravitational potential. So:

B(r ) =
[

1 − 2MG

r

]
A(r ) =

[
1 − 2MG

r

]−1

. (17.81)

17.5 Features of the Schwarzschild metric

So finally, we have the Schwarzschild metric:

ds2 = −
[

1 − 2MG

r

]
dt2 +

[
1 − 2MG

r

]−1

dr2 + r2dθ2 + r2 sin2 θdφ2.

(17.82)
Far away, this clearly describes an object of mass M . While we have so far discussed
the energy–momentum tensor for matter, we have not discussed the energy of
gravitation. The situation is similar to the problem of defining charge in a gauge
theory. There, the most straightforward definition involves using the asymptotic
behavior of the fields to determine the total charge. In gravity, the energy is similar.
There is no invariant local definition of the energy density. But in spaces that are
asymptotically flat, one can give a global notion of the energy, known as the ADM
(for Arnowitt, Deser and Misner) energy. Only the 1/r behavior of the fields enters.
We will not review this here, but, not surprisingly, in the present case, this energy,
P0, is equal to M .

The curvature of space-time near a star yields observable effects. Einstein, when
he first published his theory, proposed two tests of the theory: the bending of light
by the Sun, and the precession of Mercury’s perihelion. In the latter case, the theory
accounted for a known anomaly in the motion of the planet; the prediction of the
bending of light was soon measured.

A striking feature of this metric is that it becomes singular at a particular value
of r , known as the Schwarzschild radius (horizon),

rh = 2MG. (17.83)

At this point, the coefficient of dr2 diverges, and that of dt2 vanishes. Both change
sign, in some sense reversing the roles of r and t . This singularity is a bit of a fake.
No component of the curvature becomes singular. One can exhibit this by choosing
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coordinates in which the metric is completely non-singular (see the exercises at the
end of the chapter).

For most realistic objects, such as planets and typical stars, this rh is well within
the star, where surely it is important to use a more realistic model of Tµν . But there
are systems in nature where the “material” lies well within the Schwarzschild radius.
These systems are known as black holes. The known black holes arise from the
collapse of very massive stars. It is conceivable that smaller black holes arise from
more microscopic processes. These systems have striking properties. Classically,
light cannot escape from within the horizon; the curvature singularity at the origin is
real. Black holes are nearly featureless. Classically, an external observer can only
determine the mass, charge and angular momentum of the black hole, however
complex the system which may have preceded it.

Bekenstein pointed out that the horizon area has peculiar properties, and behaves
much like a thermal system. Most importantly, it obeys a relation analogous to the
second law,

d A > 0. (17.84)

Identifying the area with an entropy suggests that one can associate a temperature
with the black hole, known as the Hawking temperature. The black hole horizon is
a sphere of area 4πr2

h . So one might guess, on dimensional grounds,

Th = 1

8πG M
. (17.85)

The precise constant does not follow from this argument. The reader is invited to
work through a heuristic, path integral derivation in the exercises.

Quantum mechanically, Hawking showed that this temperature has a microscopic
significance. When one studies quantum fields in the gravitational background, one
finds that particles escape from the black hole. These particles have a thermal
spectrum, with a characteristic temperature Th.

These features of black holes raise a number of conceptual questions. For the
black hole at the center of the galaxy, for example, with mass millions of times
greater than the Sun, the Hawking temperature is ludicrously small. Correspond-
ingly, the Hawking radiation is totally irrelevant. But one can imagine microscopic
black holes which would evaporate in much more modest periods of time. This
raises a puzzle. The Hawking radiation is strictly thermal. So one could form a
black hole, say, in the collapse of a small star. The initial star is a complex sys-
tem, with many features. The black hole is nearly featureless. Classically, however,
one might imagine that some memory of the initial state of the system is hidden
behind the horizon; this information would simply be inaccessible to the external
observer. But owing to the evaporation, the black hole, and its horizon, eventually
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disappear. One is left with just a thermal bath of radiation, with features seemingly
determined by the temperature (and therefore the mass). Hawking suggested that
this information paradox posed a fundamental challenge for quantum mechanics:
pure states could evolve into mixed states, through the formation of a black hole.
For many years, this question was the subject of serious debate. One might respond
to Hawking’s suggestion by saying that the information is hidden in subtle correla-
tions in the radiation, as would be the case of burning, say, a lump of coal initially in
a pure state. But more careful consideration indicates that things cannot be quite so
simple. Only in relatively recent years has string theory provided at least a partial
resolution of this paradox. We will touch on this subject briefly in the chapters on
string theory. In the suggested reading, the reader will be referred to more thorough
treatments.

17.6 Coupling spinors to gravity

In any theory which will ultimately describe nature, both spinors and general rela-
tivity will be present. Coupling spinors to gravity requires some concepts beyond
those we have utilized up to now. The usual covariant derivative is constructed
for tensors under changes of coordinates. In flat space, spinors are defined by their
properties under rotations – more generally Lorentz transformations. To do the same
in general relativity, it is necessary, first, to introduce a local Lorentz frame at each
point. The basis vectors in this frame are denoted ea

µ. Here µ is the Lorentz index;
we can think of a as labeling the different vectors. The eµs, in four dimensions, are
referred to as a tetrad or “vierbein.” In other dimensions, these are called vielbein.

Requiring that the basis vectors be orthonormal, in the Lorentzian sense, gives

ea
µ(x)eaν(x) = gµν(x) (17.86)

or, equivalently,

ea
µ(x)ebµ(x) = ηab. (17.87)

The choice of the vielbein is not unique. We can multiply e by a Lorentz matrix,
�a

b(x). Using e, we can change indices from space-time (sometimes called “world”)
indices to tangent space indices:

V a = ea
µV µ. (17.88)

Using this, we can figure out what is the form of the connection which maintains
the gauge symmetry. We require:

DµV a = eaν DµVν. (17.89)
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The derivative on the left-hand side is:(
∂µV a + (ωµ)a

bV b
)

(17.90)

With a bit of work, one can find explicitly the connection between the spin connec-
tion and the vielbein:

ωab
µ = 1

2
eνa

(
∂µeb

ν − ∂νeb
µ

) − 1

2
eνb

(
∂µea

ν − ∂νea
µ

) − 1

2
eρaeσb(∂ρeσc − ∂σ eρc)ec

µ.

(17.91)
Now we put this together. First, the curvature has a simple expression in terms of

the spin connection, which formally is identical to that of a Yang–Mills connection:

(Rµν)a
b = ∂µ(ων)a

b − ∂ν(ωµ)a
b + [ωµ, ων]a

b. (17.92)

This is connected simply to the Riemann tensor:

(Rµν)a
b = ea

σ eτ
b (Rµν)στ . (17.93)

We can now construct, also, a generally covariant action for spinors:∫
d Dx

√
giψ̄�aeµ

a

(
∂µ + 1

2
ωbc

µ �bc

)
ψ. (17.94)

Suggested reading

There are a number of excellent textbooks on general relativity, for example those
of Weinberg (1972), Wald (1984), Carroll (2004) and Hartle (2003). Many aspects
of general relativity important for string theory are discussed in the text of Green
et al. (1987). A review of black holes in string theory is provided by Peet (2000).

Exercises

(1) Show that gµν∂ν transforms like dxµ. Verify explicitly that the covariant derivative of
a vector transforms correctly.

(2) Derive Eq. (17.38) by considering the action for a particle:

S = −
∫

ds = −
∫ √

−gµν

dxµ

dτ

dxν

dτ
. (17.95)

(3) Verify the formula, Eq. (17.40) forR, its symmetry properties, and the Bianchi identities.
(4) Repeat the derivation of the conservation of the stress tensor, being careful with all of

the steps. Derive the stress tensor for the Maxwell field of electrodynamics, Fµν . Derive
Einstein’s equations from the action. You’ll want to show first that

δRµν = (
δ�λ

µλ

)
;ν − (

δ�λ
µν

)
;λ.
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(5) Download a package of programs for doing calculations in general relativity in maple,
mathematica, or any other program you prefer. A Google search will yields sev-
eral choices. Practice by computing the components of the affine connection and the
curvature for the Schwarzschild solution.

(6) Heuristic derivation of the Hawking temperature: near the horizon, one can choose
coordinates so that the metric is almost flat. Check that with

η = 2
√

rh(r − rh) (17.96)

ds2 = −4r2
h η2dt2 + dη2 + r2

h d�2
2. (17.97)

Now take the time to be Euclidean, t → iφ/(2rh). Check that now this is of the metric of
the plane times that of a two sphere, provided that φ is an angle, 0 < φ < 2π (otherwise,
the space is said to have a conical singularity). Argue that field theory on this sphere is
equivalent to field theory at finite temperature, with temperature Th (you may need to
read Appendix C, particularly the discussion of finite temperature field theory).
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Cosmology

Very quickly after Einstein published his general theory, a number of researchers
attempted to apply Einstein’s equations to the universe as a whole. This was a
natural, if quite radical, move. In Einstein’s theory, the distribution of energy and
momentum in the universe determines the structure of space-time, and this applies
as much to the universe as a whole as to the region of space, say, around a star.
To get started these early researchers made an assumption which, while logical,
may seem a bit bizarre. They took the principles enunciated by Copernicus to their
logical extreme, and assumed that space-time was homogeneous and isotropic,
i.e. that there is no special place or direction in the universe. They had virtually
no evidence for this hypothesis at the time – definitive observations of galaxies
outside of the Milky Way were only made a few years later. It was only decades
later that evidence in support of this cosmological principle emerged. As we will
discuss, we now know that the universe is extremely homogeneous, when viewed
on sufficiently large scales.

To implement the principle, just as, for the Schwarzschild solution, we begin by
writing the most general metric consistent with an assumed set of symmetries. In
this case, the symmetries are homogeneity and isotropy in space. A metric of this
form is called Friedmann–Robertson–Walker (FRW). We can derive this metric
by imagining our three-dimensional space, at any instant, as a surface in a four-
dimensional space. There should be no preferred direction on this surface; in this
way, we will impose both homogeneity and isotropy. The surface will then be
one of constant curvature. Consider, first, the mathematics required to describe
a 2 + 1-dimensional space-time of this sort. The three spatial coordinates would
satisfy

x2
1 + x2

2 = k
(
R2 − X2

3

)
, (18.1)

where k = ±1 might be positive or negative, corresponding to a space of positive

259



260 18 Cosmology

or negative curvature. Then the line element on the surface is (for positive k):

d�x2 = dx2
1 + dx2

2 + dx2
3 = dx2

1 + dx2
2 + (x1dx1 + x2dx2)2

x2
3

. (18.2)

The equation of the hypersurface gives

x2
3 = R2 − x2

1 − x2
2 . (18.3)

Calling x1 = r ′ cos(θ ), x2 = r ′ sin(θ),

d�x2 = R2dr ′2

R2 − r ′2 + r ′2dθ2. (18.4)

It is natural to rescale r ′ = r/R. Then the metric takes the form, now for general k:

d�x2 = dr ′2

1 − kr2
+ r2dθ2. (18.5)

Here k = 1 for a space of positive curvature; k = −1 for a space of negative cur-
vature; k = 0 is a spacial case, corresponding to a flat universe.

We can immediately generalize this to three dimensions, allowing the radius, R,
to be a function of time, R → a(t). In this way we obtain the Friedman–Robertson–
Walker (FRW) metric:

ds2 = −dt2 + a2(t)

{
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

}
. (18.6)

By general coordinate transformations, this can be written in a number of other
convenient and commonly used forms, which we will encounter in the following.

First, let’s evaluate the connection and the curvature. Again, the reader should
evaluate a few of these terms by hand, and perform the complete calculation using
one of the programs mentioned in the exercises in the previous chapter. The non-
vanishing components of the connection are:

�i
0 j = ȧ

a
δi

j �0
i j = gi j

ȧ

a
�i

jk = gil

2
[gl j,k + glk, j − g jk,l] (18.7)

and of the curvature are:

R00 = −3
ä

a

Ri j = gi j

[
ä

a
+ 2H 2 − 2

k

a2

]
. (18.8)

Here H is known as the Hubble parameter,

H = ȧ

a
, (18.9)
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and represents the expansion rate of the universe. Today

H = 100 h km s−1 Mpc−1 h = 0.73 ± 0.03. (18.10)

The assumption of homogeneity and isotropy greatly restricts the form of the stress
tensor; Tµν must take the perfect fluid form:

T00 = ρ Ti j = pgi j (18.11)

where ρ and p are the energy density and the pressure, and are assumed to be
functions only of time. Then the 0−0 component of the Einstein equation gives the
Friedmann equation:

ȧ2

a2
+ k

a2
= 8πG

3
ρ. (18.12)

The i − j components give:

2ä

a
+ ȧ2

a2
+ k

a2
= −8πGρ. (18.13)

There is also an equation which follows from the conservation of the energy mo-
mentum tensor, T µν

;ν = 0. This is

d(ρa3) = −pd(a3). (18.14)

This equation is familiar in thermodynamics as the equation of energy conservation,
if we interpret a3 as the volume. Suppose that we have the equation of state p = wρ,
where w is a constant. Then Eq. (18.14) says:

ρ ∝ a−3(1+w). (18.15)

Three special cases are particularly interesting. For non-relativistic matter, the pres-
sure is negligible compared to the energy density, so w = 0. For radiation (relativis-
tic matter), w = 1/3. For a Lorentz-invariant stress tensor, Tµν = �gµν , p = −ρ,
so w = −1. For these cases, it is worth remembering that

Radiation:ρ ∝ R−4 Matter:ρ ∝ R−3; Vacuum:ρ = constant. (18.16)

After taking account conservation of stress-energy and the Bianchi identities,
only one of the two Einstein equations we have written is independent, and it is
conventional to take the Friedmann equation. This equation can be rewritten in
terms of the Hubble parameter,

k

H 2a2
= 8πGρ

3H 2
− 1. (18.17)
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Examining the right-hand side of this equation, it is natural to define a critical
density,

ρc = 3H 2

8πG
, (18.18)

and to define � as the ratio of the density to the critical density,

� = ρ

ρc
. (18.19)

So k = 1 corresponds to � > 1, k = −1 to � < 1, and k = 0, a flat universe, to
� = 1. It is also natural to break up � into various components, such as radiation,
matter, and cosmological constant. As we will discuss shortly, � today is equal to
one within experimental errors; its main components are baryons, some unknown
form of matter, and dark energy (perhaps cosmological constant),

�b = 0.04; �dm = 0.28; �de = 0.73. (18.20)

The present error bars are of order 4% on �b, and 13% on the dark matter density.
The errors are similar on the dark energy determination.

The history of the universe divides into various eras, in which different forms
of energy were dominant. The earliest era for which we have direct observational
evidence is a period lasting from a few seconds after the big bang to about 100 000
years, during which the universe was radiation dominated. From the Friedmann
equation, setting k = 0, we have that

a(t) = a(t0)t1/2 H = 1

2t
. (18.21)

For the period of matter domination, which began about 105 years after the big
bang and lasted almost to the present:

a(t) ∝ t2/3 H = 2

3t
. (18.22)

The universe appears today to be passing from an era of matter domination to a
phase in which a (positive) cosmological constant dominates. Such a space is called
a de Sitter space, and:

a(t) ∝ eHdt Hd = 8πG

3
�. (18.23)

In the radiation dominated and matter dominated periods, H is, as we see from the
formulas above, roughly a measure of the age of the universe. One can define the
age of the universe more formally as:

t =
∫ a(t) da

ȧ
=

∫
da

aH
. (18.24)
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The present value of the Hubble constant corresponds to t ≈ 15 billion years. To
obtain this correspondence between the age and the measured H0, it is important to
include both the matter and the cosmological constant pieces in the energy density.
Note, in particular, that the integral is dominated by the most recent times, where
H is smallest.

18.1 A history of the universe

As little as 50 years ago, most scientists would have been surprised at just how
much we would eventually know about the universe: its present composition, its
age, and its history, back to times a couple of minutes after the big bang. We have
direct evidence of phenomena at much earlier times, though its full implications
are difficult to interpret. We understand how galaxies formed and the abundance of
the light elements. And we have a trove of plausible speculations, some of which
we should be able to test over time.

In this section, we outline some of the basic features of this picture. Examining
the FRW solution of Einstein’s equations, we see that the scale factor, a(t), gets
monotonically smaller in the past. The Hubble parameter, H , becomes larger. So
at some time, the universe was much smaller than it is today. More precisely,
the objects we see, or their predecessors, were far closer together. Far enough
back in time, the material we currently see was highly compressed, and hot. So at
some stage, the universe was likely dominated by radiation. Recall that, during a
radiation-dominated era,

a ∼ t1/2 H = 1

2t
. (18.25)

If we suppose that the universe remained radiation dominated as we look further
back in time, we face a problem. At t = 0, the metric is singular – the curvature
diverges. This is a finite time in the past, since∫ today

0
dt

√−g00 (18.26)

converges as t → 0. This is not simply a feature of our particular assumptions about
the equation of state or the precise form of the metric, but a feature of solution of
Einstein’s equations; it is a consequence of singularity theorems due to Penrose
and Hawking. The meaning of this singularity is a subject of much speculation. It
might be smoothed out by quantum effects, or indicate something else. For now, we
simply have to accept that some early time is inaccessible to us. To make progress,
we suppose, first, that at time t0, the universe was extremely hot, with temperature
T0, and reasonably homogeneous and isotropic. We then allow the universe to
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evolve, using Einstein’s equations, the known particles and their interactions, and
basic principles of statistical mechanics. As we will see, we can safely take T0 at
least as large as several MeV (corresponding to temperatures larger than 1010 K).

To make further progress, we need to think about the content of the universe and
how it evolves as the universe expands. The universe cannot be precisely in thermal
equilibrium, but for much of its history it is very nearly so, with matter and radiation
evolving adiabatically. To understand why the expansion is adiabatic, note first that
H−1 is a time-scale for the expansion. If the universe is radiation dominated,

H ∼ T 2

Mp
. (18.27)

The rate for interactions in a gas will scale with T , multiplied, perhaps, by a few
powers of coupling constants. For temperatures well below the Planck scale, the
reaction rates will be much more rapid than the expansion rate. So at any given
instant, the system will nearly be in equilibrium.

It is worth reviewing a few formulas from statistical mechanics. These formulas
can be derived by elementary considerations, or by using the methods of finite-
temperature field theory, as discussed in Appendix C. For a relativistic, weakly
coupled Bose gas,

ρ = π2

30
gT 4 p = ρ

3
, (18.28)

while for a similar Fermi gas:

ρ = 7

8

π2

30
gT 4 p = ρ

3
. (18.29)

Here g is a degeneracy factor, counting the number of physical helicity states of
each particle type. In the non-relativistic limit, for both bosons and fermions,

n = g

(
mT

2π

)3/2

exp(−(m − µ)/T ) (18.30)

ρ = mn p = nT � ρ. (18.31)

For temperatures well below m, the density rapidly goes to zero unless µ �= 0.
Note that µ may be non-zero when there is a (possibly approximately) conserved
quantum number. Perhaps the most notable example is baryon number.

We should pause here and discuss an aspect of general relativity which we have
not considered up to now. A gravitational field alters the behavior of clocks. This
is known as the gravitational red-shift. We can understand this in a variety of ways.
First, if we have a particle at rest in a gravitational field, we see that the proper
time is related to the coordinate time by a factor

√
g00. Consider, alternatively,
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the equation for a massless scalar field with momentum k in an expanding FRW
universe. This is just Dµ∂µφ = 0. Using the non-vanishing Christoffel symbols,
with φ(�x, t) = ei�k·�xφ(t),

φ̈(k) + 3H φ̇(k) + k2

a2(t)
φ = 0. (18.32)

As a result of the last term, the wavelength effectively decreases as 1/a(t). A photon
red-shifts in precisely the same way.

The implications of this for the statistical mechanical distribution functions are
interesting. Consider, first, a massless particle such as the photon. For such a particle,
the distribution is: ∫

d3k

(2π )3

1

ek/T − 1
. (18.33)

The effect of the red-shift is to maintain this form of the distribution, but to change
the temperature, T (t) ∝ 1/a(t). So even if the particles are not in equilibrium, they
maintain an equilibrium distribution appropriate to the red-shifted temperature.
This is not the case for massive particles.

Let’s imagine, then, starting the clock at temperatures well above the scale of
QCD, but well below the scale of weak interactions, say at 10 GeV. In this regime,
the density of W s and Zs is negligible, but the quarks and gluons behave as nearly
free particles. So we can take an inventory of bosons and fermions light compared
to T . The bosons include the photon and the gluons; the fermions include all of the
quarks and leptons except the top quark. So the effective g, which we might call
g10, is approximately 98. This means, for example, that

ρ ≈ g10π
2

30
T 4 (18.34)

and the Hubble constant is related to the temperature through:

H =
[

8π

3
G

π2

30
g10T 4

]1/2

. (18.35)

This allows us to write a precise formula for the temperature as a function of time:

T =
[

16π

3
G

π2

30
g10

]−1/4 (
1

t

)1/2

. (18.36)

As the universe cools, QCD changes from a phase of nearly free quarks and
gluons to a hadronic phase. At temperatures below mπ , the only light species are
the electron and the neutrinos. By this time, the anti-neutrons have annihilated with
neutrons and the anti-protons against protons, leaving a small net baryon number,
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the total number of neutrons and protons. There is, at this time, of order one baryon
per billion photons. We will have much more to say about this slight excess later.

At this stage, interactions involving neutrinos maintain an equilibrium distribu-
tion of protons and neutrons. We can give a crude, but reasonably accurate, estimate
of the temperature at which neutrino interactions drop out of equilibrium by asking
when the interaction rate becomes comparable to the expansion rate. The cross
section for neutrinos off of protons behaves as:

σ (ν + p → n + e) ≈ G2
F E2 (18.37)

and the number density of neutrinos is

nν ≈ π2

30
gT T 3. (18.38)

Combining this with our formula for the Hubble constant as a function of T ,
Eq. (18.35), gives for the decoupling temperature, Tν ,

T 3
ν ≈ G−2

F M−1
p , (18.39)

or

Tν ≈ 2 MeV. (18.40)

This corresponds to a time of order 100 s after the big bang. At this point, neutron
decays are not compensated by the inverse reaction. On the other hand, many
neutrons will pair with protons to form stable light elements such as D and He. At
about this time, the abundances of the various light elements are fixed.

There is a long history of careful, detailed calculations of the abundances of the
light elements (H, He, D, Li, · · · ) which result from this period of decoupling. The
abundances turn out to be a sensitive function of the ratio of baryon to photons,
nB/nγ . Astronomers have also made extensive efforts to measure this ratio. A
comparison of observations and measurements. gives for the baryon to photon
ratio:

nB

nγ

= 6.1+0.3
−0.2 × 10−10. (18.41)

We will see that this result receives strong corroboration from other sources.
The universe continues to cool in this radiation dominated phase for a long

time. At t ≈ 105 years, the temperature drops to about 1 eV. At this time, electrons
and nuclei can combine to form neutral atoms. As the density of ionized material
drops, the universe becomes essentially transparent to photons. This is referred to
as recombination. The photons now stream freely. As the universe continues to
cool, the photons red-shift, maintaining a Planck spectrum. Today, these photons
behave as if they had a temperature T ≈ 3 K. They constitute the cosmic microwave
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background radiation (CMBR). This radiation was first observed in 1963 by Penzias
and Wilson, and has since been extensively studied. It is very precisely a black body,
with characteristic temperature 2.7 K. We will discuss other features of this radiation
shortly.

It is interesting that, given the measured value of the matter density, matter and
radiation have comparable energy densities at recombination time. At later times,
matter dominates the energy density, and this continues to be the case to the present
time.

In our brief history, another important event occurs at t � 109 years. If we sup-
pose that initially there were small inhomogeneities, these remain essentially frozen,
as we will explain later, until the time of matter-radiation equality. They then grow
with time. From observations of the CMBR, we know that these inhomogeneities
were at the level of one part in 105. At about 1 billion years after the big bang, these
then grow enough as to be non-linear, and their subsequent evolution is believed
to give rise to the structure – galaxies, clusters of galaxies, and so on, that we see
around us.

One surprising feature of the universe is that most of the energy density is in
two forms which we cannot see directly. One is referred to as the “dark matter.”
The possibility of dark matter was first noted by astronomers in the 1930s, from
observations of rotation curves of galaxies. Simply using Newton’s laws, one can
calculate the expected rotational velocities and one finds that these do not agree with
the observed distribution of stars and dust in the galaxies. This is true for structures
on many scales, not only galaxies but clusters and larger structures. Other features
of the evolution of the universe are not in agreement with observation unless most
of the energy density is in some other form. From a variety of measurements,
�m, the fraction of the critical energy density in matter, is known to be about 0.3.
Nucleosynthesis and the CMBR give a much smaller fraction in baryons, �b ≈
0.05. In support of this picture, direct searches for hidden baryons are compatible
with the smaller number, and have failed to find anything like the required density
to give �m.

Finally, it appears that we are now entering a new era in the history of the
universe. For the last 14 billion years, the energy density has been dominated by
non-relativistic matter. But at the present time, there is almost twice as much energy
in some new form, with p < 0, referred to as dark energy. This is quite possibly
a cosmological constant, �. Current measurements are compatible with w = −1
(p = −ρ).

The picture we have described has extensive observational support. We have
indicated some of this: the light element abundances and the observation of
the CMBR. The agreement of these two quite different sets of observations for the
baryon to photon ratio is extremely impressive. Observations of supernovae, the



268 18 Cosmology

age of the universe, and features of structure at different scales all support the exis-
tence of a cosmological constant (dark energy) constituting about 70% of the total
energy.

This is not a book on cosmology, and the overview we have presented is ad-
mittedly sketchy. There are many aspects of this picture we have not discussed.
Fortunately, there are many excellent books on the subject, some of which are
mentioned as suggested reading.

Suggested reading

There are a number of good books and lectures on aspects of cosmology discussed
here. Apart from the text of Weinberg (1972), mentioned earlier, these include the
texts of Kolb and Turner (1990) and of Dodelson (2004).

Exercises

(1) Compute the Christoffel symbols and the curvature for the FRW metric. Verify the
Friedmann equations.

(2) Verify Eq. (18.32).
(3) Consider the case of de Sitter space, Tµν = −�gµν , with positive �. Show that the

space expands exponentially rapidly. Compute the horizon – the largest distance from
which light can travel to an observer.



19

Astroparticle physics and inflation

In Chapter 18, we put forward a history of the universe. The picture is extremely
simple. Its inputs are Einstein’s equations and the assumptions of homogeneity
and isotropy. We also used our knowledge of laws of atomic, nuclear and particle
physics. We saw a number of striking confirmations of this basic picture, but there
are many puzzles.

(1) The most fundamental problem is that we don’t know the laws of physics relevant to
temperatures greater than about 100 GeV. If there is only a single Higgs doublet at the
weak scale, it is possible that we can extend this picture back to far earlier times. If there
is, say, supersymmetry or large extra dimensions, the story could change drastically.
Even if things are simple at the weak scale, we will not be able to extend the picture all
the way back to t = 0. We have already seen that the classical gravity analysis breaks
down.

(2) There are a number of features of the present picture we cannot account for within the
Standard Model. Specifically, what is the dark matter? There is no candidate among
the particles of the Standard Model. Is it some new kind of particle? As we will see,
there are plausible candidates from the theoretical structures we have proposed, and
they are the subject of intense experimental searches.

(3) The dark energy is very mysterious. Assuming it is a cosmological constant, it can be
thought of as the vacuum energy of the underlying microphysical theory. As a number, it
is totally bizarre. Its natural value should be set by the largest relevant scale, perhaps the
Planck or unification scale, or the scale of supersymmetry breaking. Other proposals
have been put forward to model the dark energy. One which has been extensively
investigated is known as quintessence, the possibility that the energy is that of a slowly
varying scalar field. Such models typically do not predict w �= −1, and many are already
ruled out by observations. But it should be stressed that these models are, if anything, less
plausible than the possibility of a cosmological constant. First, one needs to explain why
the underlying microphysical theory produces essentially zero cosmological constant,
and a potential whose curvature is smaller than the present value of H . Then one needs
to understand why the slowly varying field produces today the bizarre observed energy

269



270 19 Astroparticle physics and inflation

density, without disturbing the successes of the cosmological picture for earlier times.
It is probably fair to say that no convincing explanation of either aspect of the problem
has been forthcoming.

(4) The value of the present baryon to photon ratio is puzzling:

nB

nγ

= (
6.1 +0.3

−0.2

) × 10−10. (19.1)

As we will see, the question can alternately be phrased: why is this so small – or why is
it so large? If the universe was always in thermal equilibrium, this number is a constant.
So at very early times, there was a very tiny excess of particles over antiparticles. One
might imagine that this is simply an initial condition, but, as A. Sakharov first pointed
out, this is a number one might hope to explain through cosmology combined with mi-
crophysical theory. As we will discuss in detail later, it is necessary that the underlying
microphysics violate baryon number and CP, and that there be a significant departure
from thermal equilibrium. The Standard Model, as we have seen, violates both, and
can generate a baryon number, but, as we will see, it is far too small. So modifica-
tions of the known physical laws are required to account for the observed density of
baryons.

(5) Homogeneity, flatness and topological objects, such as monopoles, pose puzzles which
suggest a phenomenon known as inflation. Consider, first, homogeneity. This certainly
made the equations simple to solve, but it is puzzling. If we look at the cosmic microwave
background, the temperature in different directions in the sky is equal to about a part
in 105. But as we look out at distances 14 billion light years away, points separated by
a tiny fraction of a degree were separated, at 100 000 years after the big bang, by an
enormous distance compared to the horizon at that time. The problem is that the horizon
decreases in size, as we look back, as

√
t . So points separated by a degree were, at that

time, separated by about 107 light years. But signals could not travel more than 105 light
years by this time. So if these points had not been in causal contact by recombination,
why should they have identical temperatures? For nucleosynthesis, which occurs much
earlier, the question is even more dramatic.

(6) Flatness (�tot = 1) may not seem puzzling at first, but let’s consider, again, the structure
of the FRW metric. We have seen that the Friedmann equation can be recast as:

8πGρ

H 2
= � − 1. (19.2)

Suppose, for example, that � = 0.999 today. Then, at recombination, the left-hand side
of this equation was more than 8 orders of magnitude smaller. So the energy density
was equal to the critical density with extraordinary precision. This apparent fine tuning
gets more and more extreme as we look further back in time.

(7) Monopoles: we have seen that simple grand unified theories predict the existence of
magnetic monopoles. Their masses are typically of order the grand unification scale. So
unless their density is many orders of magnitude (perhaps 14!) smaller than the density
of baryons, their total energy density will be far greater than the observed energy density
of the universe. Astrophysical limits turn out to be even smaller; passing through the
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galaxy, monopoles would deplete the magnetic field. This sets a limit, known as the
Parker bound, on the monopole flux in the galaxy:

F < 10−16

(
Mmon

1017 GeV

)
cm−2 s−1 sr−1. (19.3)

On the other hand, we might expect, in a grand unified theory, quite extensive monopole
production. We have seen that monopoles are topological objects. If there is a phase
transition between a phase of broken and unbroken SU (5), we would expect twists in
the fields on scales of order the Hubble radius at this time, and a density of monopoles
of order one per horizon volume. If the transition occurs at T0 = 1016 GeV, the Hubble
radius is of order T 2/Mp, so the density, in units of the photon density, T 3, is of
order

nmon

nγ

= T 3

M3
p

(19.4)

and can be larger than the baryon density.

In the following sections, we discuss these issues. We will study a possible solu-
tion to the homogeneity, flatness and monopole problems: inflation, the hypothesis
that the universe underwent a period of extremely rapid expansion. We will see
that there is some evidence that this phenomenon really occurred. Certainly there
is nothing within the Standard Model itself which can give rise to inflation, so this
points to the presence of some new phenomena, perhaps fields, perhaps more com-
plicated entities, which are crucial to understanding the universe we see around us.
We will describe some simple models of inflation, especially slow roll inflation,
chaotic and hybrid inflation, and some of their successes and the puzzles which they
raise. We will discuss inflationary theory’s biggest success: quantum mechanical
fluctuations during inflation give rise to the perturbations which grow to become the
structure we see around us in the universe. This introduction is not comprehensive,
but should give the reader some tools to approach the vast literature which exists
on this subject.

We next turn to the problem of the dark matter. We focus on two candidates: the
lightest supersymmetric particle of the MSSM, and the axion. We explain how these
particles might rather naturally be produced with the observed energy density, and
discuss briefly the prospects for their direct detection. Then we turn to baryogenesis.
We explain why the Standard Model has all of the ingredients to produce an excess
of baryons over anti-baryons, but, given the value of the Higgs mass, this baryon
number cannot be nearly as large as is observed. We then turn to baryon production
in some of our proposals for physics beyond the Standard Model, focussing on
three possibilities: heavy particle decay in grand unified theories, leptogenesis, and
coherent production by scalar fields.
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V(φ)

φ

Fig. 19.1. A typical inflationary potential has a region in which V (φ) varies slowly
and then settles into a minimum.

19.1 Inflation

The underlying idea behind inflation is that the universe behaved for a time as if (or
nearly as if) the energy density was dominated by a positive cosmological constant,
�. During this era, the Friedmann equation is that for de Sitter space,

H 2
i =

(
ȧ

a

)2

= 8πG

3
�, (19.5)

with solution

a(t) = eHit . (19.6)

If this situation holds for a time such that, say, �t Hi = 60, then the universe expands
by an enormous factor. Suppose, for example, � = 1016 GeV; correspondingly
Hi ≈ 1014 GeV. Then a patch of size H−1 grows to be almost a centimeter in size.
If, at the end of this period of inflation, the temperature of the universe is 1016 GeV,
this patch would have grown, by the present time, by a factor of 1029. This is about
the size of our present horizon!

One possibility for how this might come about is called “slow roll inflation.”
Here one has a scalar field, φ, with potential V (φ). V (φ), for some range of φ, is
slowly varying (Fig. 19.1). What we called Hi is determined by the average value of
the potential in the plateau region, V0. If we assume that we have a patch, initially,
of size a bit larger than H−1

i , then we can write an equation of motion for the
zero-momentum mode of the field, φ, in this region:

gµν Dµ∂νφ + V ′(φ) = 0. (19.7)

Because of our assumption of homogeneity (and isotropy), we can take the metric
to have the Robertson–Walker form:

φ̈ + 3hφ̇ + V ′(φ) = 0. (19.8)
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We assume that the field is moving slowly, so that we can neglect the φ̈ term.
Shortly, we will check whether this assumption is self-consistent. In this limit, the
equation of motion is first order:

φ̇ = − V ′

3H
. (19.9)

We can integrate this equation to get �t , the time it takes the field to traverse the
plateau of the potential:

�t = −
∫

dφ
3H (φ)M2

p

V ′(φ)
. (19.10)

Assuming the validity of the slow roll approximation, the requirement for obtaining
adequate inflation is:

N = �t H > 60. (19.11)

Now we can determine the conditions for the validity of the slow roll ap-
proximation. We simply want to check, from our solution, that φ̈ � 3H φ̇, V ′(φ).
Differentiating the solution, leads to the conditions

ε = 1

2
M2

p

(
V ′

V

)2

� 1 (19.12)

and

η = M2
p

V ′′

V
, |η| � 1. (19.13)

How does inflation end? Near the minimum of the potential, we can approximate
the potential as quadratic. So we might try to study an equation of the form:

φ̈ + 3Hφ + m2φ = 0. (19.14)

Were it not for the expansion, this equation would have a solution

φ = φ0 cos(mt). (19.15)

In a quantum mechanical language, this would describe a coherent state of particles,
with energy density

ρ = 1

2
m2φ2

0 . (19.16)

These particles have zero momentum; the pressure, Ti j = pδi j = 0. So, if this field
dominates the energy density of the universe, we know that

a ∼ t2/3; H = 2

3
t. (19.17)
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In our toy model, we might imagine m ∼ 1016 GeV � H , so we could solve the
equation by assuming:

φ(t) = f (t) cos(mt) (19.18)

for a slowly varying function, f . Plugging in, one finds

f (t) = 1

t
. (19.19)

Note that this means

ρ = ρ0

(
t

t0

)2

= ρ0

(
a

a0

)3

. (19.20)

To summarize, we are describing a system which behaves like pressureless dust –
zero-momentum particles – which is diluted by the expansion of the universe.

This description also gives us a clue as to the fate of the field, φ. Supposing that
the φ particles have a finite width, �, they will decay in time 1/�. We can include
this in our equation of motion, writing:

φ̈ + (3H + �)φ̇ + V ′(φ) = 0. (19.21)

When the particles decay, if their decay products include, for example, ordinary
quarks, leptons and gauge fields, their interactions will bring them quickly to equi-
librium. We can be at least somewhat quantitative about this. The condensate dis-
appears at a time set by H ≈ �. If the universe quickly comes to equilibrium, the
temperature must satisfy:

π2

30
gT 4 = H 2 3

8πG
. (19.22)

At this temperature, we can estimate the rate of interaction. Since the typical particle
energy will be of order T , the cross sections will be of order

σ = α2
i

T 2
(19.23)

We can multiply this by the density, n = (π2/30)g∗T 3, to obtain a reaction rate. For
inflation with the scales we are discussing, this is enormous compared to H . The
details by which equilibrium is established have been studied with some care. We
can imagine that when a φ first decays, it produces two very-high-energy particles.
These will have rather small cross sections for scattering with other high-energy
decay products, but these interactions degrade the energy, and the cross sections for
subsequent interactions – and for interactions with previously produced particles –
are larger. More careful study leads to a behavior with time where the temperature
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rises to a maximum and then falls. This maximum temperature is:

Tmax ≈ 0.8g−1/4
∗ m1/2(�Mp)1/4, (19.24)

where M is the mass of the inflaton.

19.1.1 Fluctuations: the formation of structure

One of the most exciting features of inflation is that it predicts that the universe is
not exactly homogeneous and isotropic. We can’t do justice to this subject in this
short section, but can at least give the flavor of the analysis and collect the crucial
formulae. In order to have inflation, we need that the metric and fields are reasonably
uniform over a region of size H−1

i . But because of quantum fluctuations, the fields,
and in particular the scalar field, φ, cannot be completely uniform. We can estimate
the size of these quantum fluctuations without great difficulty. In order that inflation
occur at all, we need mφ � H . So we will treat φ as a massless free field in de
Sitter space. For such a field, we can estimate the size of quantum fluctuations. As
in flat space, we can expand the field, φ, in Fourier modes:

φ(�x, t) =
∫

d3k

(2π )3
(ei�k·�x h(�k, t) + c.c.). (19.25)

The expansion coefficients, h, obey the equation Dµ∂νh(�k, t)ei�k·�x = 0, yielding, in
the FRW background:

ḧ + 3Hḣ + k2

a2
h = 0. (19.26)

Here k/a is the red-shifted momentum. In the case of de Sitter space, a grows
exponentially rapidly. As soon as k/a ∼ H , the system becomes overdamped, and
the value of h is essentially frozen. We will see this in a moment when we write an
explicit solution of the equation.

It is convenient to change our choice of time variable. Rather than take the FRW
form for the metric, we take a metric more symmetric between space and time:

ds2 = a2(t)(−dη2 + d�x2). (19.27)

Here, in terms of our original variables,

dη

dt
= ±1

a
. (19.28)

So, choosing the + sign,

η =
∫

da

(ȧ/a)a2
=

∫
da

Ha2
(19.29)
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and

η = H−1/a. (19.30)

In these coordinates, the equations of motion for h(k, η) read:

δφ̈ + 2aHδφ̇ + k2δφ = 0. (19.31)

This equation is straightforward to solve. The solution can be written in terms of
Bessel functions, but more transparently as:

δφk = e−ikη

√
ik

[
1 − i

kη

]
. (19.32)

Note that for large times, η → 0.
Further analysis is required to convert this expression into a fluctuation spectrum.

The result is that the fluctuations in the energy density are roughly scale-invariant,
and

δρ

ρ
≈

(
H 2

5πφ̇

)
. (19.33)

Using the slow roll equation,

3H φ̇ = V ′, (19.34)

gives

δρ

ρ
= 3H∗

5πV ′ = 3V 3/2

5πV ′M3
p

. (19.35)

Much more detailed discussion of these formulas can be found in the suggested
reading. These fluctuations quickly pass out of the horizon during inflation. While
outside of the horizon, they are frozen. Subsequently, however, they reenter the
horizon and begin to grow. Measurements of the CMBR indicate that

δρ

ρ
∼ 10−5 (19.36)

on horizon scales. Fluctuations which were within the horizon at the time of matter-
radiation equality have grown linearly with time since that time. At about 1 billion
years after the big bang, they became non-linear, and this appears to account ad-
equately for the observed structure in the universe. Precise studies of the CMBR,
the formation of structure, and Type Ia supernovas, as well as of the missing mass
in structures on a wide range of scales, has allowed the determination of the com-
position of the universe.

But while the overall scenario is compelling, and has significant observational
support, we lack a persuasive microphysical understanding of these phenomena.
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This is undoubtedly one of the great challenges of theoretical physics. In the next
section, we describe two classes of models, each of which can be motivated by
considerations of supersymmetry and of string theory, for inflation.

19.1.2 Models of inflation

There are almost as many models of inflation as there are physicists who have
thought about the problem, and we cannot possibly sample all of them. In this
section we survey a few. So far, we have discussed a model of a single scalar
field. The properties of the potential for this field must be finely tuned in order to
obtain enough e-foldings of inflation and small enough δρ/ρ. First, it is known
from observations that the Hubble constant during inflation cannot be much larger
than 1016 GeV. This means that the scalar mass cannot be comparable to the Planck
mass, so we face the usual problem of light scalars. Second, the existence of a light
scalar by itself does not insure adequate e-foldings and fluctuation spectrum without
further fine tuning. The first models of slow roll inflation, based on what is known
as the “Coleman–Weinberg” potential, were severely fine-tuned in both senses.
We can illustrate the problems with another class of models, known as “chaotic
inflation.” The idea is to consider a single scalar field, with a simple potential, such
as λφ4. This model can produce inflation if λ is very small, and the typical values
of φ are very large. The validity of the slow roll picture requires that φ � Mp. For
definiteness, suppose φ ≈ 10Mp. Then

δρ

ρ
≈ λ1/2φ2 (19.37)

so that λ ∼ 10−16. With this choice, one obtains, from Eq. (19.10), over 1000
e-foldings during inflation.

This model is very simple, but the extremely small value of the coupling is
troubling, especially given the large value of φ. Not only is this small value of the
coupling puzzling, but the φn couplings, n > 4, expressed in Planck units, must be
even smaller. Despite these concerns, this model has proven useful for considering
many aspects of inflation, and it has been argued that some of its features may
characterize a larger class of models.

Given that supersymmetry naturally produces light scalars, supersymmetry
would seem a natural context in which to construct models of inflation. We have
mentioned that in supersymmetric field theories and in string theory, one often en-
counters moduli, scalar fields whose potentials vanish in the some limit. Banks has
suggested that for such fields, a potential of the form

V = µ4 f (φ/Mp) (19.38)
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will often arise. Here µ is an energy scale determined by some dynamical phe-
nomenon such as the scale of supersymmetry breaking. For such a potential, as-
suming that typical field values are of order Mp, we have from Eq. (19.35),

δρ

ρ
≈ µ2/M2

p . (19.39)

From this, we have µ ≈ 1015.5 GeV. The number of e-foldings is generically of
order one; the potential must be tuned to the level of 1%, for example, if one is
to obtain sufficient inflation. Still, this may seem less troubling than having many
couplings less that 10−6. Note that µ, the energy scale in a supersymmetric model
of this kind with a single field is far larger than we have considered for low-energy
supersymmetry breaking. Banks proposes that at the minimum of the potential,
supersymmetry is unbroken, with vanishing 〈W 〉 as a result of an R-symmetry.

Another class of models of some interest are known as hybrid models. These
involve two fields. They are particularly interesting in the context of supersymmetry,
where the scale of inflation can now be quite low, even comparable to the TeV
scale. Here we consider an example from a class of models dubbed by Guth and
Randall “supernatural,” since the presence of light scalars is again natural. The
model contains two chiral fields, χ and φ, responsible for inflation. Both χ and φ,
initially, sit far from their minima, in such a way that the field χ is very massive,
but φ is light (more precisely, the curvature of the χ as potential is very large,
but that of the φ potential is of order the basic scale of the model). During this
period, χ is essentially frozen, while φ moves slowly towards a local minimum.
The energy is dominated by the potential for χ . As φ approaches its minimum, the
χ field becomes lighter, and it eventually begins to roll towards its minimum. At
this time, inflation ends. The universe reheats as χ oscillates about the minimum
of the potential.

In more detail, we can take the superpotential to be

W = λχφ3

M
(19.40)

and a soft breaking potential

Vsoft(φ, χ ) = m2
3/2g(φ) + Nm2

3/2 f (χ ). (19.41)

We assume that the global minimum of g is at the origin, but that f has a local
minimum near χ = 0, its global minimum being located a distance of order Mp

away.
The mass of the χ field receives a contribution from the superpotential term,

which dominates until φ2 ≈ Nm3/2 Mp. When φ reaches this point, χ starts to move
towards its true minimum. Unless the potential is further tuned, χ will reach its
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minimum in a few Hubble times, ending inflation; χ oscillates about its minimum,
leading to a period of matter domination, until it decays, reheating the universe.

The number of e-foldings, using Eq. (19.10), from large φ until φ reaches this
critical value is of order N . The fluctuation amplitude is of order

δρ

ρ
∼ N

(
m3/2

Mp

)1/2

≈ N × 10−7.5. (19.42)

So N ∼ 60 gives a suitable number of e-foldings and a reasonable fluctuation
spectrum. If the mass of χ is of order N 1/2 TeV, the χ width is of order:

�χ = m3
χ

M2
p

∝ N 3/2. (19.43)

The corresponding reheating temperature, if N ∼ 60 is of order Tr = 10 MeV.
This is above nucleosynthesis, but just barely. It is compatible with everything
we know. In such a picture, the thermal history of the universe began just before
nucleosynthesis; there was not a phase transition in QCD or in the weak interactions,
for example.

19.1.3 Constraints on reheating: the gravitino problem

Our discussion of supersymmetric models of inflation suggests a broad range of
possible reheating temperatures, Tr. But there is a reason, at least in the context of
supersymmetric theories, to think that there may be an upper bound on the reheating
temperature. This is the problem of producing too many gravitinos. The gravitino
lifetime is quite long,

�3/2 ≈ m3
3/2

M2
p

; (19.44)

gravitinos might even be stable. As a minimal requirement, we need to suppose that
the gravitinos did not dominate the energy density at the time of nucleosynthesis. If
they did, again, they spoil the successful predictions of nucleosynthesis, but worse,
as for moduli, their decay products destroy the light elements. Even though grav-
itinos are very weakly interacting, there is a danger that they will be overproduced
during the period of reheating that follows inflation. A natural estimate for their
production rate per unit volume is obtained by assuming that they are produced
in two-body scattering, by light particles with densities of order T 3, and that their
cross sections behave as 1/M2

p :

n2〈σv〉 ≈ T 6〈σv〉 ≈ T 6

M2
p

. (19.45)
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γ a

Fig. 19.2. In a Bremsstrahlung-like process, a lepton or nucleon can emit an axion
when struck by a photon.

Integrating this over a Hubble time, Mp/T 2, and dividing by the photon density, of
order T 3 gives a rough estimate:

n3/2

s
∼ T

Mp
. (19.46)

Assuming 1 TeV for the gravitino mass, the requirement that gravitinos not dominate
before nucleosynthesis gives T < 1012 GeV. But this is too crude. Considering de-
struction of deuterium and lithium gives T < 109 GeV and possibly much smaller.
This is a strong constraint on the nature of reheating after inflation. In the models
suggested by Banks, for example, the reheating temperature can easily be larger.
This is not a problem for the low-scale, hybrid models we discussed in the previous
section.

19.2 The axion as dark matter

Within the set of ideas we have discussed for physics beyond the Standard Model,
there are two promising candidates for dark matter. One is the axion, which we
discussed in Chapter 5 as a possible solution to the strong CP problem. A second
is the lightest supersymmetric particle in models with an unbroken R-parity. We
first discuss the axion, mainly because the theory is particularly simple. To begin,
we need to consider the astrophysics of the axion a bit further. There is a lower
bound on the axion decay constant, or equivalently an upper bound on the axion
mass, arising from processes in stars. Axions can be produced by collisions deep
within the star. Then, because of their small cross section, most axions will escape,
carrying off energy. This has the potential to disrupt the star. We can set a limit by
requiring that the flux of energy from the stars not be more than a modest fraction
of the total energy flux.

To estimate these effects, we can first ask what sorts of processes might be prob-
lematic. A pair of photons can collide and produce an axion (using the aF F̃ coupling
of the axion to the photon). Axions can be produced from nuclei or electrons in
Compton-like and Bremsstrahlung processes (Fig. 19.2). The typical energies will
be of order T .
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For the Compton-like process of Fig. 19.2, the cross section is of order:

σa ≈ α

f 2
a

. (19.47)

The total rate per unit time for a given electron to scatter off a photon in this way
will be proportional to the photon density, which we will simply approximate as
T 3. To obtain the total emission per unit volume, we need to multiply, as well, by
the electron density in the star. In the Sun, this number is of order the total number
of protons or electrons, 1.16 × 1057, divided by the cube of the solar radius (in
particle physics units, 3.5 × 1025 GeV−1). This corresponds to

ne ≈ 3 × 10−16 (GeV)3 electrons. (19.48)

Rather than calculate the absolute rate, let’s compare with the rate for neutrino
production. We would expect that if axions carry off far more energy than neutrinos,
this is problematic. For neutrino production we might take n2

e, and multiply by a
typical weak cross section,

σν = G2
F E2. (19.49)

Finally, we take the temperature in the core of the star to be of order 1 MeV. Taking
fa = 109, gives, for the axion production rate:

Raxion = 10−47 GeV−4 (19.50)

while

Rν = 10−47 GeV−4. (19.51)

Clearly this analysis is crude; much more care is required in enumerating dif-
ferent processes and evaluating their cross sections, and integrating over particle
momentum distributions. But this rough calculation indicates that 109 GeV is a
plausible lower limit on the axion decay constant.

So we have a lower bound on the axion decay constant. An upper bound arises
from cosmology. Suppose that the Peccei–Quinn symmetry breaks before inflation.
Then throughout what will be the observable universe, the axion is essentially
constant. But at early times, the axion potential is negligible. To be more precise,
consider the equation of motion of the axion field:

ä + 3Hȧ + V ′(a) = 0. (19.52)

At very early times, H � m, and the system is overdamped. The axion simply
doesn’t move. If the universe is very hot, the axion mass is actually much smaller
than its current value. This is explained in Appendix C, but is easy to understand.
At very high temperatures, the leading contribution in QCD to the axion potential
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comes from instantons. Instanton corrections are suppressed by e
−8π2

g2(T ) = (�/T )b0 .
They are also suppressed by powers of the quark masses. In other words, they
behave as:

V (a) =
∏

f

mf�
b0 T −b0+nf−4 cos(θ) (19.53)

where θ = a/ fa, and nf is the number of flavors with mass � T . This goes very
rapidly to zero at temperatures above the QCD scale.

So the value of the axion field – the θ-angle – at early times, is most likely simply
a random variable. Let’s consider, then, the subsequent evolution of the system. The
equation of motion for such a scalar field in a FRW background is by now quite
familiar:

ä + Hȧ + V ′(a) = 0. (19.54)

V (a) also depends on T (t), which complicates slightly the solution, so let’s first
just solve the problem with the zero-temperature axion potential. In this case, the
axion will start to oscillate when H ∼ ma. After this, the axions dilute like matter,
i.e. as 1/a3. The energy in radiation, on the other hand, dilutes like a4 ∝ T −4.
Assuming radiation domination when the axion starts to oscillate, we can determine
the temperature at that time. Using our standard formula for the energy density,

ρ = π2

30
g∗T 4 (19.55)

we have, just above the QCD phase transition, g∗ ≈ 48 (with the gluons, three quark
flavors, three light neutrinos and the photon). Just below, we don’t have the quarks
or gluons, but we should include the pions, so g∗ ≈ 30. Taking the larger value

Ta = 102 GeV

(
1011GeV

fa

)1/2

. (19.56)

At this time, the fraction of the energy density in axions is approximately

ρaxion

ρ
=

1
2 f 2

a m2
a

ρ
≈ 1

6

f 2
a

M2
p

. (19.57)

So if fa = 1011 GeV, axions come to dominate the energy density quite late, at
T ≈ 10−3 eV. The temperature of axion domination scales with fa, so a 1016 GeV
axion would dominate the energy density at 100 eV, which would be problematic.

However, the axion potential, as we have seen, is highly suppressed at tempera-
tures above a few hundred MeV. So oscillation, in fact, sets in much later. We can
make another crude estimate by simply supposing that the axion potential turns
on at T = 100 TeV. In this case, the axion fraction is large, of order 1/g∗. So if
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the axion density is to be compatible with the observed dark matter density, for
any value of fa, we need to allow for the detailed temperature dependence of the
axion mass. Using our formula for the axion potential as a function of tempera-
ture we can ask when the associated mass becomes of order the Hubble constant.
After that time, axion oscillations are more rapid than the Hubble expansion, so
we might expect that the axion density will damp, subsequently, like matter. Let’s
take, specifically, fa = 1011 GeV. For the axion mass, we can take:

ma(T ) ≈ 0.1ma(T = 0)

(
�QCD

T

)3.7

. (19.58)

The axion then starts to oscillate when T ≈ 1.5 GeV. At this time, it represents
about 10−9 of the energy density. One needs to do a bit more work to show that in
the subsequent evolution, the energy in axions relative to the energy in radiation falls
roughly as 1/T , but for this decay constant, the axion and radiation energies become
equal at roughly 1 eV. If the decay constant is significantly higher than 1011 GeV,
then the axions start to oscillate too late, and dominate the energy density too early.
If the decay constant is significantly smaller, then the axions cannot constitute the
presently observed dark matter.

So it is remarkable that there is a rather narrow range of axion decay constants
consistent with observation. On the other hand, some of the assumptions we have
made in this section are open to question. In the case of hybrid inflation we have
seen that the universe might never have been much hotter than 10 MeV. In this case,
the upper limit on the axion decay constant, as we will discuss further later, can be
much weaker.

19.3 The LSP as the dark matter

A stable particle is not necessarily a good dark matter candidate. But we can make
a crude calculation which indicates that the LSP density is in a suitable range to
be the dark matter. Consider particles, X , with mass of order 100 GeV interacting
with weak interaction strength. Their annihilation and production cross sections go
as G2

F E2. So, in the early universe, the corresponding interaction rate is of order

� ≈ ρX G2
F E2 ≈ ρX G2

FT 2. (19.59)

These interactions will drop out of equilibrium when the mass of the particle X is
small compared to the temperature, so that there is a large Boltzmann suppression
of their production. This will occur when this rate is of order the expansion rate, or

T 3e−MX /T 〈vσ 〉 ∼ T 2

Mp
. (19.60)
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Since the exponent is very small, once T ∼ 10MX , we can get a rough estimate of
the density by saying that:

e−MX /T T 3 ∼ G−2
F /Mp. (19.61)

The ratio, nX/s, then, is of order

nX/s ≈ G−2
F /(MpT 3). (19.62)

Assuming that MX ∼ 100 GeV, and T ∼ 10 GeV, this gives about 10−9 for the
right-hand side. Since the energy density in radiation damps like T −4, while that
for matter damps like T −3, this gives matter-radiation equality at temperatures of
order an electronvolt, as in the standard big bang cosmology.

Needless to say, this calculation is quite crude. Extensive, far more sophisticated,
calculations have been done to find the regions of parameter space in different su-
persymmetric models which are compatible with the observed dark matter density.
The basic starting point for these analyses is the Boltzmann equation. If the basic
process is of the form 1 + 2 ↔ 3 + 4, then:

a−3 d

dt
(n1a3) =

∫
d3 p1

(2π )32E1

∫
d3 p2

(2π )32E2

∫
d3 p3

(2π )32E3

∫
d3 p4

(2π )32E4

( f3 f4[1 ± f1][1 ± f2] − f1 f2[1 ± f3][1 ± f4])(2π )4δ4(p1 + p2 − p3 − p4)|M|2.
(19.63)

The functions f1, . . . , f4 are the distribution functions for the different species.
These equations can be simplified in the high-temperature limit using Boltzmann
statistics:

f (E) → eµ/T e−E/T . (19.64)

Interactions are still fast enough at this time to maintain equilibrium of the X
momentum distributions (kinetic equilibrium) but not that of X number. So it is the
limiting value of the X chemical potential, µX , which we seek. In this limit, we have:

f3 f4[1 ± f1][1 ± f2] − f1 f2[1 ± f3][1 ± f4]

→ e−(E1+E2)/T
(
e(µ1+µ2)/T − e(µ3+µ4)/T

)
. (19.65)

Here we have used E1 + E2 = E3 + E4.
Things simplify further as all but the X particle (particle 1) are light, and nearly in

equilibrium. Defining n(0)
i as the distributions in the absence of a chemical potential,

and defining the thermally averaged cross section:

〈σv〉 = 1

n(0)
1 n(0)

2

∫
d3 p1

(2π )32E1

∫
d3 p2

(2π )32E2

∫
d3 p3

(2π )32E3

∫
d3 p4

(2π )32E4
|M|2,

(19.66)



19.4 The moduli problem 285

Fig. 19.3. Reprinted from J. R. Ellis et al., Supersymmetric dark matter, Phys. Lett.
B, 565, 176 (2003), Figure 9. Copyright 2003, with permission from Elsevier.

we have

a−3 d(nxa3)

dt
= n(0)

X n2〈σv〉
(

1 − nX

n(0)
X

)
. (19.67)

Detailed solutions of these equations (often without some of these simplifications)
reveal, as one would expect, a range of parameters in the MSSM compatible with
the observed dark matter density (Fig 19.3).

So while it is disturbing that we need to impose additional symmetries in the
MSSM in order to avoid proton decay, it is also exciting that this leads to a possible
solution of one of the most critical problems of cosmology: the identity of the dark
matter.

19.4 The moduli problem

We have seen that, in supersymmetric theories, there are frequently light moduli.
In string models, we will find that such fields are ubiquitous. Such moduli, if they
exist, pose a cosmological problem with some resemblance to the problems of axion
cosmology.

In this section, we will formulate the problem as it arises in gravity-mediated
supersymmetry breaking. The potential for the modulus, φ, would be expected to
take the form:

V (φ) = m2
3/2 M2

p f (φ/Mp). (19.68)
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By assumption, f has a minimum at some value, φ, of order Mp. In the early
universe, when the Hubble parameter is much greater than m3/2, this potential is
effectively quite small, and there is in general no obvious reason that the field
should sit at its minimum. So, when H ∼ m3/2, the field is likely to lie at a distance
Mp, in field space from the minimum, and store an energy of order m2

3/2 M2
p . Like

the axion, after this time, assuming it is within the domain of attraction of the
minimum, it will oscillate, behaving like pressureless dust. Almost immediately,
given our assumptions about scales, it comes to dominate the energy density of the
universe, and it continues to do so until it decays. The problem is that the decay
occurs quite late, and the temperature after the decay is likely to be quite low.

We can estimate the temperature after φ decay, Tr, by considering first the lifetime
of the φ particle. We might expect this to be:

�φ = m3
3/2

M2
p

(19.69)

assuming that the couplings of the φ field to other light fields are suppressed by
a single power of M . Assuming that the decay products quickly thermalize, and
noting that �φ is the Hubble constant at the time of φ decay, gives

T 4
r ≈ m6

3/2

M2
≈ (10 keV)4. (19.70)

Here we are assuming m3/2 ≈ 1 TeV. This is a temperature well below nucleosyn-
thesis temperature. So in such a picture, the universe is matter dominated during
nucleosynthesis. But the situation is actually far worse: the decay products almost
certainly destroy deuterium and the other light nuclei.

Two plausible resolutions for this puzzle have been put forward (apart from the
obvious one that perhaps there is no supersymmetry or no moduli): the moduli
might be significantly more massive than 1 TeV. Note that Tr scales like the moduli
masses to the 3/2 power, so if the moduli masses are of order hundreds of TeV, this
temperature can be sufficiently high that nucleosynthesis occurs (again). There is,
potentially, a serious problem with such a picture. During the φ decay, significant
entropy is produced. For example, if the temperature of the universe when the
moduli came to dominate was

√
m3/2 Mp, when the moduli decay it is far smaller

than Tr. Correspondingly, the entropy is increased by a factor which can easily
be 109–1012. Any baryon number produced before these decays is diluted by a
corresponding factor. One can hope that the baryons are produced in the decays of
these moduli, but this requires one understand why such low-energy baryon-number
violation doesn’t cause difficulties for proton decay. In the next section, we will
discuss possible mechanisms to produce the baryon asymmetry, and we will see
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that there is one which is capable of producing a large enough asymmetry to survive
moduli decays.

19.5 Baryogenesis

The baryon to photon ratio, nB/nγ , is quite small. At early times, when QCD was
nearly a free theory, this slight excess would have been extremely unimportant. But
for the structure of our present universe, it is terribly important. One might imagine
that nB/nγ is simply an initial condition, but it would be more satisfying if we
could have some microphysical understanding of this asymmetry between matter
and antimatter. Andrei Sakharov, after the experimental discovery of CP violation,
was the first to state precisely the conditions under which the laws of physics could
lead to a prediction for the asymmetry.

(1) The underlying laws must violate baryon number. This one is obvious; if there is, for
example, no net baryon number initially, and if baryon number is not conserved, the
baryon number will always be zero.

(2) The laws of nature must violate CP. Otherwise, for every particle produced in interac-
tions, an antiparticle will be produced as well.

(3) The universe, in its history, must have experienced a departure from thermal equilibrium.
Otherwise, the CPT theorem insures that the numbers of baryons and anti-baryons at
equilibrium are zero. This can be proven with various levels of rigor, but one way
to understand this is to observe that CPT insures that the masses of the baryons and
anti-baryons are identical, so at equilibrium their distributions should be the same.

Subsequently, there have been many proposals for how the asymmetry might
arise. In the next sections, we will describe several. Leptogenesis relies on lepton-
number violation, something we know is true of nature, but of whose underly-
ing microphysics we are ignorant. Baryogenesis through coherent scalar fields
(Affleck–Dine baryogenesis) also seems plausible. It is only operative if supersym-
metry is unbroken to comparatively low energies, but it can operate quite late in the
evolution of the universe and can be extremely efficient. This could be important in
situations like moduli decay or hybrid inflation where the entropy of the universe
is produced very late, after the baryon number.

19.5.1 Baryogenesis through heavy particle decays

One well-motivated framework in which to consider baryogenesis is grand unifica-
tion. Here one can satisfy all of the requirements for baryogenesis. Baryon-number
violation is one of the hallmarks of GUTs, and these models possess various sources
of CP violation. As far as departure from equilibrium, the massive gauge bosons,
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Fig. 19.4. Tree and loop diagrams whose interference can lead to an asymmetry
in heavy particle decay.

X , provide good candidates for a mechanism. To understand in a bit more detail
how the asymmetry can come about, note that CPT requires that the total decay
rate of X is the same as that of its antiparticle X̄ . But it does not require equality of
the decays to particular final states (partial widths). So starting with equal numbers
of X and X̄ particles, there can be a slight asymmetry between processes such as

X → d L; X → Q̄ū (19.71)

and

X̄ → d̄ L̄; X̄ → Qu. (19.72)

The tree graphs for these processes are necessarily equal; any CP-violating phase
simply cancels out when we take the absolute square of the amplitude (see Fig. 19.4).
This is not true in higher order, where additional phases associated with real in-
termediate states can appear. Actually computing the baryon asymmetry requires
an analysis of the Boltzmann equations, of the kind he have encountered in our
discussion of dark matter.

There are reasons to believe, however, that GUT baryogenesis is not the origin
of the observed baryon asymmetry. Perhaps the most compelling of these has to
do with inflation. Assuming that there was a period of inflation, any pre-existing
baryon number was greatly diluted. So in order that one produces baryons through X
boson decay, it is necessary that the reheating temperature after inflation be at least
comparable to the X boson mass. But as we have explained, a reheating temperature
greater than 109 GeV leads to cosmological difficulties, especially overproduction
of gravitinos.

19.5.2 Electroweak baryogenesis

The Standard Model, for some range of parameters, can satisfy all of the conditions
for baryogenesis. We have seen in our discussion of instantons that the Standard
Model violates baryon number. This violation, we saw, is extremely small at low
temperatures, so small that it is unlikely that a single baryon has decayed in the his-
tory of the universe this way. The rate is so small because baryon-number violation
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is a tunneling process. If one could excite the system to high energies, one might
expect that the rate would be enhanced. At high enough energies, the system might
simply be above the barrier. One can find the configuration which corresponds to
sitting on top of the barrier by looking for static, unstable solutions of the equations
of motion. Such a solution is known. It is called a sphaleron (from Greek, meaning
“ready to fall”). The barrier is quite high – from familiar scaling arguments, the
sphaleron energy is of order Esp = 1/αMW . But this configuration is large com-
pared to its energy; it has size of order MW . As a result, it is difficult to produce in
high-energy scattering. Two particles with enough energy to produce the sphaleron
have momenta much higher than MW . As a result, their overlap with the sphaleron
configuration is exponentially suppressed.

At high temperatures one might expect that the sphaleron rate would be controlled
by a Boltzmann factor, e−Esp/T . So as the temperature increases, the rate would grow
significantly. This turns out to be the case. In fact, the rate is even larger than one
might expect from this estimate, because Esp itself is a function of T . At very high
temperatures, the rate has no exponential suppression at all, and behaves as:

� = (αwT )4. (19.73)

These phenomena are discussed in Appendix C.
If the Higgs mass is not too large, the Standard Model can produce a significant

departure from equilibrium. As one raises the temperature, a simple calculation,
described in Appendix C, shows that the Higgs mass increases (the mass-squared
becomes less negative) with temperature. At very high temperature, the SU (2) ×
U (1) symmetry is restored. The phase transition between these two phases, for a
sufficiently light Higgs, is first order. It proceeds by the formation of bubbles of
the unbroken phase. The surfaces of these bubbles can be sites for baryon number
production. These phenomena are also discussed in Appendix C. So the third of
Sakharov’s conditions can be satisfied.

Finally, we know that the Standard Model violates CP. We also know, however,
that it is crucial that there are three generations, and that this CP violation vanishes
if any of the quark masses are zero. As a result, even if the Higgs mass is small
enough that the transition is strongly first order, any baryon number produced is
suppressed by several powers of Yukawa couplings, and is far too small to account
for the observed matter–antimatter asymmetry.

In the MSSM, the situation is somewhat better. There is a larger region of the
parameter space in which the transition is first order, and as we have seen, there
are many new sources of CP violation. As a result, there is, as of this writing, a
small range of parameters where the observed asymmetry could be produced in this
way.
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19.5.3 Leptogenesis

There is compelling evidence that neutrinos have mass. The most economical ex-
planation of these masses is that they arise from a seesaw, involving gauge singlet
fermions, Na . These couplings violate lepton number. So according to Sakharov’s
principles, we might hope to produce a lepton asymmetry in their decays. Because
the electroweak interactions violate baryon and lepton number at high temperatures,
the production of a lepton number leads to the production of baryon number.

In general, there may be several Na fields, with couplings of the form:

LN = Mab Na Nb + hai H Li Na + c.c. (19.74)

In a model with three Ns, there are CP-violating phases in the Yukawa couplings
of the Ns to the light Higgs. The heaviest of the right-handed neutrinos, say N1,
can decay to � and a Higgs, or to �̄ and a Higgs. At tree level, as in the case of GUT
baryogenesis, the rates for production of leptons and anti-leptons are equal, even
though there are CP-violating phases in the couplings. It is necessary, again, to look
at quantum corrections, in which dynamical phases can appear in the amplitudes.
At one loop, the decay amplitude for N has a discontinuity associated with the
fact that the intermediate N1 and N2 can be on shell (similar to Fig. 19.4). So one
obtains an asymmetry proportional to the imaginary parts of the Yukawa couplings
of the Ns to the Higgs:

ε = �(N1 → �H2) − �(N1 → �̄H̄2)

�(N1 → �H2) + �(N1 → �̄H̄2)
= 1

8π

1

hh†
∑
i=2,3

Im[(hνh†
ν)1i ]

2 f

(
M2

i

M2
1

)
,

(19.75)

where f is a function that represents radiative corrections. For example, in the Stan-
dard Model f = √

x[(x − 2)/(x − 1) + (x + 1) ln(1 + 1/x)], while in the MSSM
f = √

x[2/(x − 1) + ln(1 + 1/x)]. Here we have allowed for the possibility of
multiple Higgs fields, with H2 coupling to the leptons. The rough order of mag-
nitude here is readily understood by simply counting loops factors. It need not be
terribly small.

Now, as the universe cools through temperatures of order of masses of the Ns,
they drop out of equilibrium, and their decays can lead to an excess of neutrinos
over antineutrinos. Detailed predictions can be obtained by integrating a suitable
set of Boltzmann equations. But a rough estimate can be obtained by noting that
the Nas drop out of equilibrium when their production rate becomes comparable
to the expansion rate of the universe. If α represents a typical coupling, this occurs
roughly when

πα2T e−MN /T ≈ T 2

Mp
. (19.76)
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Assuming that in the polynomial terms, T ∼ MN/10, gives that the density at this
time is of order

ρN

ρtot
∼ πT

Mpα2
. (19.77)

Multiplying by ε, the average asymmetry in N decays, this estimate suggests a
lepton number – and hence a baryon number – of order:

ρB

ρtot
≈ ε

MN

10πα2 Mp
. (19.78)

We have seen that ε is suppressed by a loop factor and by Yukawa couplings. So
this number can easily be compatible with observations, or even somewhat larger,
depending on a variety of unknown parameters.

These decays, then, produce a net lepton number, but not baryon number
(and hence a net B − L). The resulting lepton number will be further processed
by sphaleron interactions, yielding a net lepton and baryon number (recall that
sphaleron interactions preserve B − L , but violate B and L separately). One can
determine the resulting asymmetry by an elementary thermodynamics exercise.
One introduces chemical potentials for each neutrino, quark and charged lepton
species. One then considers the various interactions between the species at equi-
librium. For any allowed chemical reaction, the sum of the chemical potentials on
each side of the reaction must be equal. For neutrinos, the relations come from:

(1) the sphaleron interactions themselves∑
i

(
3µqi + µ�i

) = 0; (19.79)

(2) a similar relation for QCD sphalerons∑
i

(
2µqi − µui − µdi

) = 0; (19.80)

(3) vanishing of the total hypercharge of the universe∑
i

(
µqi − 2µūi + µd̄i

− µ�i + µēi

) + 2

N
µH = 0; (19.81)

(4) the quark and lepton Yukawa couplings give relations

µqi − µφ − µd j = 0, µqi − µφ − µu j = 0, µ�i − µφ − µe j = 0. (19.82)

The number of equations here is the same as the number of unknowns. Combining
these, one can solve for the chemical potentials in terms of the lepton chemical
potential, and finally in terms of the initial B − L . With N generations,

B = 8N + 4

22N + 13
(B − L). (19.83)
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Reasonable values of the neutrino parameters give asymmetries of the order we
seek to explain. Note sources of small numbers.

(1) The phases in the couplings.
(2) The loop factor.
(3) The small density of the N particles when they drop out of equilibrium. Parametrically,

one has, e.g., for production,

� ∼ e(−M/T )g2T (19.84)

which is much less than H ∼ T 2/Mp once the density is suppressed by T/Mp, i.e. of
order 10−6 for a 1013 GeV particle.

It is interesting to ask: assuming that these processes are the source of the ob-
served asymmetry, how many parameters which enter into the computation can
be measured? It is likely that, over time, many of the parameters of the light neu-
trino mass matrices, including possible CP-violating phases, will be measured. But
while these measurements determine some of the Ni couplings and masses, they
are not, in general, enough. In order to give a precise calculation, analogous to
the calculations of nucleosynthesis, of the baryon number density, one needs ad-
ditional information about the masses of the fields Ni . One either requires some
other (currently unforeseen) experimental access to this higher-scale physics, or
a compelling theory of neutrino mass in which symmetries, perhaps, reduce the
number of parameters.

19.5.4 Baryogenesis through coherent scalar fields

In supersymmetric theories, the ordinary quarks and leptons are accompanied by
scalar fields. These scalar fields carry baryon and lepton number. A coherent field,
i.e. a large classical value of such a field, can in principle carry a large amount of
baryon number. As we will see, it is quite plausible that such fields were excited in
the early universe, and this can lead to a baryon asymmetry.

To understand the basics of the mechanism, consider first a model with a single
complex scalar field. Take the Lagrangian to be

L = |∂µφ|2 − m2|φ|2. (19.85)

This Lagrangian has a symmetry, φ → eiαφ, and a corresponding conserved cur-
rent, which we will refer to as baryon number:

jµ

B = i(φ∗∂µφ − φ∂µφ∗). (19.86)

It also possesses a “CP” symmetry:

φ ↔ φ∗. (19.87)

With supersymmetry in mind, we will think of m as of order MW .
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If we focus on the behavior of spatially constant fields, φ(�x, t) = φ(t), this system
is equivalent to an isotropic harmonic oscillator in two dimensions. In field theory,
however, we expect that higher-dimension terms will break the symmetry. In the
isotropic oscillator analogy, this corresponds to anharmonic terms which break
the rotational invariance. With a general initial condition, the system will develop
some non-zero angular momentum. If the motion is damped, so that the amplitude
of the oscillations decreases, these rotationally non-invariant terms will become
less important with time.

In the supersymmetric field theories of interest, supersymmetry will be broken by
small quartic and higher-order couplings, as well as by soft masses for the scalars.
So as a simple model, take:

LI = λ|φ|4 + ε φ3φ∗ + σ φ4 + c.c. (19.88)

These interactions clearly violate “B.” For general complex ε and σ , they also
violate CP. As we will shortly see, once supersymmetry is broken, quartic and
higher-order couplings can be generated, but these couplings λ, ε, σ . . . will be
extremely small, O(m2

3/2/M2
p ) or O(m2

3/2/M2
GUT

).
In order that these tiny couplings lead to an appreciable baryon number, it is

necessary that the fields, at some stage, were very large. To see how the cosmic
evolution of this system can lead to a non-zero baryon number, first note that at very
early times, when the Hubble constant, H � m, the mass of the field is irrelevant.
It is thus reasonable to suppose that at this early time φ = φ0 � 0; later we will
describe some specific suggestions as to how this might come about. This system
then evolves like the axion or moduli. In the the radiation and matter dominated
eras, respectively, one has that

φ = φ0

(mt)3/2
sin(mt) (radiation) (19.89)

= φ0

(mt)
sin(mt) (matter). (19.90)

In either case, the energy behaves, in terms of the scale factor, R(t), as

E ≈ m2φ2
0

(
R0

R

)3

, (19.91)

i.e. it decreases like R3, as would the energy of pressureless dust. One can think of
this oscillating field as a coherent state of φ particles with �p = 0.

Now let’s consider the effects of the quartic couplings. Since the field amplitude
damps with time, their significance will decrease with time. Suppose, initially, that
φ = φ0 is real. Then the imaginary part of φ satisfies, in the approximation that ε

and δ are small,

φ̈i + 3H φ̇i + m2φi ≈ Im(ε + δ)φ3
r . (19.92)
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For large times, the right-hand side falls as t−9/2, whereas the left-hand side falls
off only as t−3/2. As a result, just as in our mechanical analogy, baryon number
(angular momentum) violation becomes negligible. The equation goes over to the
free equation, with a solution of the form

φi = ar
Im(ε + δ)φ3

0

m2(mt)3/4
sin(mt + δr) (radiation), (19.93)

φi = am
Im(ε + δ)φ3

0

m3t
sin(mt + δm) (matter), (19.94)

in the radiation and matter dominated cases, respectively. The constants δm, δr, am

and ar can easily be obtained numerically, and are of order unity:

ar = 0.85 am = 0.85 δr = −0.91 δm = 1.54. (19.95)

But now we have a non-zero baryon number; substituting in the expression for the
current,

nB = 2arIm(ε + δ)
φ2

0

m(mt)2
sin(δr + π/8) (radiation) (19.96)

nB = 2amIm(ε + δ)
φ2

0

m(mt)2
sin(δm) (matter). (19.97)

Note that CP violation here can be provided by phases in the couplings and/or the
initial fields. Note also as expected, nB is conserved at late times, in the sense that
the baryon number per comoving volume is constant.

This mechanism for generating baryon number could be considered without
supersymmetry. In that case, it begs several questions.

� What are the scalar fields carrying baryon number?
� Why are the φ4 terms so small?
� How are the scalars in the condensate converted to more familiar particles?

In the context of supersymmetry, there is a natural answer to each of these
questions. First, as we have stressed, there are scalar fields carrying baryon and
lepton number. As we will see, in the limit that supersymmetry is unbroken, there
are typically directions in the field space in which the quartic terms in the potential
vanish. Finally, the scalar quarks and leptons will be able to decay (in a baryon-
and lepton-number conserving fashion) to ordinary quarks.

19.6 Flat directions and baryogenesis

To discuss the problem of baryon number generation, we first want to examine
the theory in a limit in which we ignore the soft SUSY-breaking terms. After all,
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at very early times, H � MW , and these terms are irrelevant. We are now quite
familiar with the fact that supersymmetric theories often exhibit flat directions.
At the renormalizable level, the MSSM possesses many flat directions. A simple
example is

Hu =
(

0
v

)
L1 =

(
v

0

)
. (19.98)

This direction is characterized by a modulus which carries lepton number. Writ-
ten in a gauge-invariant fashion, � = Hu L . As we have seen, producing a lep-
ton number is for all intents and purposes like producing a baryon number. Non-
renormalizable, higher-dimension terms, with more fields, can lift the flat direction.
For example, the quartic term in the superpotential:

L4 = 1

M
(Hu L)2 (19.99)

respects all of the gauge symmetries and is invariant under R-parity. It gives rise to
a potential

Vlift = |v|6
M2

. (19.100)

There are many more flat directions, and many of these do carry baryon or
lepton number. A flat direction with both baryon and lepton number excited is the
following:

First generation: Q1
1 = b ū2 = a L2 = b (19.101)

Second: d̄1 =
√

|b|2 + |a|2 (19.102)

Third: d̄3 = a. (19.103)

(On Q, the upper index is a color index, the lower index an SU (2) index, and we
have suppressed the generation indices.)

Higher-dimension operators again can lift this flat direction. In this case the
leading term is:

L7 = 1

M3
[Q1d̄2L1][ū1d̄2d̄3]. (19.104)

Here the superscripts denote flavor. We have suppressed color and SU (2) indices,
but the braces indicate sets of fields which are contracted in SU (3) and SU (2)
invariant ways. In addition to being completely gauge-invariant, this operator is
invariant under ordinary R-parity. (There are lower-dimension operators, including
operators of dimension 4, which violate R-parity). It gives rise to a term in the
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potential:

Vlift = �10

M6
. (19.105)

Here � refers in a generic way to the fields whose vevs parameterize the flat
directions (a,b).

19.7 Supersymmetry breaking in the early universe

We have indicated that higher-dimension, supersymmetric operators give rise to
potentials in the flat directions. To fully understand the behavior of the fields in the
early universe, we need to consider supersymmetry breaking, which gives rise to
additional potential terms.

In the early universe, we expect supersymmetry is much more badly broken than
it is in the present era. For example, during inflation, the non-zero energy density
(cosmological constant) breaks supersymmetry. Suppose that I is the inflaton field,
and that the inflaton potential arises because of a non-zero value of the auxiliary
field for I , FI = ∂W/∂ I . So, during inflation, supersymmetry is broken by a large
amount. Not surprisingly, as a result, there can be an appreciable supersymmetry-
breaking potential for �. These contributions to the potential have the form:

VH = H 2�2 f
(
�2/M2

p

)
. (19.106)

It is perfectly possible for the second derivative of the potential near the origin to
be negative. In this case, writing our higher-dimension term as:

Wn = 1

Mn
�n+3. (19.107)

the potential takes the form

V = −H 2|�|2 + 1

M2n
|�|2n+4. (19.108)

The minimum of the potential then lies at:

�0 ≈ M

(
H

M

) 1
n+1

. (19.109)

More generally, one can see that the higher the dimension of the operator that raises
the flat direction, the larger the starting value of the field – and the larger the ultimate
value of the baryon number. Typically, there is plenty of time for the field to find
its minimum during inflation. After inflation, H decreases, and the field � evolves
adiabatically, oscillating slowly about the local minimum for some time.



19.8 The fate of the condensate 297

Our examples illustrate that in models with R-parity, the value of n, and hence the
size of the initial field, can vary appreciably. Which flat direction is most important
depends on the form of the mass matrix (i.e. on which directions the curvature of
the potential is negative). With further symmetries, it is possible that n is larger,
and even that all operators which might lift the flat direction are forbidden. For
the rest of this section we will continue to assume that the flat directions are lifted
by terms in the superpotential. If they are not, the required analysis is different,
since the lifting of the flat direction is entirely associated with supersymmetry
breaking.

19.7.1 Appearance of the baryon number

The term in the potential, |∂W/∂�|2, does not break either baryon number or CP.
In most models, it turns out that the leading sources of B and CP violation come
from supersymmetry-breaking terms associated with FI . These have the form

am3/2W + bH W. (19.110)

Here a and b are complex, dimensionless constants. The relative phase in these two
terms, δ, violates CP. This is crucial; if the two terms carry the same phase, then
the phase can be eliminated by a field redefinition, and we have to look elsewhere
for possible CP-violating effects. Examining Eqs. (19.99) and (19.104), one sees
that the term proportional to W violates B and/or L . In following the evolution
of the field �, the important era occurs when H ∼ m3/2. At this point, the phase
misalignment of the two terms, along with the B-violating coupling, leads to the
appearance of a baryon number. From the equations of motion, the equation for the
time rate of change of the baryon number is

dnB

dt
= sin(δ)m3/2

Mn
φn+3. (19.111)

Assuming that the relevant time is H−1, one is led to the estimate (supported by
numerical studies)

nB = 1

Mn
sin(δ)�n+3

0 . (19.112)

Here, �0 is determined by H ≈ m3/2, i.e. �2n+2
0 = m2

3/2 M2n .

19.8 The fate of the condensate

Of course, we don’t live in a universe dominated by a coherent scalar field. In
this section, we consider the fate of a homogeneous condensate, ignoring possible
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inhomogeneities. The following section will deal with inhomogeneities, and the
interesting array of phenomena to which they might give rise.

We will adopt the following model for inflation. The features of this picture are
true of many models of inflation, but by no means all. We will suppose that the
energy scale of inflation is E ∼ 1015 GeV. We assume that inflation is due to a
field, the inflaton I . The amplitude of the inflaton, just after inflation, we will take
to be of order M ≈ 1018 GeV (the usual reduced Planck mass). Correspondingly,
we will take the mass of the inflaton to be m I = 1012 GeV (so that m2

I M2
p ≈ E4).

Correspondingly, the Hubble constant during inflation is of order HI ≈ E2/Mp ≈
1012 GeV.

After inflation ends, the inflaton oscillates about the minimum of its poten-
tial, much like the field �, until it decays. We will suppose that the inflaton
couples to ordinary particles with a rate suppressed by a single power of the
Planck mass. Dimensional analysis then gives for the rough value of the inflaton
lifetime:

�I = m3
I

M2
∼ 1 GeV. (19.113)

The reheating temperature can then be obtained by equating the energy density at
time H ≈ �(ρ = 3H 2 M2) to the energy density of the final plasma:

TR = T
(
t = �−1

I

) ∼ (�I Mp)1/2 ∼ 109 GeV. (19.114)

The decay of the inflaton is actually not sudden, but leads to a gradual reheating
of the universe, as described, for example, in the book by Kolb and Turner (1990).
As a function of time (H ):

T ≈ (
T 2

R H (t)Mp
)1/4

. (19.115)

As for the field �, our basic assumption is that during inflation, it obtains a large
value, in accord with Eq. (19.109). When inflation ends, the inflaton, by assumption,
still dominates the energy density for a time, oscillating about its minimum; the
universe is matter dominated during this period. The field � now oscillates about
a time-dependent minimum, given by Eq. (19.109). The minimum decreases in
value with time, dropping to zero when H ∼ m3/2. During this evolution, a baryon
number develops classically. This number is frozen once H ∼ m3/2.

Eventually the condensate will decay, through a variety of processes. As we have
stressed, the condensate can be thought of as a coherent state of � particles. These
particles – linear combinations of the squark and slepton fields – are unstable and
will decay. However, for H ≤ m3/2, the lifetimes of these particles are much longer
than in the absence of the condensate. The reason is that the fields to which �

couples have mass of order �, and � is large. In most cases, the most important
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process which destroys the condensate is what we might call evaporation: particles
in the ambient thermal bath can scatter off of the particles in the condensate, leaving
final states with only ordinary particles.

We can make a crude estimate for the reaction rate as follows. Because the
particles which couple directly to � are heavy, interactions of � with light particles
must involve loops. So we include a loop factor in the amplitude, of order α2

2, the
weak coupling squared. Because of the large masses, the amplitude is suppressed
by �. Squaring, and multiplying by the thermal density of scattered particles,
gives:

�p ∼ α2
2π

1

�2

(
T 2

R H M
)3/4

. (19.116)

The condensate will evaporate when this quantity is of order H . Since we know the
time dependence of �, this allows us to solve for this time. One finds that equality
occurs, in the case n = 1, for HI ∼ 102–103 GeV. For n > 1, it occurs significantly
later (for n < 4, it occurs before the decay of the inflaton; for n ≥ 4, a slightly
different analysis is required than that which follows). In other words, for the case
n = 1, the condensate evaporates shortly after the baryon number is created, but
for larger n, it evaporates significantly later.

The expansion of the universe is unaffected by the condensate as long as the
energy density in the condensate, ρ� ∼ m2

��2, is much smaller than that of the
inflaton, ρI ∼ H 2 M2. Assuming that m� ∼ m3/2 ∼ 0.1–1 TeV, a typical super-
symmetry breaking scale, one can estimate the ratio of the two densities at the time
when H ∼ m3/2 as

ρ�

ρI
∼

(
m3/2

Mp

)2/(n+1)

. (19.117)

We are now in a position to calculate the baryon to photon ratio in this model.
Given our estimate of the inflaton lifetime, the coherent motion of the inflaton still
dominates the energy density when the condensate evaporates. The baryon number
is just the � density just before evaporation divided by the � mass (assumed of
order m3/2), while the inflaton number is ρI /MI . So the baryon to inflaton ratio
follows from Eq. (19.117). With the assumption that the inflaton energy density is
converted to radiation at the reheating temperature, TR, we obtain:

nB

nγ

∼ nB

(ρI /TR)
∼ nB

n�

TR

m�

ρ�

ρI
∼ 10−10

(
TR

109 GeV

) (
Mp

m3/2

) (n−1)
(n+1)

. (19.118)

Clearly the precise result depends on factors beyond those indicated here explic-
itly, such as the precise mass of the � particle(s). But as a rough estimate, it is rather
robust. For n = 1, it is in precisely the right range to explain the observed baryon
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asymmetry. For larger n, it can be significantly larger. In light of our discussion of
late decays of moduli this is potentially quite interesting. These decays produce a
huge amount of entropy, typically increasing the entropy by a factor of 107 or so.
The baryon density is diluted by a corresponding factor. But we see that coherent
production can readily yield baryon to photon densities, prior to moduli decay, of
the needed size.

There are many other issues which can be studied, both in leptogenesis and in
Affleck–Dine baryogenesis, but it appears that both types of process might well
account for the observed baryon asymmetry. The discovery (or not) of low-energy
supersymmetry, and further studies of neutrino masses, might make one or the other
picture more persuasive. Both pose challenges, as they involve couplings which we
are not likely to measure directly.

19.9 Dark energy

It has long been recognized that any cosmological constant in nature is far smaller
than scales of particle physics. Before the discovery of the dark energy, many physi-
cists conjectured that for some reason of principle, this energy is zero. However, it is
now clear that the energy is non-zero, and in fact that this dark energy is the largest
component of the energy density of the universe. Present data is compatible with
the idea that this energy density represents a cosmological constant (w = −1),
but other suggestions, typically involving time-varying scalar fields, have been
offered.

Apart from its smallness, another puzzle surrounding the cosmological constant
is simply one of coincidence: why is the dark energy density today comparable to
the dark matter density? Weinberg has argued that it couldn’t be much different
than this in a universe containing stars and galaxies, provided all of the other laws
of nature are as we observe. The basic point is that if the dark energy were, say,
103 times more dense than we observe, it would have come to dominate the energy
density when the universe was much younger than it is today – prior to the formation
of galaxies and stars. The rapid acceleration after that time would have prevented
the formation of structure. More refined versions of the argument give estimates
for the dark energy within a factor of ten of the measured value.

Weinberg speculated that perhaps the universe is much larger than we see (our
current horizon). In other regions, it has different values of the cosmological
constant. Only in those regions where � is very small would stars – and hence
observers – form. Weinberg called this possible explanation (actually prediction)
of � the weak anthropic argument. We will return to this question in our studies
of string theory, where we will see that such a landscape of ground states may
exist.
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Suggested reading

Seminal papers on inflation include that of Guth (1981), which proposed a version
of inflation now often referred to as “old inflation,” and those of Linde (1982) and
Albrecht and Steinhardt (1982), which contain the germ of the slow roll inflation
idea stressed in this work. The ideas of hybrid inflation were developed by Linde
(1994); those specifically discussed here were introduced by Randall et al. (1996)
and Berkooz et al. (2004). There are a number of good texts on inflation and related
issues, some of which we have mentioned in the previous chapter. These include
those of Dodelson (2004), Kolb and Turner (1990), and Linde (1990). Dodelson
provides a particularly up to date discussion of dark matter, including more de-
tailed calculations than those presented here, and dark energy, including surveys
of observational results. For a review of axions and their cosmology and astro-
physics, see Turner (1990). For more recent papers which raise questions about the
cosmological axion limits, see, for example, Banks et al. (2003). The cosmolog-
ical moduli problem, and possible solutions, were first discussed by Banks et al.
(1994) and de Carlos et al. (1993). A general review of electroweak baryogenesis,
including detailed discussions of phenomena at the bubble walls, appears in Cohen
et al. (1993). A discussion of electroweak baryogenesis within the MSSM appears
in Carena et al. (2003). A detailed review of baryogenesis appears in Buchmuller
et al. (2005), while Enqvist and Mazumdar (2003) focuses on Affleck–Dine baryo-
genesis. A more comprehensive review of baryogenesis mechanisms appears in
Dine and Kusenko (2003). Aspects of the cosmological constant, and especially
Weinberg’s anthropic prediction of �, are explained clearly in Weinberg (1989),
with more recent additions in Vilenkin (1995) and Weinberg (2000).

Exercises

(1) Verify the slow roll conditions, Eqs. (19.12) and (19.13). Determine the number of
e-foldings and the size of δρ/ρ as a function of N .

(2) Work through the limits on the axion in more detail. Try to analyze the behavior of the
axion energy in the high-temperature regime.

(3) Construct a discrete R-symmetry which guarantees that the HU L flat direction is exactly
flat. Assuming that the universe reheats to 100 MeV when a modulus decays, estimate
the final baryon number of the universe in this case.

(4) Suppose that the characteristic scale of supersymmetry breaking is much higher than 1
TeV, say 109 GeV. Discuss baryogenesis by coherent scalar fields in such a situation.
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Introduction

String theory was stumbled on, more or less, by accident. In the late 1960s, string
theories were first proposed as theories of the strong interactions. But, it was quickly
realized that, while hadronic physics has a number of string-like features, string
theories were not suitable for a detailed description. In their simplest form, string
theories had massless spin-two particles and more than four dimensions of space-
time, hardly features of the strong interactions. But a small group of theorists
appreciated that the presence of a spin-two particle implied that these theories were
generally covariant and explored them through the 1970s and and early 1980s as
possible theories of quantum gravity. Like field theories, the number of possible
string theories seemed to be infinite, while, unlike field theories, there was reason to
believe that these theories did not suffer from ultraviolet divergences. In the 1980s,
however, studies of anomalies in higher dimensions suggested that all string theories
with chiral fermions and gauge interactions suffered from quantum anomalies. But
in 1984, it was shown that anomalies cancel for two choices of gauge group. It was
quickly recognized that the non-anomalous string theories do come close to unifying
gravity and the Standard Model of particle physics. Many questions remained.
Beginning in 1995, great progress was made in understanding the deeper structure
of these theories. All of the known string theories were understood to be different
limits of some larger structure. As string theories still provide the only framework
in which one can do systematic computations of quantum gravity effects, many
workers use the term “string theory” to refer to some underlying structure which
unifies quantum mechanics, gravity and gauge interactions.

String theory has provided us with many insights into what a fundamental the-
ory of gravity and gauge interactions might look like, but there is still much we
do not understand. We can’t begin a course by enunciating some great principle
and seeing what follows. We might, for example, have imagined that the under-
lying theory would be a string field theory, whose basic objects would be objects
which would create and annihilate strings. Some set of organizing principles would
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determine the action for this system, and the rest would be a problem of work-
ing out the consequences. But there are good reasons to believe that string theory
is not like this. Instead, we can at best provide a collection of facts, organized
according to the teacher/author/professor’s view of the subject at any given mo-
ment. As a result, it is perhaps useful first to give at least some historical per-
spective as to how these facts were accumulated, if only to show that there are,
as of yet, no canonical texts or sacred principles in the subject. In the next sec-
tion, we review a bit of the remarkable history of string theory. In the following
section, we will attempt to survey what is known as of this writing: the various
string theories, with their spectra and interactions, and the connections between
them.

20.1 The peculiar history of string theory

For electrodynamics, the passage from classical to quantum mechanics is reason-
ably straightforward. But general relativity and quantum mechanics seem funda-
mentally incompatible. Viewed as a quantum field theory, Einstein’s theory of
general relativity is a non-renormalizable theory; its coupling constant (in four di-
mensions) has dimensions of inverse mass-squared. As a result, quantum corrections
are very divergent. From the point of view developed in Part 1, these divergences
should be thought of as cut off at some scale associated with new physics; general
relativity is an incomplete theory. Hawking has discussed another sense in which
gravity and quantum mechanics seem to clash. Hawking’s paradox appears to be
associated with phenomena at arbitrarily large distances – in particular, with the
event horizons of large black holes. Because black holes emit a thermal spectrum
of radiation, it seems possible for a pure state – a large black hole – to evolve
into a mixed state. These puzzles suggest that reconciling quantum mechanics and
gravity will require a radical rethinking of our understanding of very short-distance
physics.

Apart from its potential to reconcile quantum mechanics and general relativity,
there is another reason that string theory has attracted so much attention: it is finite,
free of the ultraviolet divergences that plague ordinary quantum field theories. In the
previous chapters of this book, we have adopted the point of view that our theories of
nature should be viewed as effective theories. It is not clear that they can be complete
in any sense. One might wonder whether some sort of structure exists where the
process stops; where some finite, fundamental theory accounts for the features of
our present, more tentative constructions. Many physicists have speculated through
the years that these two questions are related; that an understanding of quantum
general relativity would provide a fundamental length scale. The finiteness of string
theory suggests it might play this role.
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String theory was discovered, by accident, in the 1960s, as physicists tried to
understand certain regularities of the hadronic S-matrix. In particular, hadronic
scattering amplitudes exhibited a feature then referred to as “duality.” Scattering
amplitudes with two incoming and two outgoing particles (so-called 2 → 2 pro-
cesses) could be described equally well by an exchange of mesons in the s channel
or in the t channel (but not both simultaneously). This is not a property, at least per-
turbatively, of conventional quantum field theories. Veneziano succeeded in writing
an expression for an S-matrix with just the required properties. Veneziano’s result
was extended in a variety of ways and it was soon recognized (by Nambu, Susskind
and others) that this model was equivalent to a theory of strings.

One could well imagine coming to string theory by a different route. Quantum
field theory describes point particles. Apart from properties like mass and charge,
no additional features (size, shape) are assigned to the basic entities. One could
well imagine that this is naive, but in describing nature, quantum field theory is
extraordinarily successful. In fact, there is no evidence for any size of the electron
or the quarks down to distances of order 10−17 cm (energy scales of order several
TeV). Still, it is natural to try to go beyond the idea of particles as points. The
simplest possibility is to consider entities with a one-dimensional extent, strings.
In the next chapters, we will discuss the features of theories of string. Here we just
note that a straightforward analysis yields some remarkable results. A relativistic
quantum string theory is necessarily:

(1) a theory of general relativity;
(2) a theory with gauge interactions;
(3) finite: string world sheets are smooth. Strings do not interact at space-time points. As

a result, in perturbation theory, one does not have the usual ultraviolet divergences of
quantum theories of relativistic particles.

These features are not postulated; they are inevitable. Other, seemingly less de-
sirable, features also emerge: the space-time dimension has to be 26 or 10. Many
string theories also contain tachyons in their spectrum, whose interpretation is not
immediately clear.

As theories of hadronic physics, string theories had only limited success. Their
spectra and S-matrices did share some features in common with those of the real
strong interactions. But as a result of the features described above – massless
particles and unphysical space-time dimensions as well as the presence of tachyons
in many cases – strings were quickly eclipsed by QCD as a theory of the strong
interactions.

Despite these setbacks, string theory remained an intriguing topic. String theories
were recognized to have short distance behavior much different – and better – than
that of quantum field theories. There was reason to think that such theories were free
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of ultraviolet divergences altogether. Scherk and Schwarz, and also Yoneya, made
the bold proposal that string theories might well be sensible theories of quantum
gravity. At the time, any concrete realization of this suggestion seemed to face enor-
mous hurdles. The first string theories contained bosons only. But string theories
with fermions were soon studied, and were discovered to have another remarkable,
and until then totally unfamiliar, property: supersymmetry. We have already learned
a great deal about supersymmetry, but at this early stage, its possible role in nature
was completely unclear. In their early formulations, string theories only made sense
in special – and at first sight uninteresting – space-time dimensions. But it had been
conjectured since the work of Kaluza and Klein that higher-dimensional space-
times might be “compactified,” leaving theories which appear four-dimensional,
and Scherk and Schwarz hypothesized that this might be the case for string theo-
ries. Over a decade, Green and Schwarz studied the supersymmetric string theories
further, developing a set of calculational tools in which supersymmetry was mani-
fest, and which were suitable for tree-level and one-loop computations.Witten and
Alvarez-Gaume, however, pointed out that higher-dimensional theories in general
suffer from anomalies, which render them inconsistent. They argued that almost
all of the then-known chiral string theories suffered from just such anomalies. It
appeared that the string program was doomed; only two known string theories,
theories without gauge interactions, seemed to make sense. Green and Schwarz,
however, persisted. By a direct string computation, they discovered that, while it
was true that almost all would-be string theories with gauge symmetries are in-
consistent, there was one exception among the then-known theories, with a gauge
group O(32). They reviewed the standard anomaly analysis and realized why O(32)
is special; this work raised the possibility that there might be one more consistent
string theory, based on the gauge group E8 × E8. The corresponding string theory,
as well as another with gauge group O(32) (known as the heterotic string theories),
was promptly constructed.

This work stimulated widespread interest in string theory as a unified theory
of all interactions, for now these theories appeared to be not only finite theories
of gravity, but also nearly unique. Compactification of the heterotic string on six-
dimensional manifolds known as Calabi–Yau spaces were quickly shown to lead to
theories which at low energies closely resemble the Standard Model, with similar
gauge groups, particle content, and other features such as repetitive generations,
low-energy supersymmetry and dynamical supersymmetry breaking. The various
string theories have since been shown to be part of a larger theory, suggesting that
one is studying some unique structure which describes quantum gravity. Some of
the basic questions about quantum gravity theories, such as Hawking’s puzzle, have
been, at least partially, resolved.
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Many questions remain, however. There is still no detailed understanding of how
string theory can make contact with experiment. There are a number of reasons for
this. String theory, as we will see, is a theory with no dimensionless parameters.
This is a promising beginning for a possible unified theory. But it is not clear how a
small expansion parameter can actually emerge, allowing systematic computation.
String theory provides no simple resolution of the cosmological constant puzzle.
Finally, while there are solutions which resemble nature, there are vastly more
which don’t. A principle, or dynamics, which might explain the selection of one
vacuum or another, has not emerged.

Yet string theory is the only model we have for a quantum theory of gravity.
More than that, it is the only model we have for a finite theory, which could be
viewed as some sort of ultimate theory. At the same time, string theory addresses
almost all of the deficiencies we have seen in the Standard Model, and has the
potential to encompass all of the solutions we have proposed. The following are
some examples.

(1) The theory unifies gravity and gauge interactions in a consistent, quantum mechanical
framework.

(2) The theory is completely finite. It has no free parameters. The constants of nature must
be determined by the dynamics, or other features internal to the theory.

(3) The theory possesses solutions in which space-time is four-dimensional, with gauge
groups close to the Standard Model and repetitive generations. It is in principle possible
to compute the parameters of the Standard Model.

(4) Many of the solutions exhibit low-energy supersymmetry, of the sort we have considered
in the first part of this book.

(5) Other solutions exhibit large dimensions, technicolor-like structures, and the like.
(6) The theory does not have continuous global symmetries, but often possesses discrete

symmetries, of the sorts we have considered.

While these are certainly encouraging signs, as we will learn in the third part of
this book, we are a long way from a detailed understanding of how string theory
might describe nature. We will see that there are fundamental obstacles to such an
understanding. At the same time, we will see that string theory provides a useful
framework in which to assess proposals for beyond the Standard Model physics.

The third part of this book is intended to provide the reader with an overview
of superstring theory, with a view to connecting string theory with nature. In the
next chapter, we will study the bosonic string. We will understand how to find the
spectra of string theories. We will also understand string interactions. The reason
that string theories are so constrained is that strings can only interact in a limited
set of ways, essentially by splitting and joining. We will explain how to translate
this into concrete computations of scattering amplitudes.
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In subsequent chapters, we will turn to the superstring theories, obtaining their
spectra and understanding their interactions. We will then turn to compactification
of string theories, focussing mainly on compactifications to four dimensions. We
first consider toroidal compactifications of strings, whose features can be worked
out quite explicitly. We also discuss orbifolds, simple string models which can
exhibit varying amounts of supersymmetry. Then we devote a great deal of attention
to compactifications on Calabi–Yau spaces. These are smooth spaces; superstring
theories compactified on these spaces exhibit varying amounts of supersymmetry.
Many look quite close to the real world.

Finally, we will turn to the question of developing a realistic string phenomenol-
ogy. Having seen the many intriguing features of string models, we will point out
some of the challenges. These are as follows.

(1) The proliferation of classes of string vacua.
(2) Within different classes, the existence of moduli.
(3) Mechanisms which generate potentials for moduli are known, but in regimes where

calculations can be performed systematically, tend not to produce stable minima. The
question of supersymmetry breaking is closely related to the question of stabilizing
moduli.

(4) There are detailed issues, such as proton decay, features of quark and lepton masses,
and many others.

We will touch on some proposed solutions to these puzzles. Much string model
building simply posits that moduli have been fixed in some way, and a vacuum
with desirable properties is somehow selected by some (unknown) overarching
principle. This is often backed up by calculations, which, while not systematic, are
at least suggestive that moduli are stabilized. An alternative viewpoint is provided
by the “landscape.” Here, one starts with the observation that introducing fluxes for
various tensor fields can potentially stabilize moduli. The possible choices of flux
vastly increase the possible array of (metastable) string ground states. If one simply
accepts that there is such a landscape of states, and that the universe samples many
of these states in some way, then one is led to think about distributions of parameters
of low-energy physics, not merely the coupling constants, but the gauge groups,
particle content, scale of supersymmetry breaking, and value of the cosmological
constant. For better or worse, this is in some sense the ultimate realization of the
notions of naturalness which so concerned us in Part 1. The question is why we are
the likely outcome of a distribution of this sort. We will leave it for the readers –
and for experiment – to sort out which, if any, of these viewpoints may be correct.

This is not a string theory textbook. The reader will not emerge from these few
chapters with the level of technical proficiency in weakly coupled strings provided
by Polchinski’s text, or with the expertise in Calabi–Yau spaces provided by the
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book of Green, Schwarz and Witten (1987). In order to quickly obtain the spectra
of various string theories, the following chapters heavily emphasize light cone
techniques. While some aspects of the covariant treatment are developed in order
to explain the rules for computing the S-matrix, many important topics, especially
the Polyakov path integral approach and BRST quantization, are given only cursory
treatment. Similarly, the introduction to D-brane physics provides some basic tools,
but does not touch on much of the well-developed machinery of the subject. The
reader who wishes a more thorough grounding in the physics of D-branes will want
to consult the texts of Polchinski (1998) and of Johnson (2003).

Suggested reading

The introduction of the book by Green et al. (1987) provides a particularly good
overview of the history of string theory, and some of its basic structure. The intro-
ductory chapter of Polchinski’s text (1998) provides a good introduction to more
recent developments, and a perspective on why strings might be important in the
description of nature.
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The bosonic string

Consider a particle moving through space. As it moves, it sweeps out a path called
a world line. The action of the particle is just the integral of the invariant length
element along the path, up to a constant.

Suppose we want to describe the motion of a string. A string, as it moves,
sweeps out a two-dimensional surface in space-time called a world sheet. We can
parameterize the path in terms of two coordinates, one time-like and one space-like,
denoted σ and τ , or σ0 and σ1. The action should not depend on the coordinates
we use to parameterize the surface. Polyakov stressed that this can be achieved by
using the formalism of general relativity. Introduce a two-dimensional metric, γαβ .
Then an invariant action is:

S = T

2

∫
d2σ

√−γ γ αβ∂α Xµ∂β X νηµν. (21.1)

Here our conventions are such that for a flat space,

γ = η =
(−1 0

0 1

)
(21.2)

(similarly, our D-dimensional space-time metric is ds2 = −dt2 + d�x2).
This action has a large symmetry group. There are, first, general coordinate

transformations of the two-dimensional surface. For a simple topology (plane or
sphere), these permit us to bring the metric to the form:

γ = eφη. (21.3)

In this gauge (the conformal gauge) the action is independent of φ:

S = −T

2

∫
d2σηαβ∂α Xµ∂β X νηµν. (21.4)

It is possible to fix this symmetry further. To motivate this gauge choice, we
consider an analogous problem in field theory. In a gauge theory like QE D, we can
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fix a covariant gauge, ∂ · A = 0. This gauge fixing, while manifestly Lorentz invari-
ant, is not manifestly unitary. We might try to quantize covariantly by introducing
creation and annihilation operators, aµ. These would obey:

[aµ, a† ν] = gµν (21.5)

so that some states seem to have negative norm. If one proceeds in this way, it is
necessary to prove that states with negative (or vanishing) norm can’t be produced
in scattering amplitudes.

One way to deal with this is to choose a non-covariant gauge. Coulomb gauge is a
familiar example, but a particularly useful description of gauge theories is obtained
by choosing the “light cone gauge.” First, define light cone coordinates:

x± = 1√
2

(x0 ± x D−1). (21.6)

The remaining, transverse coordinates, we will simply denote as �X . Correspond-
ingly, one defines the light cone momenta:

p± = 1√
2

(p0 ± pD−1), �p. (21.7)

Note that

A · B = −(A+ B− + A− B+) + �A · �B. (21.8)

Now we will think of x+ as our time variable. The “Hamiltonian” generates trans-
lations in x+; it is in fact p−. Note that for a particle:

p2 = −2p+ p− + �p2. (21.9)

The Hamiltonian is:

H = 1

p+ p. (21.10)

Having made this choice of variables, one can then make the gauge choice A+ = 0.
In the Lagrangian, there are no terms involving ∂+ A−, so A− is not a dynamical
field; only the D − 2 Ai s are dynamical. So we have the correct number of physical
degrees of freedom. One simply solves for A− by its equations of motion. In the
early days of QCD, this description proved very useful in understanding very-high-
energy scattering. In practice, similar algebraic gauges are still very useful.

Light cone coordinates, more generally, are very helpful for identifying physical
degrees of freedom. Consider the problem of counting the degrees of freedom asso-
ciated with some tensor field, Aµνρ . For a massive field, one counts by going to the
rest frame, and restricting the indices µ, ν, ρ to be D − 1 dimensional. For a mass-
less field, the relevant group is the “little group” of the Lorentz group, SO(D − 2).
Correspondingly, one restricts the indices to be D − 2 dimensional. So, for example,
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for a massless vector, there are D − 2 degrees of freedom. For a symmetric, traceless
tensor (the graviton), there are [(D − 2)(D − 1)/2] − 1. Light cone coordinates,
and light cone gauge, provide an immediate realization of this counting.

For many questions in quantum field theory, covariant methods are much more
powerful than the light cone. Quantum field theorists are familiar with techniques
for coping with covariant gauges. These involve introduction of additional fictitious
degrees of freedom (Faddeev–Popov ghosts). It is probably fair to say that most do
not know much about gauges like the light cone gauge (there is almost no treatment
of these topics in standard texts). But we will see in string theory that the light cone
gauge is quite useful in isolating the physical degrees of freedom of strings. It lacks
some of the elegance of covariant treatments, but it avoids the need to introduce an
intricate ghost structure, and, as in field theory, the physical degrees of freedom are
manifest. The differences between the covariant and light cone treatments, as we
will see, are most dramatic when we consider supersymmetric strings. In the light
cone approach of Green and Schwarz, space-time supersymmetry is manifest. In
the covariant approach, it is not at all apparent. On the other hand, for the discussion
of interactions, the light cone treatment tends to be rather awkward. In this chapter,
we will first introduce the light cone gauge, and then go on to discuss aspects of
the covariant formulation. The suggested readings will satiate the reader interested
in more details of the covariant treatment.

21.1 The light cone gauge in string theory

21.1.1 Open strings

In the conformal gauge, we can use our coordinate freedom to choose X+ = τ . We
also can choose the coordinates such that the momentum density, P+, is constant
on the string. In this gauge, in D dimensions, the independent degrees of freedom
of a single string are the coordinates, X I (σ, τ ), I = 1, . . . , D − 2. They are each
described by the Lagrangian of a free two-dimensional field:

S = T

2

∫
d2σ ((∂τ X I )2 − (∂σ X I )2). (21.11)

It is customary to define another quantity, α′ (the “Regge slope”), with dimensions
of length-squared:

α′ = 1

2πT
. (21.12)

We will generally take a step further and use units with α′ = 1/2. In this case, the
action is:

S = −1

2π

∫
d2σ ((∂τ X I )2 − (∂σ X I )2). (21.13)
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The reader should be alerted that there is another common choice of units: α′ = 2,
and we will encounter this later. In this case, the action has a 1/8π out front.

In order to write equations of motion, we need to specify boundary conditions in
σ . Consider, first, open strings, i.e. strings with two free ends. We want to choose
boundary conditions so that when we vary the action we can ignore surface terms.
There are two possible choices.

(1) Neumann boundary conditions,

∂σ X I (τ, 0) = ∂σ X I (τ, π) = 0. (21.14)

(2) Dirichlet boundary conditions:

X I (τ, 0) = X I (τ, π ) = constant. (21.15)

It is tempting to discard the second possibility, as it appears to violate translation
invariance. For now, we consider only Neumann boundary conditions, but we will
return later to Dirichlet.

We want to write a Fourier expansion for the X I s. The normalization of the
coefficients is conventionally taken to be somewhat different than that of relativistic
quantum field theories:

X I = x I + pI τ + i
∑
n �=0

1

n
α I

n e−inτ cos(nσ ). (21.16)

The α
µ
n s are, up to constants, ordinary creation and annihilation operators:

α I
n = √

nan α I
−n = √

na†
n. (21.17)

Because we are working at finite volume (in the two-dimensional sense) there are
normalizable zero modes, the x I s and pI s. They correspond to the coordinate and
momentum of the center of mass of the string. From our experience in field theory,
we know how to quantize this system. We impose the commutation relations:

[∂τ X I (σ, τ ), X J (σ ′, τ )] = −i

π
δ I J (σ − σ ′). (21.18)

This is satisfied by:

[x I , pJ ] = iδ I J
[
α I

n , α J
n′
] = nδn+n′,0δ

I J . (21.19)

The states of this theory can be labeled by their transverse momenta, �p, and by
integers corresponding to the occupation numbers of the infinite set of oscillator
modes. It is helpful to keep in mind that this is just the quantization of a set of free,
two-dimensional fields in a finite volume.
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We can write a Hamiltonian for this system. Normal ordering:

H = �p2 + N + a (21.20)

where

N =
∞∑

n=1

α I
−nα

I
n , (21.21)

and a is a normal ordering constant. States can be labelled by the occupation
numbers for each mode, Nni and the momentum, pI ,

|pI , {Nni }〉 (21.22)

The light cone Hamiltonian, H , generates translations in τ . It is convenient to
refine the gauge choice:

X+ = p+τ.

Since p− is conjugate to the light cone time, x+,

p− = H/p+, (21.23)

or

p+ p− = �p2 + N + a, M2 = N + a. (21.24)

So the quantum string describes a tower of states, of arbitrarily large mass. The
constant a is not arbitrary. We will see shortly that

a = −1. (21.25)

This means that the lowest state is a tachyon. We can label this state simply

|T (�p)〉 = |�p, {0}〉 ≡ |�p〉. (21.26)

The state carries transverse momentum �p and longitudinal momenta p+ and p−, and
is annihilated by the infinite tower of oscillators. The significance of this instability
is not immediately clear; we will close our eyes to it for now and proceed to look
at other states in the spectrum. When we study the superstring, we will often find
that there are no tachyons.

The first excited state is the state

|AI 〉 = α I
−1|�p〉. (21.27)

Its mass is

m2
A = 1 + a. (21.28)
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Now we can see why a = −1. Here, �A is a vector field with D − 2 components.
In D dimensions, a massive vector field has D − 1 degrees of freedom; a massless
vector has D − 2 degrees of freedom. So �A must be massless, and a = 1 if the
theory is Lorentz invariant. Later, we will give a fancier argument for the value of
a, but the content is equivalent.

At level 2, we have a number of states:

α I
−2|�p〉 α I

−1α
J
−1|�p〉. (21.29)

These include a vector, a scalar, and a symmetric tensor. We won’t attempt here to
group them into representations of the Lorentz group.

It turns out that the value of D is fixed, D = 26. In the light cone formulation, the
issue is that the light cone theory is not manifestly Lorentz invariant. To establish
that the theory is Poincaré invariant, it is necessary to construct the full set of
Lorentz generators and carefully check their commutators. This analysis yields the
conditions D = 26 and a = −1. We will discuss the derivation of this result a bit
more later. In a manifestly covariant formulation, such as the conformal gauge, the
issue is one of unitarity, as in gauge field theories. Decoupling of negative and zero
norm states yields, again, the condition D = 26.

Turning to the gauge boson, it is natural to ask: what are the fields charged
under the gauge symmetry. The answer is suggested by a picture of a meson as a
quark and antiquark connected by a string. We can allow the ends of the strings
to carry various types of charges. In the case of the bosonic string, these can be,
for example, a fundamental and anti-fundamental of SU (N ). Then the string itself
transforms as a tensor product of vector representations. Because the open strings
include massless gauge bosons, this product must lie in the adjoint representation
of the group. In the bosonic string theory, one can also have SO(N ) and Sp(N )
groups. In the case of the superstring, we will see that the group structure is highly
restricted. The theory will make sense only in flat ten dimensions, and then only if
the group is O(32).

21.2 Closed strings

We have begun with open strings, since these are in some ways simplest, but theories
of open strings by themselves are incomplete. There are always processes which
will produce closed strings. For closed strings, we again have a set of fields X I (σ, τ ).
Their action is identical to that we wrote before. But they now obey the boundary
conditions:

X I (σ + π, τ ) = X I (σ, τ ). (21.30)
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Again, we can write a mode expansion:

X I = x I + pI τ + i

2

∑
n �=0

1

n

(
α I

n e−2in(τ−σ ) + α̃ I
n e−2in(τ+σ )

)
. (21.31)

The exponential terms are the familiar solutions to the two-dimensional wave equa-
tion. One can speak of modes moving to the left (“left movers”) and to the right
(“right movers”) on the string. Again we have commutation relations:

[x I , pJ ] = iδ I J
[
α I

n , α
J
n′
] = nδn+n′δ I J

[
α̃ I

n , α̃ J
n′
] = nδn+n′δ I J . (21.32)

Now the Hamiltonian is:

H = �p2 + N + Ñ + b (21.33)

where

N =
∞∑

n=1

α I
−nα

I
n Ñ =

∞∑
n=1

α̃ I
−nα̃

I
n . (21.34)

In working out the spectrum, there is an important constraint. There should be
no special point on the string, i.e. translations in the σ direction should leave states
alone. The generator of constant shifts of σ can be found by the Noether procedure:

Pσ =
∫

dσ∂τ X I ∂σ X I = N − Ñ . (21.35)

So we need to impose the condition N = Ñ on the states.
Once more, the lowest state is a scalar,

|T 〉 = |�p〉 m2
T = b. (21.36)

Because of the constraint, the first excited state is:

|�I J 〉 = α̃ I
−1α

J
−1|�p〉. (21.37)

We can immediately decompose these states into irreducible representations of
the little group; there is a symmetric traceless tensor; a scalar (the trace); and an
antisymmetric tensor. A symmetric, traceless tensor should have, if massive, D2 −
D − 1 states. Here, however, we have only D2 − 3D + 1 states. This is precisely
the correct number of states for a massless, spin-two particle – a graviton. The
remaining states are precisely the number for a massless antisymmetric tensor field
and a scalar. So we learn that b = −2.

This is a remarkable result. General arguments, going back to Feynman,
Weinberg and others, show that a massless spin-two particle, in a relativistic theory,
necessarily couples like a graviton in Einstein’s theory. So string theory is a theory
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of general relativity. This bosonic string is clearly unrealistic. But the presence of
the graviton will be a feature of all string theories, including the more realistic ones.

21.3 String interactions

The light cone formulation is very useful for determining the spectrum of string
theories, but it is somewhat more awkward for the discussion of interactions. As
explained in the introduction, string interactions are determined geometrically, by
the nature of the string world sheet. Actually turning drawings of world sheets
into a practical computational method is surprisingly straightforward. This is most
easily done using the conformal symmetry of the string theory. So we return to the
conformal gauge. There are close similarities between the treatment of both open
and closed strings. We will start with the treatment of closed strings, for which the
Green functions are somewhat simpler. At the end of this chapter we will return to
open strings.

21.3.1 String theory in conformal gauge

In conformal gauge, the action is:

S = 1

π

∫
d2σ ((∂τ Xµ)2 − (∂σ Xµ)2). (21.38)

Introducing the two-dimensional light cone coordinates

σ± = σ0 ± σ1 (21.39)

the flat world sheet metric takes the form

η+− = η−+ = −1

2
(21.40)

and the action can be written:

S = 1

8π

∫
dσ+ dσ−∂σ+ Xµ∂σ− Xµ. (21.41)

At the classical level, this action is invariant under a conformal rescaling of the
coordinates. If we introduce light cone coordinates on the world sheet, then the
action is invariant under the transformations:

σ± → f±(σ±). (21.42)

Later, we will Wick rotate, and work with complex coordinates; these conformal
transformations will then be the conformal transformations familiar in complex
variable theory. It is well known that by a conformal transformation one can map
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the plane into a sphere, for example. In this case, the regions at infinity with incoming
or outgoing strings are mapped to points. The creation or destruction of strings at
these points is described by local operators in the two-dimensional, world sheet
theory. In order to respect the conformal symmetry, these operators must, like the
action, be integrals over the world sheet of local dimension-two operators. These
operators are known as vertex operators, V (σ, τ ).

In conformal gauge, the action also contains Faddeev–Popov ghost terms, asso-
ciated with fixing the world sheet general coordinate invariance. We will discuss
some of their features later. But let’s focus on the fields Xµ first. If we simply write
mode expansions for the fields (taking closed strings, for definiteness)

Xµ = xµ + pµτ + i
∑
n �=0

1

n

(
αµ

n e−2in(τ−σ ) + α̃µ
n e−2in(τ+σ )

)
(21.43)

we will encounter difficulties. The αµs will now obey commutation relations:

[xµ, pν] = igµν
[
αµ

n , αν
n′
] = nδn+n′ gµν. (21.44)

If we proceed naively, the minus sign means from g00 that we will have states in
the spectrum of negative or zero norm.

The appearance of negative norm states is familiar in gauge field theory. The res-
olution of the problem, there, is gauge invariance. One can either choose a gauge in
which there are no states with negative norm, or one can work in a covariant gauge
in which the negative norm states are projected out. In a modern language, this pro-
jection is implemented by the BRST procedure. But it is not hard to check that in a
covariant gauge, low-order diagrams in QED, for example, give vanishing ampli-
tudes to produce negative or zero norm states (photons with time-like or light-like
polarization vectors). In gauge theories, it is precisely the gauge symmetry which
accounts for this. In string theory, it is another symmetry, the residual conformal
symmetry of the conformal gauge.

In the chapter on general relativity, we learned that differentiation of the matter
action with respect to the metric gives the energy-momentum tensor. In Einstein’s
theory, differentiating the Einstein term as well gives Einstein’s equations. In the
string case, the world sheet metric has no dynamics (the Einstein action in two
dimensions is a total derivative), and the Euler–Lagrange equation for γ yields the
equation that the energy-momentum tensor vanishes. Quantum mechanically, these
will be constraint equations. The components of the energy-momentum tensor are:

T10 = T01 = ∂0 X · ∂1 X T00 = T11 = 1

2
((∂0 X )2 + (∂1 X )2). (21.45)

The energy-momentum tensor is traceless. This is a consequence of conformal in-
variance; you can show that the trace is the generator of conformal transformations.
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In terms of the light cone coordinates, the non-vanishing components of the stress
tensor are:

T++ = ∂+ X · ∂+ X T−− = ∂− X · ∂− X. (21.46)

Note that T+− = T−+ = 0. Energy-momentum conservation then says:

∂−T++ = 0 ∂+T−− = 0. (21.47)

As a result, any quantity of the form f (x+)T++ or f (x−)T−− is also conserved.
Integrating over the world sheet, this gives an infinite number of conserved charges.

We want to impose the condition of vanishing stress tensor as a condition on
states. There is a problem, however, and this is one way of understanding the origin
of the critical dimension, 26. The obstacle is an anomaly, similar to anomalies we
encountered in the first part of this text. One can see the problem if one takes the
mode expansions for the Xµs and works out the commutators for the T s. We will
show in the next section that

[T++(σ ), T++(σ ′)] = i

24
(26 − D)δ

′′′
(σ − σ ′) + i(T++(σ ) + T++(σ ′))δ′(σ − σ ′)

(21.48)
and a similar equation for T−−. The first term is clearly an obstruction to imposing
the constraint, unless D = 26. The 26 arises from the energy-momentum tensor of
the Faddeev–Popov ghosts. Were it not for the ghosts, strings would never make
sense quantum mechanically. One can calculate this commutator painstakingly
by decomposing in modes. But there are simpler methods, which also provide
important insights into string theory, which we develop in the next section.

21.4 Conformal invariance

The analysis of conformal invariance is enormously simplified by passing to Eu-
clidean space. Define:

w = τ + iσ w̄ = τ − iσ. (21.49)

The ws describe a cylinder. Again, in this section α′ = 2. This choice will make the
coordinate space Green functions for the Xµs very simple. The Euclidean action is
now:

S = 1

8π

∫
d2w ∂w Xµ∂w̄ Xµ. (21.50)

In complex coordinates, the non-vanishing components of the energy-momentum
tensor are:

Tww = −∂w X · ∂w X Tw̄w̄ = −∂w̄ X · ∂w̄ X. (21.51)
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We saw in the previous section that the string action, in Minkowski coordinates, is
invariant under the transformations:

σ+ → f (σ+) σ− → g(σ−). (21.52)

In terms of the complex coordinates, this becomes invariance under the transfor-
mations:

w → f (w) w̄ → f ∗(w̄). (21.53)

These are conformal transformations of the complex variable, and, as a result of
this symmetry, we are able to bring all of the machinery of complex analysis to bear
on this problem. One particularly useful conformal transformation is the mapping
of the cylinder onto the complex plane:

z = ew z̄ = ew̄. (21.54)

Under this mapping, surfaces of constant τ on the cylinder are mapped into circles
in the complex plane; τ → −∞ is mapped into the origin, and τ → ∞ is mapped
to ∞. Surfaces of constant τ are mapped into circles.

It is convenient to write our previous expression for Xµ in terms of the variable
z. First write our previous expressions:

Xµ = xµ + pµτ + i
∑
n �=0

1

n

(
αµ

n e−2in(τ−σ ) + α̃µ
n e−2in(τ+σ )

)
= Xµ

L + Xµ

R, (21.55)

where

XL = 1

2
xµ + 1

2
pµ(τ − σ ) + i

∑
n �=0

1

n
αµ

n e−in(τ−σ ) (21.56)

XR = 1

2
xµ + 1

2
pµ(τ + σ ) + i

∑
n �=0

1

n
αµ

n e−in(τ+σ ). (21.57)

XL is holomorphic (analytic) in z, XR is antiholomorphic:

∂ XL = −iαµ
n z−n−1 ∂ XR = −i α̃µ

n z̄−n−1. (21.58)

where α
µ

0 = α̃
µ

0 = 1
2 pµ.

Let us evaluate the propagator of the xs in coordinate space. The Xs are just
two-dimensional quantum fields. Their kinetic term, however, is somewhat uncon-
ventional. Because we work with units α′ = 2, so the action has a factor of 1/8π out
front. Accounting for the extra 4π , the coordinate space-propagator is (in Euclidean
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space):

〈Xµ(σ ), X ν(0)〉 = 4πδµν

∫
d2k

(2π )2

eiσ ·k

k2
. (21.59)

This equation is logarithmically divergent in the infrared. We can use this to our
advantage, cutting off the integral at scale µ and isolating the ln(µ|z − z′|). The
logarithmic dependence can be seen almost by inspection of the integral:

〈Xµ(z)X ν(z′)〉 = 2δµν ln(|z − z′|µ) = ln(z − z′) + ln(z̄ − z̄′) + ln(µ2). (21.60)

As we will see shortly, the infrared cutoff will drop out of physically interesting
quantities, so we will suppress it in the following.

In the covariant formulation, conformal invariance is crucial to the quantum the-
ory of strings. To understand the workings of two-dimensional conformal invari-
ance, we can use techniques of complex variable theory, and the operator product
expansion (OPE). We have discussed the operator product expansion previously, in
the context of two-dimensional gauge anomalies. It is also important in QCD, in
the analysis of various short-distance phenomena. The basic idea is that if one has
two operators, O(z1) and O(z2), when z1 → z2, we have

Oi (z1)O j (z2) →
z1→z2

∑
k

Ci jk(z1 − z2)Ok(z1). (21.61)

The coefficients Ci jk are, in general, singular as z1 → z2. The power follows from
dimensional analysis.

To implement this rather abstract statement, one can insert the two operators in
a Green function with other operators, located at some distance from z1. In other
words, one studies:

〈Oi (z1)O j (z2)�(z3)�(z4) . . .〉. (21.62)

One can contract the operators in O(z1) with those in O(z2), obtaining expressions
which are singular as z1 → z2, or with the other operators, obtaining non-singular
expressions. The leading term in the OPE will come from the term with the max-
imum number of operators at z1 contracted with operators at z2; less singular
operators will arise when we contract fewer operators.

As an example, which will be useful in a moment, consider the product
∂ Xµ(z)∂ X ν(w). If this appears in a Green function, the most singular term as
z → w will be that where we contract ∂ X (z) with ∂ X (w). The result will be like
the insertion of the unit operator at a point, times the singular function 1/(z − w)2,
so we can write:

∂ Xµ(z)∂ X ν(ω) ∼ gµν

(z − w)2
+ · · ·. (21.63)
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A somewhat more non-trivial, and important, set of operator product expansions
are provided by the stress tensor and derivatives of X :

T (z)∂ X ν(w) = ∂ Xµ(z)∂ Xµ(z)∂ X ν(w). (21.64)

Now the most singular term arises when we contract the ∂ X (w) with one of the
∂ X (z) factors in T (z). The other ∂ X (z) is left alone; in Green’s functions, it must
be contracted with other more far away operators. So we are left with:

T (z)∂ X (w) ≈ 1

(z − w)2
∂ X (w) + 1

z − w
∂2 X (w) + · · ·. (21.65)

Another important set of operators will turn out to be exponentials of X :

T (z)eip·x = k2

(z − w)2
eik·x + · · ·. (21.66)

To get some sense of the utility of conformal invariance and OPEs, let’s compute
the commutators of the αµs. Start with

αµ
n =

∮
dz

2π
zn∂ Xµ, (21.67)

where the contour is taken about the origin. Now use the fact that on the complex
plane, time ordering becomes radial ordering, So, for |z| > |w|,

T 〈∂ Xµ(z)∂ X ν(w)〉 = 〈∂ Xµ(z)∂ X ν(w)〉 (21.68)

For |z| < |w|,
T 〈∂ Xµ(z)∂ X ν(w)〉 = 〈∂ X ν(w)∂ Xµ(z)〉. (21.69)

Thus we have:[
αµ

m, αν
n

] =
[∮

dz

2π
zm

∮
dw

2π
wn −

∮
dw

2π
wn

∮
dz

2π
zm

]
∂ Xµ(z)∂ X ν(w) (21.70)

where the contour can be taken to be a circle about the origin. In the first term, we
take |z| > |w|. In the second, |w| > |z|. Now to evaluate the integral, do, say, the
z integral first. For fixed w, deform the z contour so that it encircles z (Fig. 21.1).
Then [

αµ
m, αν

n

] =
∮

dw

2π
wn

∮
dz

2π
zm 1

(z − w)2

= mδm+ngµν.

Let’s return to the stress tensor. We expect that the stress tensor is the generator
of conformal transformations, and that its commutators should contain information
about the dimensions of operators. What we have just learned, by example, is that
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z
w

z

w

z

w

Fig. 21.1. Contour integral manipulations used to evaluate commutators in con-
formal field theory.

the operator products of operators encode the commutators. We could show by the
Noether procedure that the stress tensor is the generator of conformal transforma-
tions. But let’s simply check. Consider the transformation:

z → z + ε(z). (21.71)

We expect that the generator of this transformation is:∮
dzT (z)ε(z). (21.72)

We take the special case of an overall conformal rescaling:

ε(z) = λz. (21.73)

Now suppose that we have an operator, O(w), and that

T (z)O(w) = h

(z − w)2
O(w) + less singular. (21.74)

Then [
1

2π i

∮
T (z)ε(z),O(w)

]
= 1

2π i

∮
dz

λzhO(w)

(z − w)2

= λhO(w). (21.75)

This means that under the conformal rescaling, O → hO, just as we expect for an
operator of dimension h. As an example, consider O = (∂)n X . This should have
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dimension n, and the leading term in its OPE is just of the form of Eq. (21.74), with
h = n.

More precisely, an operator is called a primary field of dimension d if:

T (z)O(w) = dO
(z − w)2

+ ∂O
z − w

. (21.76)

Note that ∂ X (z) is an example; eip·x is another. However, (∂)n X is not, in general,
as the 1/(z − w) term does not have quite the right form. A particularly interesting
operator is the stress tensor itself. Naively, this has dimension two, but it is not
a primary field. In the operator product expansion, the most singular term arises
from the contraction of all of the derivative terms. This is proportional to the unit
operator. The first subleading term, where one contracts just one pair of derivatives,
gives a piece proportional to the stress tensor itself:

T (z)T (w) = D

(z − w)4
+ 1

(z − w)2
T (w). (21.77)

When one includes the Faddeev–Popov ghosts, one finds that they give an additional
contribution, changing D to D − 26.

The algebra of the Fourier modes of T is known as the Virasoro algebra, and
is important both in string theory, conformal field theory, and mathematics. In the
string theory, it provides important constraints on states. Define the operators:

Ln = 1

2π i

∮
dzzn+1T (z). (21.78)

In terms of these,

T (z) =
∞∑

m=−∞

Lm

zm+2
(21.79)

and similarly for z̄. Because the stress tensor is conserved, we are free to choose
any time (radius for the circle). The operator product (21.77) is equivalent to the
commutation relations above. Proceeding as we did for the commutators of the αs,
gives:

[Ln, Lm] = (m − n)Lm+n + D

12
(m3 − m)δm+n. (21.80)

Using expression (21.16) we can construct the Lns:

Lm = 1

2

∑
: α

µ
m−nαµ n : L̃m = 1

2

∑
: α̃

µ
m−nα̃µ n : . (21.81)

The colons indicates normal ordering. Only when m = 0 is this significant. In
this case, we have to allow for the possibility of a normal ordering constant.
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This constant is related to the constant we found in the Hamiltonian in light cone
gauge.

L0 =
∞∑

n=0

α
µ
−nαµ n − a L̃0 =

∞∑
n=0

α̃
µ
−nα̃µ n − a. (21.82)

Now we want to consider the constraint on states corresponding to the classical
vanishing of the stress tensor. Because of the commutation relations, we cannot
require all of the Ls annihilate physical states. We require instead:

Lm |�〉 = 0 (21.83)

for m ≥ 0. Since L†
m = L−m , this insures that

〈�|Ln|�〉 = 0 ∀ n. (21.84)

Because of the constraint L0 = L̃0, at the first excited level, we have the state:

|ε〉 = εµνα
µ

−1α̃
ν
−1|pµ〉. (21.85)

The Ln , for n > 1, trivially annihilate the state. For n = 1 we have:

L1|ε〉 = α
µ

0 εµν |pν〉. (21.86)

Taking into account also L̃1, we have the conditions:

pµεµν = 0 = pνε
µν. (21.87)

This is similar to the condition kµεµ familiar in covariant gauge electrodynamics
and eliminates the negative norm states. Consider, now, L0:

L0|ε〉 = (p2 − a + 1)|ε〉. (21.88)

So if a = 1, the constraint is p2 = 0, as we expect from Lorentz invariance. For
open strings there is an analogous construction.

21.5 Vertex operators and the S-matrix

We have argued that, when the cylinder is mapped to the plane, the creation or
destruction of states is described by local operators, known as vertex operators.
In this section, we discuss the properties of these operators and their construction.
We explain how the space-time S-matrix is obtained from correlation functions of
these operators, and compute a famous example.
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21.5.1 Vertex operators

There is a close correspondence between states and operators: z → 0 corresponds
to t → −∞. So consider, for example,

∂z Xµ|0〉, (21.89)

as z → 0. This is:

∂z X (z → 0)|0〉 = −i
∞∑

m=−1

α
µ
m

zm+1
|0〉. (21.90)

All but the term m = −1 annihilate the state to the right. Combining this with a
similar left-moving operator creates a single particle state.

More generally, in conformal field theories, there is a one to one correspondence
between states and operators. This is the realization of the picture discussed in the
introduction. By mapping the string world sheet to the plane, the incoming/outgoing
states have been mapped to points, and the production or annihilation of particles
at these points is described by local operators.

The construction of the S-matrix in string theory relies on this connection of
states and operators. The operators which create and annihilate states are known as
vertex operators. What properties should a vertex operator possess? The production
of the particle should be represented as an integral over the string world sheet (so
that there is no special point along the string). The expression∫

d2zV (z, z̄) (21.91)

should be invariant under conformal transformations. This means that the operator
should possess dimension two; more precisely, it should possess dimension one
with respect to both the left- and the right-moving stress tensors:

T (z)V (w, w̄) = 1

(z − w)2
V (w, w̄) + 1

z − w
∂wV (w, w̄) + · · · (21.92)

and similarly for T̄ . An operator with this property is called a (1, 1) operator.
A particularly important operator in two-dimensional free field theory (i.e. the

string theories we are describing up to now) is constructed from the exponential of
the scalar field:

Op = eip·x . (21.93)

This has dimension

d = p2 (21.94)
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with respect to the left-moving stress tensor, and similarly for the right-moving
part.

With these ingredients, we can construct operators of dimension (1, 1). These
are in one to one correspondence with the states we have found in the light cone
construction.

(1) The tachyon:

eip·x p2 = 1. (21.95)

(2) The graviton, antisymmetric tensor, and dilaton:

εµν∂ Xµ∂̄ X νeip·x p2 = 0. (21.96)

The operator product

∂ Xρ(z)∂ Xρ(z)εµν(p)∂̄ Xµ(w)∂ X ν(w)eip·x (w) (21.97)

contains terms which go as 1/(z − w)3 from contracting one of the derivatives in the
stress tensor with eip·x and one with ∂ Xµ. Examining Eq. (21.92), this leads to the
requirement

pµεµν(p) = 0 (21.98)

which we expect for massless spin-2 states. In our earlier operator discussion, this was
one of the Virasoro conditions.

(3) Massive states:

εµ1···µn (p)∂ Xµ1∂ Xµ2 · · · ∂ Xµn eip·x p2 = 1 − n. (21.99)

Obtaining the correct OPE with the stress tensor now gives a set of constraints on
the polarization tensor; again these are just the Virasoro constraints. Without worrying
about degeneracies, we have a formula for the masses:

M2
n = n − 1. (21.100)

This is what we found in the light cone gauge. Traditionally, the states were organized
in terms of their spins. States of a given spin all lie on straight lines, known as “Regge
trajectories.” These results are all in agreement with the light cone spectra we found
earlier.

21.5.2 The S-matrix

Now we will make a guess as to how to construct an S-matrix. Our vertex opera-
tors, integrated over the world sheet, are invariant under reparameterizations and
conformal transformation of the world sheet coordinates. We have seen that they
correspond to creation and annihilation of states in the far past and far future. We
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will normalize the vertex operators so that:

Vi (z)Vj (w) ∼ 1

|z − w|4 . (21.101)

So we study correlation functions of the form:∫
d2z1 . . . d2zn〈V1(z1, p1) . . . Vn(zn pn)〉. (21.102)

We will include a coupling constant, g, with each vertex operator.
Before evaluating this expression in special cases, let’s consider the problem of

evaluating correlation functions of exponentials:〈
ei

∑
pi ·X (zi )

〉
. (21.103)

An easy way to evaluate this expression is to work in the path integral framework.
Then the exponential has the structure∫

d2z Jµ(z)X (z), (21.104)

where

Jµ(z) =
∑

i

piµδ2(z − zi ). (21.105)

But we know that the result of such a path integral is:

exp

(
i
∫

d2zd2z′ Jµ(z)Jµ(z′)�(z − z′)
)

= exp
(∑

pi · p j ln |(zi − z j )|2µ2
)
,

(21.106)
where we have made a point of restoring the infrared cutoff.

Let’s consider the infrared cutoff first. Overall, we have a factor:

µ(
∑

pi )2
. (21.107)

This vanishes as µ → 0, unless
∑

pi = 0, i.e. unless momentum is conserved. This
result is related to the Mermin–Wagner–Coleman theorem that there is no sponta-
neous breaking of global symmetries in two dimensions. Translational invariance
is a global symmetry of the two-dimensional field theory; eip·x transforms under
the symmetry. The only non-vanishing correlation functions are translationally
invariant.

This correlation function also has an ultraviolet problem, coming from the i = j
terms in the sum. Eliminating these corresponds to normal ordering the vertex op-
erators, and we will do this in what follows (we can, if we like, introduce an explicit
ultraviolet cutoff; this gives a factor which can be absorbed into the definition of
the vertex operators).



332 21 The bosonic string

There is one more set of divergences we need to deal with. These are associated
with a part of the conformal invariance we have not yet fixed. The operators L0, L1

and L−1 form a closed algebra. On the plane, they generate overall rescalings (L0),
translations (L1) and more general transformations (L−1) which can be unified in
SL(2, C), the Möbius group. It acts on the world sheet coordinates as:

z = αz′ + β

γ z′ + δ
. (21.108)

These have the feature that they map the plane once into itself. It is necessary to
fix this symmetry and divide by the volume of the corresponding gauge group. We
can choose the location of three of the vertex operators, say z1, z2, z3. These are
conventionally taken to be 0, 1, ∞. It is necessary also to divide by the volume of
this group; the corresponding factor is

�M = |z1 − z2|2|z1 − z3|2|z2 − z3|2. (21.109)

One can simply accept that this emerges from a Faddeev–Popov condition, or derive
this following the exercises at the end of the chapter. Finally, it is necessary to divide
by g2

s . This insures that a three-particle process is proportional to gs , a four particle
amplitude to g2

s , and so on.
Using these results we can construct particular scattering amplitudes. While

physically somewhat uninteresting, the easiest to examine is simply the scattering
of tachyons. Let’s specialize to the case of two incoming, two outgoing particles.
Putting together our results above we have (remembering that z3 → ∞):

A = 1

�M

∫
d2z4|z1−z2|2|z1−z3|2|z2−z3|2|z3|p3·(p1+p2+p3)|z1−z2|p1·p2 |z4|p4·p1 |z4−1|p4·p2 .

(21.110)

Using momentum conservation, the z4 independent pieces cancel out in the limit,
and we are left with:

A =
∫

d2z|z|2p1·p4 |z − 1|2p2·p4 . (21.111)

Now we need an integral table:

I =
∫

|z|−A|1 − z|−Bd2z (21.112)

= B

(
1 − A

2
, 1 − B

2
,

A + B

2
− 1

)
.

Here B is:

B = π
�(a)�(b)�(c)

�(a + b)�(b + c)�(c + a)
. (21.113)
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We can express this result in terms of the Mandelstam invariants for 2 → 2
scattering, s = −(p1 + p2)2, t = −(p2 − p3)2 and u = −(p1 − p4)2. Using the
mass shell conditions,

p4 · p1 = 1

2

(
u+(

p2
1 − p2

4

))
p4 · p2 = −(p3+ p2+ p1) · p2 = 1

2
(−s−t+2m2),

(21.114)
gives

A = κ2

4π
B(−4s + 1, −4t + 1, −4u + 1). (21.115)

This is the Virasoro–Shapiro amplitude. There are a number of interesting fea-
tures of this amplitude. It has singularities at precisely the locations of the masses
of the string states. It should be noted, also, that we have obtained this result by an
analytic continuation. The original integral is only convergent for a range of mo-
menta, corresponding, essentially, to sitting “below” the threshold for the tachyon
in the intermediate states.

We will not develop the machinery of open string amplitudes here, but it
is similar. One again needs to compute correlation functions of vertex opera-
tors. The vertex operators are somewhat different. Also, the boundary conditions
for the two-dimensional fields, and thus the Green functions, are also different.
The scattering amplitude for open string tachyons is known as the Veneziano
formula.

21.5.3 Factorization

The appearance of poles in the S-matrix at the masses of the string states is no
accident. We can understand it in terms of our vertex operator and OPE anal-
ysis. Suppose that particles one and two, with momenta p1 and p2, have s =
(p1 + p2)2 = −m2

n , the mass-squared of one of the physical states of the system.
Consider the OPE of their vertex operators:

eip1·X (z1)eip2·X (z2) ≈ ei(p1+p2)·X (z2)|z1 − z2|2p1·p2 . (21.116)

So in the S-matrix, fixing z2 = 0, z3 = 1, and z4 = ∞, we encounter:∫
d2z|z1|2p1·p2

〈
ei(p1+p2)·X (z2)eip3·X (z3)eip4·X (z4)

〉
. (21.117)

Using momentum conservation and the on-shell conditions for p1 and p2:

2p2 · p1 = q2 − 8 (21.118)
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where q = p1 + p2. So the z integral gives a pole,

A ∼ 1

4 − q2
(21.119)

i.e. it vanishes when the intermediate state is an on-shell tachyon.
This is general. Poles appear in the scattering amplitude when intermediate states

go on-shell. The coefficients are precisely the couplings of the external states to the
(nearly) on-shell physical state; this follows from the OPE.

21.6 The S-matrix vs. the effective action

The Virasoro–Shapiro and Veneziano amplitudes are beautiful formulas. Analogous
formulas for the case of massless particles can be obtained. These are particularly
important for the superstring. For many of the questions which interest us, we are not
directly interested in the S-matrix. One feature of the string S-matrix construction
is that it involves on-shell states; the momenta appearing in the exponential factors
satisfy p2 = −m2, where m is the mass of the state. So one cannot calculate, for
example, the effective potential for the tachyon, since this requires that all momenta
vanish. For massless particles things are better, since p = 0 is the limiting case of
an on-shell process. But the S-matrix is not precisely the effective action. Instead,
given the S-matrix, it is usually a straightforward matter to determine a low-energy
effective action which will reproduce it. At tree level, one just needs to subtract
massless particle exchanges. In loops, one must be more careful.

It is particularly easy to extract three-point couplings of massless particles at
tree level. One just needs to study an “S-matrix” for three particles (one can be a
bit more careful and study a four-particle amplitude, isolating the coefficient of the
massless propagator). From our previous analysis, we need

A = 1

�M
〈V1(z1)V2(z2)V3(z3)〉, (21.120)

where we don’t integrate over the locations of the vertex operators. We are free
to take z1 and z2 arbitrarily close to one another. Then the operator product will
involve

V1(z1)V2(z2) ≈ C123
1

|z1 − z2|2 V3(z2). (21.121)

The final correlation function follows from the normalization of the vertex operators
and cancels the Möbius volume. So the net result is that gsC123 is the coupling.

As an example, consider the coupling of two gravitons in the bosonic string. The
vertex operator is

V1 = εµν(k1)∂ Xµ(z)∂̄ X ν(z)eik1·X (z), (21.122)
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and similarly for V2 and V3. So the operator product has the structure:

V1(z)V2(w) = 1

|z − w|4

+ εµν(k1)ερσ (k2)ei(k1+k2)·X (z)

(
kν

1 kσ
2

1

|z − w|2 ∂ Xµ(z)∂̄ Xρ(z) + · · ·
)

. (21.123)

Here the first term arises from the contraction of all of the ∂ X terms with each
other. Loosely speaking, it is related to the production of off-shell tachyons. We will
ignore it. The second term that we have indicated explicitly comes from contracting
the first ∂̄ X factor with the second exponential, and the second ∂ X factor with
the first exponential. The dots indicate a long set of contractions. The complete
vertex is precisely the on-shell coupling of three gravitons in Einstein’s theory,
along with couplings to the antisymmetric tensor and dilaton. We will not worry
with the details here. When we discuss the heterotic string, we will show that the
theory completely reproduces the Yang–Mills vertex in much the same way. We
shouldn’t be surprised that it is difficult to define off-shell Green functions. In
gravity, apart from the S-matrix, it is hard to define generally coordinate-invariant
observables.

21.7 Loop amplitudes

So far, we have considered tree amplitudes. Closed or open strings interact by split-
ting and joining. Once we allow for quantum fluctuations, strings in intermediate
states can split and join. Because of conformal invariance, the only invariant char-
acteristic of these diagrams is their topology (for closed strings, the tree level world
sheet has the topology of a sphere). In the closed string case, each additional loop
adds a handle to the world sheet. In general, the theory of string loops is com-
plicated. But the description of one-loop diagrams is rather simple, and exposes
important features of the theory not apparent in tree diagrams. In the case of closed
strings, requiring that the one-loop amplitude be sensible places strong constraints
on the theory. Invariance under certain (global) two-dimensional general coordinate
transformations, known as modular transformations, will account for many of the
features of both the bosonic and superstring theories. In space-time, satisfying these
constraints is a necessary condition for the unitarity of the scattering amplitude.
In this section, we provide only a brief introduction. We will leave for later the
discussion of open string loops.

The one-loop amplitude has the topology of a donut, or torus. A simple repre-
sentation of a torus is as indicated in Fig. 21.2. In this figure, the world sheet is
flat and of finite size. We can think of this torus as living in the complex plane.
It is (up to conformal transformations) the world sheet appearing in the Euclidean
path integral. The two possible periods of the donut are translated into two complex
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τ

1

Fig. 21.2. A simple representation of a torus.

periods, λ1 and λ2. We require that the fields are periodic under

z ≈ z + mλ1 + nλ2. (21.124)

We can transform λ1 and λ2 by a transformation in the “modular group,” SL(2, Z ):

(
λ1

λ2

)
=

(
a b
c d

)(
λ′

1

λ′
2

)
(21.125)

with a, b, c and d integers satisfying ad − bc = 1, provided we also transform the
integers n and m by the inverse matrix:(

m
n

)
=

(
d −b

−c a

)(
m ′

n′

)
(21.126)

Now rescale z by λ1, and call τ = λ2/λ1. Then z has the periodicities 1 and τ .
Under modular transformations, τ transforms as:

τ → aτ + b

cτ + d
. (21.127)

The modular transformations are general coordinate transformations of the world
sheet theory, but they are not continuously connected to the identity. In order that
one-loop string amplitudes make sense, we require that they are invariant under this
transformation. The general amplitude will be a correlation function

〈V (z1)V (z2) . . .〉torus (21.128)

evaluated on the torus. The simplest amplitude is that with no vertex operators
inserted. (At tree level, this amplitude vanishes owing to the division by the infinite
Möbius volume.) For the bosonic string, we can evaluate the amplitude in light
cone gauge. We simply need to evaluate the functional determinant. As these are
free fields on a flat space, this is not too difficult. It is helpful to remember some
basic field theory facts. The path integral, with initial configuration φi(x) and final
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configuration φf(x) computes the quantum mechanical matrix element:

〈φf|e−i H T |φi〉. (21.129)

If we take the time to be Euclidean, impose periodic boundary conditions, and sum
(integrate) over all possible φi, we have computed:

Tr e−H T (21.130)

i.e. the quantum mechanical partition function. As described in Appendix C, this
observation is the basis of the standard treatments of finite temperature phenomena
in quantum field theory. In the present case, the periodicity is in the τ direction. So
we compute

Tr e−H�.c.τ . (21.131)

It is convenient to rewrite the light cone Hamiltonian, H�.c, in terms of L0 and L̄0.
Introducing

q = e2π iτ q̄ = e−2π i τ̄ (21.132)

we want to evaluate:

Tr q L0 q̄ L̄0 . (21.133)

From any one oscillator with oscillator number n, just as in quantum mechanics, we
obtain (1 − qn)−1; so allowing for the different values of n and the D − 2 transverse
directions, we have: ∏

q D/24q̄ D/24(1 − qn)2−D(1 − q̄n)2−D. (21.134)

This is conveniently expressed in terms of a standard function, the Dedekind η

function:

η(q) = q1/24
∞∏

n=1

(1 − qn). (21.135)

We also need the contribution of the zero modes. This is:∫
d D−2 p

(2π )D−2
e−τ2 p2 ∝ τ D−2

2 . (21.136)

In the final expression, we need to integrate over τ . The measure for this can be
derived from the Faddeev–Popov ghost procedure, but it can be guessed from the
requirement of modular invariance. It is easy to check that∫

d2τ

τ 2
2

(21.137)
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is invariant. So, in 26 dimensions, we finally have

Z ∝
∫

d2τ

τ 2
2

τ−12
2 |η(τ )|−48. (21.138)

Now to check that this is modular invariant, we note, first, that the full modular
group is generated by the transformations:

τ → τ + 1 τ → −1/τ. (21.139)

Under these transformations, as we said, the measure is invariant. The η function
transforms as:

η(τ + 1) = e
iπ
12 η(τ ) η(−1/τ ) = (−iτ )1/2η(τ ) (21.140)

Since τ2 → τ2/τ
2
1 + τ 2

2 , under τ → −1/τ , Z is invariant. Here we see that the
bosonic string makes sense only in 26 dimensions.

Suggested reading

More detail on the material in this chapter can be found in Green et al. (1987) and
in Polchinski (1998). The light cone treatment described here is nicely developed
in Peskin (1985).

Exercises

(1) Enumerate the states of the bosonic closed string at the first level with positive mass-
squared. Don’t worry about organizing them into irreducible representations, but list
their spins.

(2) OPEs: explain why Xµ and X ν do not have a sensible operator product expansion. Work
out the OPE of ∂ Xµ and ∂ X ν as in the text. Verify the commutator of αµ and αν as in
the text.

(3) Work out the Virasoro algebra, starting with the operator product expansion for the
stress tensor, and using the contour method.

(4) Mermin–Wagner–Coleman Theorem: consider a free two-dimensional quantum field
theory with a single, massless, complex field, φ. Describe the conserved U (1) symmetry.
Show that correlation functions of the form〈

eiq1φ(x1) . . . eiqnφ(xn )
〉

(21.141)

are non-vanishing only if
∑

qi = 0. Argue that this means that the global symmetry is
not broken. From this construct an argument that global symmetries are never broken
in two dimensions.

(5) Show that �M of Eq. (21.109) is invariant under the Möbius group. You might want to
proceed by analogy to the Faddeev–Popov procedure in gauge theories.
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(6) Show that the factorization of tree-level S-matrix elements is general, i.e. that if the
kinematics are correctly chosen for two incoming particles, 1 and 2, so that (p1 + p2)2 ≈
m2

n , so that the amplitude is approximately a product of the coupling of particles 1 and
2 to n, times a nearly on-shell propagator for the field n.
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The superstring

The theories we have described were motivated by thinking of a picture of a string
moving in space-time. We arrived in this way at a description of strings in terms
of two-dimensional quantum fields. The theories, so far, are theories of bosons
only. But in this more abstract picture, we can imagine adding two-dimensional
fermionic fields as well. This possibility was first considered by Ramond, Neveu
and Schwarz, and leads to the superstring theories: Type I, Type IIA and Type IIB,
and the two heterotic string theories. We first develop the theories in light cone
gauge, where their spectra are readily exhibited. Then we discuss interactions.

22.1 Open superstrings

A priori, there appears to be a great deal of freedom in how we introduce fermions:
their number, their representations under the (space-time) Lorentz group, and pos-
sibly other options. Various consistency conditions restrict these choices. In the
case of open strings, we have to introduce one fermion, ψ I , for each coordinate,
X I . For the action of the fermions we take:

Sψ = 1

2π

∫
d2σ iψ̄ I ∂αγ

αψ I . (22.1)

In two dimensions, a particularly simple choice for the γ -matrices is:

γ 0 = σ2 γ 1 = iσ1 (22.2)

and the analog of γ5 in four dimensions is

γ3 = σ3. (22.3)

The Dirac equation, in this basis, is purely imaginary, so we can take the fermions
to be real (Majorana). We can work with eigenfunctions of σ3:

ψ I =
(

ψ I
−

ψ I
+

)
. (22.4)

341
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In this way, if we again introduce light cone coordinates on the world sheet,

σ± = τ ± σ (22.5)

the action becomes:

Sψ = 1

2π

∫
d2σ (ψ I

+∂−ψ I
+ + ψ I

−∂+ψ I
−). (22.6)

We need to impose boundary conditions at the string end points. To determine
suitable boundary conditions, we vary the Lagrangian to obtain the Euler–Lagrange
equations. The surface terms which arise in the variation involve ψ+δψ+ − ψ−δψ−.
So the boundary terms vanish if ψ+ = ±ψ−. An overall sign doesn’t matter, so we
can take the + sign at σ = 0:

ψ I
+(0, τ ) = ψ I

−(0, τ ) (22.7)

This leaves two choices for the boundary conditions at σ = π :

ψ I
+(π, τ ) = ±ψ I

−(π, τ ). (22.8)

Fermions which obey the boundary condition with the + sign are called Ramond
fermions; those with the − sign are called Neveu–Schwarz (NS) fermions. Corre-
sponding to the Ramond case are the mode expansions:

ψ I
− = 1√

2

∑
n∈Z

d I
n e−in(τ−σ ) ψ I

− = 1√
2

∑
n∈Z

d I
n e−in(τ+σ ). (22.9)

In the NS case we have:

ψ I
− = 1√

2

∑
r∈Z+ 1

2

bI
r e−ir (τ−σ ) ψ I

− = 1√
2

∑
r∈Z+ 1

2

bI
r e−ir (τ−σ ). (22.10)

Now we quantize these fields:

{ψ I (σ, τ )±, ψ J (σ ′, τ )±} = πδ(σ − σ ′)δ I J δ±± (22.11)

This gives, for the modes:{
bI

r , bJ
s

} = δ I J δr+s
{
d I

m, d J
n

} = δ I J δm+n (22.12)

The Hamiltonian in light cone gauge, for the Ramond sector, is:

H = �p2 + Nα + Nd . (22.13)

Here the Ns are the various number operators:

Nα =
∞∑

m=1

α−m · αm Nd =
∞∑

m=1

md−mdm . (22.14)
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For the NS sector, Nd is replaced by Nb:

Nb =
∞∑

r=1/2

mb−r br . (22.15)

Each of these Hamiltonians has a normal ordering constant. We will determine
these shortly. The states of the theory are the eigenstates of the fermion number
operators b†

nbn , d†
ndn , etc., for non-zero n. The eigenvalues can take the values 0

or 1 in each case. The zero modes, which arise in the Ramond sector, are special.
They give rise to space-time fermions.

22.2 Quantization in the Ramond sector: the appearance of
space-time fermions

Usually, we do field theory at infinite volume, but here we are considering field
theory at a finite volume (0 < σ < π ), and this has introduced some new features.
For the bosonic fields, X I , we have already seen that there are zero modes, which
gave rise to the coordinates and momenta of space-time. For the fermions, we
now have the new feature that there are two sectors, with two independent Hilbert
spaces. It is tempting to simply keep one, but it turns out that when we consider
string interactions, it is necessary to include both: even if we attempt to exclude,
say, the Ramond states, they will appear in string loop diagrams.

There is another feature: the appearance of fermion zero modes (d I
0 ) in the

Ramond sector. These are not conventional creation and annihilation operators.
They obey the commutation relations:{

d I
0 , d J

0

} = δ I J . (22.16)

These are, up to a factor of 2, the anticommutation relations of Dirac gamma
matrices for a D − 2-dimensional space, i.e. they are associated with the group
O(D − 2). Anticipating the fact that D = 10, we are interested in the Dirac matrices
of O(8). Before giving a construction of the spinor representations of O(8), let us
first simply state the basic result: O(8) has two spinor representations, 8s and 8′

s, and
a vector representation, 8v, all 8-dimensional. So we can realize the commutation
relations, not on a Fock space, but on one of the 8-dimensional representations of
O(8). Labeling these states a, ȧ, then〈

ȧ
∣∣d I

0

∣∣a〉 = 1√
2
γ I

ȧa. (22.17)

We can construct an explicit representation for these matrices in various ways.
A simple, and easy to remember construction, is to think of O(8) as acting on eight
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coordinates, x I . Group these into complex coordinates:

z1 = x1 + i x2 z2 = x3 + i x4 z3 = x5 + i x6 z4 = x7 + i x8 (22.18)

and their complex conjugates. This defines an embedding of U (4) in O(8). Corre-
spondingly, we define

a1 = (d1
0 + id2

0 ), (22.19)

etc. The ai s obey the commutation relations:

{ai , a j†} = δi j , (22.20)

all others vanishing. These are just the conventional anticommutation relations of
fermion creation and annihilation operators (but remember for this discussion, these
are just matrices, and shouldn’t be confused with the dns, which are genuinely
creation and annihilation operators). Among products of these operators we can
distinguish two classes: those built from an even number of as, and those built from
an odd number. In four dimensions, the analogous distinction corresponds to the
eigenvalue (±1) of γ 5.

Now we define a state, |0〉, annihilated by the ai s. We can then form two sets of
states, those with “even fermion number” and those with odd. The even states are:

|0〉 ai†a j†|0〉 a1†a2†a3†a4†|0〉. (22.21)

These states form one of the 8 representations, say 8s. The second is formed by the
states of odd fermion number. States are now labeled |pI , a, {oscillators}〉.

What we have learned is that the states in the Ramond sector are space-time
fermions; the states in the NS sector are space-time bosons.

22.3 Type II theory

For closed strings, we still have two-component fields ψ , but the possible choices
of boundary conditions are somewhat different. We still require that the fermion
surface terms vanish, but we also require that currents such as ψ I

+ψ J
+ be periodic.

(These currents are part of the generators of rotations in space-time.) So we impose
Ramond and Neveu–Schwarz boundary conditions independently on the left and
right movers. Indeed, we treat the left- and right-moving fermions as independent
fields. Recalling that the Lagrangian for the fermions breaks up into left- and right-
moving parts. They have the mode expansions:

ψ I =
∑
nεZ

d I
n e−2in(τ−σ ) ψ I =

∑
nεZ+1/2

bI
r e−2ir (τ−σ ) (22.22)

in the Ramond and NS sectors, respectively, and

ψ̃ I =
∑

d̃ I
ne−2in(τ+σ )ψ̃ I =

∑
b̃I

r e−2ir (τ+σ ). (22.23)
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The light cone Hamiltonian is now:

H = p2 + Nα + Ñα + Nd + Ñ d − a. (22.24)

In constructing the spectrum, this must be supplemented with the condition of
invariance under shifts in σ ; in the covariant formulation, this was the L0 = L̃0

constraint.

22.4 World sheet supersymmetry

Before considering the spectrum, we consider the question of supersymmetry. The
theory we are considering is supersymmetric in two dimensions. Just as we decom-
posed the fermions into left and right movers, we can introduce a two-component
anticommuting parameter θ :

θ =
(

θ−
θ+

)
. (22.25)

Then we define the superfield:

Y I = X I + θ̄ψ I + 1

2
θ̄ θ B I . (22.26)

We will see shortly that B I is an auxiliary field, which in the case of strings in flat
space, we can set to zero by its equations of motion. The supersymmetry generators
are:

Q A = ∂

∂θ̄A
+ i(γ αθ )A∂α (22.27)

(we are using the capital letter A for two-dimensional spinor indices here, to dis-
tinguish them from the letter a, which we used for O(8) spinor indices, and the
letter α, which we used for two-dimensional vector indices). As in four dimen-
sions, we can introduce a covariant derivative operator which anticommutes with
the supersymmetry generators:

D = ∂

∂θ̄
− iγ αθ∂α (22.28)

In terms of the superfields, the action may be written in a manifestly invariant way:

S = i

4π

∫
d2σd2θ D̄Y µ DYµ

= −1

2π

∫
d2σ (∂α X I ∂α X I − iψ̄ I γ α∂αψ

I
µ − B I B I ). (22.29)

Note that B I vanishes by its equations of motion.
Finally, note that in the NS sectors, the boundary conditions explicitly break

the world sheet supersymmetry; they map bosonic fields into fermionic fields,
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and vice versa, which obey different boundary conditions. The Ramond sector is
supersymmetric.

In the covariant formulation, this supersymmetry is essential to understanding
the full set of constraints on the states. But it is important to stress that it is a
symmetry of the world sheet theory; its implications for the theory in space-time
are subtle.

22.5 The spectra of the superstrings

We have, so far, considered the world sheet structure of the superstring theories. We
have not yet explored their spectra in detail. As in the case of the bosonic string, we
will see that these theories possess a massless graviton. We will also find that they
have a massless spin-3/2 particle, the gravitino. Consistent couplings of such a
particle require that the space-time theory is supersymmetric.

22.5.1 The normal ordering constants

First, we give a general formula for the normal ordering constant. This is related to
the algebra of the energy-momentum tensor we have discussed in Section 21.4. For
a left- or right-moving boson, with modes which differ from an integer by η (e.g.
modes are 1 − η, 2 − η, etc.), the contribution to the normal ordering constant is:

� = − 1

24
+ 1

4
η(1 − η). (22.30)

For fermions, the contribution is the opposite. So we can recover some familiar
results. In the bosonic string, with 24 transverse degrees of freedom, we see that
the normal ordering constant is −1. For the superstring, in the NS–NS sector, we
have a contribution of −1/24 for each boson, and 1/24 − 1/16 for each of the eight
fermions on the left (and similarly on the right). So the normal ordering constant
is −1/2. For the RR sector, the normal ordering vanishes.

There are simple derivations of this formula, whose justification requires careful
consideration of conformal field theory. The normal ordering constant is just the
vacuum energy of the corresponding two-dimensional free field theory. So we need

f (η) = 1

2

∞∑
1

(n + η). (22.31)

Ignoring the fact that the sum is ill-defined, we can shift n by one, and compensate
by a change in η:

f (η) = f (η + 1) + 1

2
(1 + η). (22.32)
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If we assume that the result is quadratic in η, we recover the formula above, up
to the constant. We can “calculate” this constant by the following trick, known as
zeta-function regularization. For η = 0, we need:

∞∑
n=1

n = lim
s→−1

∞∑
n=1

n−s . (22.33)

The object on the right-hand side of this equation is ζ (s), the Riemann zeta function.
The analytic structure of this function is something of great interest to mathemati-
cians, but one well known fact is that its singularities lie off the real axis. Using
integral representations, one can derive a standard result: ζ (−1) = −1/12. This
fixes the constant as −1/24. This argument may (should) appear questionable to
the reader. The real justification comes from considering questions in conformal
field theory.

22.5.2 The different sectors of the Type II theory

In the Type II theory, there are four possible choices of boundary conditions: NS
for both left and right movers, Ramond for both left and right movers, Ramond
for left and NS for right and NS for left and R for right. We will refer to these
as the NS–NS, R–R, R–NS and NS–R sectors. Consider, first, the NS–NS sector.
There are no zero-mode fermions, so we just have a normal (unique) ground state
for the oscillators. From our computation of the normal ordering constants in the
previous section, we see that a = −1/2 for both left and right movers. The lowest
state is simply the state |�p〉. It has mass-squared −1 (in units with α′ = 2). Since
no oscillators are excited, the L0 = L̃0 condition is satisfied. Now consider the first
excited states. Again, we must have invariance under σ translations, so these are
the states:

ψ I
−1/2ψ̃

J
−1/2|�p〉. (22.34)

Because a = −1/2 for both left and right movers, these states are massless. The
symmetric combination here contains a scalar and a massless spin-two particle,
the graviton; the antisymmetric combination is an antisymmetric tensor field. At
the next level, we can create massive states using four space-time fermions or two
bosons, or one fermion or two bosons.

Let’s turn to the other sectors. Consider, first, the R–NS sector, where ψ is
Ramond, ψ̃ is NS. Now, the left-moving normal ordering constant is zero, while
the right-moving constant is −1/2. So we can satisfy the level-matching condition
(invariance under σ translations) if we take the left movers to be in their ground
state and take the right-moving NS state to be an excitation with a single fermion
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operator above the ground state, i.e.:∣∣� I
a

〉 = ψ̃ I
−1/2|a �p〉. (22.35)

From the space-time viewpoint, these are particles of spin-3/2 and 1/2. In the NS–R
sector, we have another spin-3/2 particle.

Just as a massless spin-two particle requires that the underlying theory be gen-
erally covariant, a massless spin-3/2 particle, as we discussed in the context of
four-dimensional field theories, requires space-time supersymmetry. But now we
seem to have a paradox. With space-time supersymmetry, we can’t have tachyons,
yet our lowest state in the NS–NS sector, |�p〉, is a tachyon.

The solution to this paradox was discovered by Gliozzi, Scherk and Olive, who
argued that it is necessary to project out states, i.e. to keep only states in the spectrum
which satisfy a particular condition. This projection, which yields a consistent super-
symmetric theory, is known as the GSO projection. Note, first, that we have been a bit
sloppy with the fermion indices on the ground states. We have two types of fermion
indices, a and ȧ, corresponding to the two spinor representations of O(8). So we do
the following. We keep only states on the left which are odd under left-moving world
sheet fermion number; we do the same on the right, but we include in the definition
of world sheet fermion number the chirality of the zero-mode states. We take

(−1)F = eiπγ 9 × eiπ
∑∞

1/2 ψnψ−n . (22.36)

In the R–NS sector, we make a similar set of projections. Here we have a choice,
however, in which chirality we take. If we take the opposite chirality, we get the
Type IIA theory; if we take the same chirality, we get the Type IIB theory.

Returning to the NS–NS sector, we make a similar projection, keeping only states
which are odd under both left- and right-moving fermion number. In this way we
eliminate the would-be tachyon in this sector.

Somewhat more puzzling is the R–R sector in each theory. Here both the left- and
right-moving ground states are spinors. So in space-time, the states are bosons. We
can organize them as tensors by constructing antisymmetric products of γ -matrices,
γ i jk···. As we know from our experience in four dimensions, these form irreducible
representations, in this case of the little group O(8). Thinking of our construction
of the γ -matrices in terms of the as, we can see γ s with even numbers of indices
connect states of opposite chirality, while those with odd numbers connect states
with the same chirality. Which tensors appear depends on whether we consider the
IIA or IIB theories. In the IIA case, only the tensors of even rank are non-vanishing.
These tensors correspond to field strengths (one can consider an analogy with the
magnetic moment coupling in electrodynamics, ψ̄γ µνψ). So in the IIA theory, one
has second- and fourth-rank tensors; the sixth- and eighth-rank field strengths are
dual to these. In terms of gauge fields, there is a one-index tensor (a vector), and a
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third-rank antisymmetric tensor. In the IIB theory, there is a scalar, a second-rank
tensor and a fourth-rank tensor. In string perturbation theory, because the couplings
are through the field strengths, there are no objects carrying the fundamental charge.
Later we will see that there are non-perturbative objects, D-branes, which carry
these charges.

22.5.3 Other possibilities: modular invariance and the GSO projection

The reader may feel that the choices of projections, and for that matter the choices
of representations for the two-dimensional fermions, seem rather arbitrary. It turns
out that the possible choices, at least for flat background space-times, are highly
restricted. There are only a few consistent theories. Those we have described are the
only ones without tachyons, and with both left- and right-moving supersymmetries
on the world sheet.

In the bosonic string theory, we saw that it was crucial that the theory be formu-
lated in 26 dimensions. One of the problems with the theory outside of 26 dimen-
sions was that it is not modular invariant. This means that it is not invariant under cer-
tain global two-dimensional general coordinate transformations. This world sheet
anomaly is correlated with anomalies in space-time. As for the gauge anomalies in
field theories, these lead to breakdown of unitarity, Lorentz invariance, or both.

For the superstring theories, we will now explain why modular invariance de-
mands a projection like the GSO projection. The point is that modular invariance
relates sectors with different choices of boundary condition.

In our discussion of string theories up to this point, path integrals have appeared
occasionally, but they are extremely useful in discussing string perturbation theory.
The propagation of strings can be described by a two-dimensional path integral, with
the string action, in much the same way as the amplitude for the motion of a particle.
At tree level, the closed string world sheet has the topology of a sphere. At one loop,
it has the topology of a torus. So at one loop, string amplitudes can be described
as path integrals of a two-dimensional field theory on a torus. Note that we need,
here, the full path integral, not simply the generator of Green’s function for the field
theory. The path integral on the torus, with no insertion of vertex operators, yields
the partition function of the two-dimensional field theory. To understand this, let’s
consider the fermion partition function. Actually, there are several fermion partition
functions. Let’s begin with a single, right-moving Majorana fermion, and take, first,
Neveu–Schwarz boundary conditions. There are two sorts of partition function we
might define. First:

Tr q L0 =
∞∏

r=1/2

(1 + qr ). (22.37)
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Alternatively, we can evaluate:

Tr (−1)Fq L0 =
∞∏

r=1/2

(1 − qr ). (22.38)

From a path integral point of view, the first expression is like a standard thermal
partition function. It can be represented as a path integral with anti-periodic bound-
ary conditions in the time direction. The second integral corresponds to a path
integral with even boundary conditions for fermions in the time direction. We can
represent the torus as in Fig. 21.2. Taking the vertical direction to be the time direc-
tion and the horizontal direction the space direction, we can indicate the boundary
conditions with plus and minus signs along the sides of the square. Recalling the
action of modular transformations on the torus, however, we see that the modular
group mixes up the various boundary conditions. Not only does it mix the temporal
boundary conditions, but it mixes the spatial boundary conditions as well.

It will be convenient for much of our later analysis to group the fermions in
complex pairs. In the present case, this grouping is rather arbitrary, say �1 =
ψ1 + iψ2 and so on. Then the partition functions can be conveniently written in
terms of θ functions. These functions, which have been extensively studied by
mathematicians, transform nicely under modular transformations:

ϑ

[
θ

φ

]
(0, τ ) = η(τ )e2π iθφqθ2/2−1/24

∞∏
m=1

[
1 + e2π iφqm+θ−1/2

]
× [

1 + e−2π iφqm−θ−1/2
]
. (22.39)

Under τ → τ + 1,

ϑ

[
θ

φ

]
(0, τ + 1) = eiθ2−θ−θφϑ

[
θ

φ − θ

]
(0, τ ) (22.40)

while, under τ → −1/τ ,

ϑ

[
θ

φ

]
(0, 1/τ ) = e2π iθφϑ

[−φ

θ

]
(0, τ ). (22.41)

These transformation properties have a physical interpretation. Returning to
Eqs. (21.125)–(21.127), the transformation τ → −1/τ exchanges the time and
space directions of the torus. So these transformations interchange sectors with a
given projection (multiplication of states by a phase) with states with a twist in
the space direction. This is precisely what one would expect from a path integral,
where boundary conditions in the time direction correspond to weighting of states
with (symmetry) phases.
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Calling

Zα
β (τ ) = 1

η(τ )
ϑ

[
α/2
β/2

]
(0, τ ) (22.42)

the partition function for the eight fermions in the NS sector is (Z1
0)4, for example.

If we include a (−1)F factor, this is replaced by (Z1
1)4. We can work out the similar

expressions for the Ramond sector. From our expression for the transformation of
the θ functions, it is clear that no one of these is modular invariant by itself, as
we would expect from our path integral arguments. So it is necessary to combine
them, and include also the eight bosons. When we do, we have the possibility of
including minus signs (in more general situations, as we will see later, we will have
more complicated possible phase choices). There are a finite number of possible
choices. Two that work are:

Z± = 1

2

[
Z0

0(τ )4 − Z0
1(τ )4 + Z1

0(τ )4 ∓ Z1
1(τ )4

]
. (22.43)

These transform simply under the modular transformations; all of the terms trans-
form to each other, up to an overall factor. There is a similar factor from the
left-moving fermions (where one need not, a priori, take the same phase). Recall
that the bosonic partition function is

Z X (τ ) = (4πα′τ2)−1/2|η(q)|−2. (22.44)

Here the η function comes from the oscillators. The τ2 factors come from the
integration over the momenta. There are two additional such factors, coming from
the integrals over the two light cone momenta. So the full partition function is:

Z = C
∫

d2τ

τ 2
2

Z8
X Z+(τ )Z±(τ )∗. (22.45)

It is not hard to check that this expression is modular invariant.
If we examine the partition function carefully, we see that we have uncovered

the GSO projection. Consider the first two terms in Z±. This is just

Tr(1 − (−1)F )NS, (22.46)

i.e. it says that the physical states of the theory, in the NS sector, are only those of
odd fermion number. There is a similar projector in the Ramond sector. The two
possible choices of left- relative to right-moving Zs correspond precisely to the
two possible supersymmetric string theories. Our original argument for the GSO
projector was consistency in space-time, but here we have a more direct, world
sheet consistency argument.
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Fig. 22.1. Deforming the diagram for open string scattering reveals an intermediate
closed string state.

These are the only choices of phases which lead to supersymmetric strings in ten
dimensions. However, there are other choices which lead to non-supersymmetric
strings. These give the Type 0 superstring. We will leave consideration of these
theories to the exercises.

22.5.4 More on the Type I theory: gauge groups

In our discussion of the bosonic string theory, we mentioned that one can obtain
non-Abelian gauge groups by allowing charges at the ends of the strings. There
are an infinite set of possibilities, which we did not explore, as all of these theories
have other problematic features if one is trying to describe Nature.

In the case of open superstrings, it turns out that the possible structures are quite
constrained. First, it is necessary to include closed strings as well in order to obtain
a unitary theory. This can be seen by considering scattering of four open strings.
By stretching the diagram of Fig. 22.1, one can see that closed strings appear
in intermediate states. These strings cannot be oriented. This leads to a different
structure in the closed string sector than we saw in the IIA or IIB theories. It is
necessary to require that states be symmetric under exchange of left- and right-
moving quantum numbers. We will discuss the required projection later when we
talk about D-branes and orientifold planes.

Second, it turns out that absence of anomalies fixes uniquely the gauge symmetry
to be O(32). From the point of view of our experience with four-dimensional
anomalies, this is somewhat surprising, but it turns out that in ten dimensions
supergravity by itself can be anomalous, and this is the case for the open string.
Allowing for charges at the end of the string, leads to a set of additional mixed
gauge and gravitational anomalies. Almost miraculously, if one takes the ends of
the string to lie in the vector representation of O(32), all anomalies cancel.
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22.6 Manifest space-time supersymmetry: the Green–Schwarz formalism

In the Ramond–Neveu–Schwarz formalism, space-time supersymmetry is obscure.
It only arises after imposing the GSO projector. The supersymmetry operators must
connect the different sectors – essentially different two dimensional field theories.
These operators can be constructed, though we will not do that in this text. Instead,
we consider in this section a different formalism, the Green–Schwarz formalism, in
which the space-time supersymmetry is manifest. This formalism is best understood
in the light cone gauge.

In the Green–Schwarz formalism, one still has the bosonic coordinates, X I ,
but the eight fermionic coordinates, ψ I , in the vector representation of O(8), are
replaced by eight fermionic coordinates in one of the spinor representations of O(8)
(we have already seen that O(8) possesses two spinor representations of opposite
chirality). These are usually written as Sa(σ, τ ). Their Lagrangian is:

Lgs = i

2π
S̄aρα∂α Sa, (22.47)

where we have written the Ss as two component fermions, and ρα denotes the
two-dimensional γ -matrices. The Sas can be taken real (Majorana). They can be
decomposed into left and right movers, S±. Unlike the case of RNS fermions, both
for closed and open strings, one has only one boundary condition. As for the RNS
fermions, for open strings, the boundary condition relates the left and right movers:

Sa
+(0, τ ) = Sa

−(0, τ ) Sa
+(π, τ ) = Sa

−(π, τ ). (22.48)

For the closed strings, one simply has periodicity,

Sa
±(σ + π, τ ) = Sa

±(σ, τ ). (22.49)

The mode expansions, in the case of closed strings, are:

Sa
+ =

∞∑
−∞

Sa
n e−2in(τ−σ )

Sa
− =

∞∑
−∞

S̃a
n e−2in(τ+σ ). (22.50)

The Sns obey the anticommutation relations:{
Sa

n , Sb
m

} = δabδm+n
{

S̃a
n , S̃b

m

} = δabδm+n. (22.51)

For non-zero n these are canonical fermion creation and annihilation operator an-
ticommutation relations. Because of their quantum numbers, the Ss, acting on
space-time bosonic states, produce fermionic states, and vice versa.
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The light cone Hamiltonian, in terms of these fields, takes the form:

H = 1

2p+ ((pI )2 + N + Ñ ), (22.52)

where

N =
∞∑

m=1

(
α I

−mα I
m + mSa

−m Sa
m

)
Ñ =

∞∑
m=1

(
α̃ I

−m α̃ I
m + mS̃a

−m S̃a
m

)
. (22.53)

Note that there is no normal ordering constant; more precisely, the normal ordering
constants associated with the left- and right-moving fields vanish, because the
contributions of the bosonic and fermionic fields cancel (as they do in the Ramond
sector of the superstring).

As in the Ramond sectors of the superstring theories, the anticommutation rela-
tions of the zero modes are important and interesting:{

Sa
0 , Sb

0

} = δab. (22.54)

Again they are similar to the anticommutation relations of Dirac γ -matrices, but
now the indices are different than in the RNS case. The solution is to allow S0 to
act on sixteen states, eight of which carry spinor labels, ḃ, and eight of which carry
O(8) vector labels, I . Then 〈

I
∣∣Sa

0

∣∣ḃ〉 = γ I
aḃ. (22.55)

We’ll leave the verification of this relation for the exercises, and proceed directly
to the identification of the massless states of the closed string theories. The IIA and
IIB theories are distinguished by the relative helicities of the S and S̃ fields. In the
IIA case, they are opposite; in the IIB case the same. The massless fields are just
obtained by tensoring the left and right states of the zero modes. The states

εI J |I 〉 × |J 〉 (22.56)

are the graviton, B-field and dilaton; the states where I → a or J → a, are the two
gravitini of the theory; those where both I and J are replaced by spinor indices are
the states we discovered in the Ramond–Ramond sector of the superstring theories.

In this formalism, the space-time supersymmetry is manifest. There are two types
of supersymmetry generators. One generates not only space-time supersymmetries,
but world sheet supersymmetries as well. This is as it should be; the world sheet
Hamiltonian in the light cone gauge is also the space-time Hamiltonian.

Qȧ = 1√
P+ γ I

a,ȧ

∞∑
−∞

Sa
−nα

I
n . (22.57)
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The second set are built of the zero modes alone:

Qa =
√

2P+Sa
0 . (22.58)

The supersymmetry generators obey the commutation relations:

{Qa, Qb} = 2P+δab (22.59)

{Qa, Qḃ} =
√

2γ I
aȧ P I . (22.60)

{Qȧ, Qḃ} = 2Hδȧḃ. (22.61)

The manifest supersymmetry and the close connection between world sheet and
space-time supersymmetries makes the Green–Schwarz formalism a powerful
tool, both conceptually and computationally, despite its lack of manifest Lorentz
invariance.

22.7 Vertex operators

Because there are more world sheet fields in the superstring than in the bosonic
string, the vertex operators are more complicated. In the RNS formalism, the
supersymmetry on the world sheet is a relic of a larger, local supersymmetry,
much as conformal invariance is a relic of the general coordinate invariance of
the two-dimensional supersymmetry. The resulting superconformal symmetry pro-
vides constraints on vertex operators beyond those of the Virasoro algebra. These
constraints can be implemented in a variety of ways, depending on how one treats
the superconformal ghosts. In the simplest version, the vertex operators must be
supersymmetric. In the case of the Type II theories, the vertex operators must re-
spect both the left- and right-moving supersymmetries. For the massless fields of
the Type II theory, for example:

V = εµν(∂̄ Xµ − ikρψ
ρψµ)(∂̄ X ν − ikσ ψ̃σ ψ̃ν)eik·x . (22.62)

Here ε is subject to the constraint kµεµν = 0. Depending on the symmetries of ε,
the vertex operator describes production of gravitons, dilatons, or antisymmetric
tensor fields. It is straightforward to check that the coupling of three gravitons is
that expected from the Einstein Lagrangian.

In the Green–Schwarz formalism, it is Lorentz invariance which governs the
form of the vertex operators. As in the covariant formulation, the vertex operators
in the Type II theory are products of separate vertex operators for the left and the
right movers, with eik·x factors. These have the structure:

VB = ζµν Bµ B̃νeik·X , (22.63)
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where

B I = ∂ X I − RI J k J B+ = p+ (22.64)

and, from the light cone gauge condition, ζµ+ = 0. Here,

RI J = 1

4
γ I J

ab Sa Sb. (22.65)

In the Green–Schwarz approach, it is not more difficult to deal with vertex operators
for fermions or for what we have, in the covariant formulation, called the R–R states.
The polarizations, ζµν , are replaced by polarizations with one or two spinor indices.
Then, as appropriate, one replaces the Bµs with fermionic operators, Fa and Fȧ .
We will not give these here as we will not need them in the text, but they can be
found in the references. In the covariant approach, more conformal field theory
machinery is required to construct fermion emission operators.

Suggested reading

The superstring is well treated in various textbooks. Green et al. (1987) focus heavily
on the light cone formulation; Polchinski (1998) focuses on the RNS formulation.
Both provide a great deal of additional detail, including construction of vertex
operators and S-matrices in the two formalisms. A concise and quite readable
introduction to the problem of fermion vertex operators in the RNS formulation is
provided by the lectures of Peskin (1987).

Exercises

(1) Consider the R–R sectors of the IIA and IIB theories, and study the objects

ūγ I J K ...u.

Show that in the IIA case, only even-rank tensors are non-vanishing, while in the IIB
theory only the odd-rank tensors are non-vanishing. Phrase this in the language of ten
dimensions, rather than the eight light cone dimensions. To do this consider a particle
moving along the 9 direction, and show that the Dirac equation correlates chirality in
ten dimensions with chirality in eight. To do this, you may want to make the following
choice of � matrices:

�0 = σ2 ⊗ I16; �i = iσ1 ⊗ γ i ; �9 = iσ3 ⊗ I16. (22.66)

(2) Write the Green–Schwarz Lagrangian in a superspace formulation. Show that Qȧ is the
supersymmetry generator expected in this approach. Construct the symmetry generated
by Qa , and show that this has the structure of a non-linearly realized (spontaneously
broken) supersymmetry. Can you offer some interpretation?
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(3) Verify that with the choice of Eq. (22.55), the zero modes of the Green–Schwarz oper-
ators Sa obey the correct anticommutation relations.

(4) Verify the expression for the partition function for the Type II theories. Show that it is
modular invariant. Consider a different choice, which defines the type 0 superstring,∣∣Z0

0

∣∣8 + ∣∣Z0
1

∣∣8 + ∣∣Z1
0

∣∣8 ∓ ∣∣Z1
1

∣∣8. (22.67)

If you like, verify that this is also modular invariant, but at least show that the spectrum
does not include a spin-3/2 particle.

(5) Verify that the operator product of two graviton vertex operators in the RNS formalism
yields the correct on-shell coupling of three gravitons. Remember the gauge condition in
this analysis. The three-graviton vertex in Einstein’s theory can be found, for example,
in Sannan (1986).
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The heterotic string

In the Type II theory, we have seen that the left and right movers are essentially
independent. At the level of the two-dimensional Lagrangian, there is a reflection
symmetry between left and right movers. However, this symmetry does not hold
sector by sector; it is broken by boundary conditions and projectors.

In the heterotic theory, this independence is taken further, and the degrees of
freedom of the left and right movers are taken to be independent – and different.
There are two convenient world sheet realizations of this theory, known as the
fermionic and bosonic formulations. In both, there are eight left-moving and eight
right-moving X I s, associated with ten flat coordinates in space-time. There are
eight right-moving two-dimensional fermions, ψ I . There is a right-moving super-
symmetry, but no left-moving supersymmetry. In the fermionic formulation there
are, in addition, 32 left-moving fermions which have no obvious connection with
space-time, λA. In the bosonic description, there are an additional 16 left-moving
bosons. In other words, there are 24 left-moving bosonic degrees of freedom. There
are actually several heterotic string theories in ten dimensions. Rather than attempt a
systematic construction, we will describe the two supersymmetric examples. These
have gauge group O(32) and E8 × E8. The group E8, one of the exceptional groups
in Cartan’s classification, is not terribly familiar to most physicists. However, it is
in this theory that we can most easily find solutions which resemble the Standard
Model. We will introduce certain features of E8 group theory as we need them.
More detail can be found in the suggested reading. In this chapter, we will work
principally in the fermionic formulation. We will develop some features of the
bosonic formulation in later chapters, once we have introduced compactification of
strings.

359
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23.1 The O(32) theory

The O(32)(SO(32)) theory is somewhat simpler to write down, so we develop
it first. In this theory, the 32 λA fields are taken to be on an equal footing. The
GSO projector, for the right movers, is as in the superstring theory. In the RNS
formalism, in the NS sector, we keep only states of odd fermion number; similarly
in the Ramond sector, where fermion number includes a factor ei�11 . For the left
movers, the conditions are different. Again, we have a Ramond and an NS sector.
In the NS sector we keep states only of even fermion number. In the R sector, the
ground state is a spinor of SO(32). The spinor representation can be constructed
just as we constructed the spinor representation of O(8). Again, there are two
inequivalent irreducible representations. There is a chirality, which we can call �33.
The lowest spinor representation of definite chirality is the 32 768. Again, in the
Ramond sector, we project (by convention) onto states of even “fermion number.”

As for the superstring, there is a different light cone Hamiltonian for each sector.
The right-moving contributions are just as in the superstring. The left-moving part
includes a contribution from the bosonic operators, and a contribution from the
fermions, λA. As for the superstring, in the Ramond sector the λAs are integer
moded; they are half-integer moded in the NS sector. From our formula, the left-
moving normal ordering constant is −1.

With this, we can consider the spectrum. Take, first, the NS–NS sector, i.e. the
sector with NS boundary conditions for both the left and the right movers. The states
are space-time bosons. The left-moving normal ordering constant is −1. Without
λAs, the lowest mass states we can form are:

α̃ I
−1ψ

J
−1/2|0〉. (23.1)

From our discussion of the normal ordering constants, we see that these states are
massless. They have the quantum numbers of a graviton, antisymmetric tensor, and
scalar field.

Using the left-moving fermion operators, we can construct additional massless
states in this sector:

λA
−1/2λ

B
−1/2ψ

J
−1/2|0〉. (23.2)

These are vectors in space-time. Because the λAs are fermions, they are antisym-
metric under A ↔ B. So they are naturally identified as gauge bosons of the gauge
group SO(32). We will show shortly that they have the couplings of O(32) Yang–
Mills theories.

Let’s first consider the other sectors. In the NS–R sector, the right-moving states,
ψ J

−1/2|�p〉, are replaced by the states we labeled |a〉. Again, these must be massless,
so we now have particles with the quantum numbers of the gravitino, one additional
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fermion, and gauginos of O(32). In the NS–R and R–R sectors, however, it turns out
that there are no massless states, as can be seen by computing the normal ordering
constants. It is necessary to include, as well, the R sector for the left movers. Here
the normal ordering constant is +1, and there are no massless states.

23.2 The E8 × E8 theory

The E8 group is unfamiliar to many physicists, and one might wonder how one
could obtain two such groups from a string theory. To begin, it is useful to note
that E8 has an O(16) subgroup. Under this group, the adjoint of E8, which is 248-
dimensional, decomposes as a 120 – the adjoint of O(16) – and a 128, a spinor of
O(16).

In ten dimensions, we have seen we can build a sensible string theory with eight
left-moving bosons and 32 left-moving fermions. So the strategy is to break the
fermions into two groups of 16, λA and λ Ã, and to treat these as independent.
This gives a manifest O(16) × O(16) symmetry, similar to the symmetry of the
O(32) theory. There are now NS and R sectors for each set of fermions separately.
The right-moving GSO projectors are as before. For the left movers, in each of
the NS sectors, the left-moving projector is onto states of even fermion number.
With a suitable convention for the �11 chirality, this is also true of the R sectors.
So consider, again, the spectrum. In the NS–NS–NS sector, just as before, there
are a graviton, antisymmetric tensor, and scalar field. We can also construct gauge
bosons in the adjoint of each of the two O(16)s:

λAλBψ J
−1/2|0〉 λ ÃλB̃ψ J

−1/2|0〉. (23.3)

Note that because of the projectors, there are no massless states carrying quantum
numbers of both O(16) groups simultaneously. In the NS–NS–R sector, we find
the superpartners of these fields.

Now consider the R–NS–NS sector. Here the ground state is a spinor of the
first O(16). So now we have a set of gauge bosons in the spinor 128-dimensional
representation. Similarly, in the NS–R–NS sector, we have a spinor of the other
O(16). These are the correct set of states to form the adjoints of two E8s. Again,
establishing that the group is actually E8 × E8 requires showing that the gauge
bosons interact correctly. We will do that in the following section.

Finally, in the R–R–NS and R–R–R sectors, there are no massless states.

23.3 Heterotic string interactions

We would like to show that the states we have identified as gauge bosons in the
heterotic string interact at low energies as required by Yang–Mills gauge invariance.
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To do this, we work in the covariant formulation and construct vertex operators cor-
responding to the various states. Consider the O(32) theory first. With our putative
gauge bosons, we associate the vertex operators:∫

d2z V ABµ =
∫

d2zλA(z̄)λB(z̄) (∂z Xµ(z) − ikνψ
µψν(z)) eik·x . (23.4)

For the right movers, as in the Type II theories, we have required invariance under
the right-moving world sheet supersymmetry. For the left-moving vertex operators,
we have simply required that the operators have dimension one, so that overall
the vertex operator has dimension one with respect to the left- and right-moving
conformal symmetry (the operator is said to be (1, 1), just like those of the Type II
theory). To determine their interactions, we study the operator product of two such
operators. The left-moving part of the vertex operator is a current:

j AB(z̄) = λA(z̄)λB(z̄). (23.5)

The operator product of two of these currents is:

j AB(z̄) jC D(w̄) = δACδB D + · · ·
(z̄ − w̄)2

+ δACλB(z̄)λD(w̄)

(z̄ − w̄)
. (23.6)

An algebra of currents of this kind is called a “Kac–Moody algebra.” It has the
general form

j a(z̄) j b(w̄) = kδab

(z̄ − w̄)2
+ f abc j c(w̄)

(z̄ − w̄)
, (23.7)

where k is called the central extension of the algebra. In our case, k = 1. The f abcs
are the structure constants of the group. This is what we have found here.

To see the Yang–Mills structure, it is helpful to use the general Kac–Moody form,
denoting the currents, and the corresponding vertex operators, by a subscript a. In
the operator product, we have seen from our discussion of factorization that the in-
teraction is proportional to the coefficient of 1/|z − w|2. In the product Va(z)Vb(w),
the 1/(z̄ − w̄) is proportional to fabc, just what is needed for the Yang–Mills ver-
tex. The momentum and gµν pieces arise from the right-moving operator product.
In

(∂ Xµ(z) + k1ρψ
ρ(z)ψµ(z))eik1·X (z)(∂ X ν(w) + k2σψσ (w)ψν(w))eik2·X (w) (23.8)

the 1/(z − w) terms arise from various sources. One can contract the ∂ X factors in
each vertex with the exponential factors. This gives

V µ
a V ν

b ∼ f abcV cν
(
kµ

2 − kµ

1

)
|z − w|2 . (23.9)
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Contracting the two ∂ X factors with each other gives two factors of z − w in
the denominator. These can be compensated by Taylor expanding X (z) about w.
Additional terms arise from contracting the fermions with each other. The details
of collecting all the terms and comparing with the three gauge boson vertex are left
for the exercises.

23.4 A non-supersymmetric heterotic string theory

One can verify the modular invariance of the heterotic string theory, with the GSO
projections we have used, in precisely the same way as we did for the superstring
theories. This raises the question: are there other ten-dimensional heterotic theories,
obtained by combining the partition functions of the separate sectors in different
ways? The answer is definitely yes. Several of these have tachyons, but one does
not. Its gauge group is O(16) × O(16). It is most readily described in the Green–
Schwarz formalism. This will also provide us with our first example of “modding
out,” obtaining a new string theory by making various projections.

In order to obtain the smaller gauge group, we need to get rid of the gauge bosons
from E8 which lie in the spinor representation. On the other hand, there is no harm
in having the corresponding gauginos, if supersymmetry is broken. So we take the
original E8 × E8 theory, and keep only states which are even under the symmetry
(−1)F in spacetime and a corresponding symmetry in the gauge group (i.e. spinorial
representations are odd, non-spinorial even). This immediately gets rid of:

(1) the gravitinos, and
(2) the gauge bosons which are in spinorial representations of the group.

However, we have seen that, for consistency, it is important that string theories
be modular invariant. Simply throwing away states spoils modular invariance; it is
necessary to add in additional states. In the present case, one has to add a sector
with different, twisted boundary conditions for the fields:

Sa(σ + π, τ ) = −Sa(σ, τ ). (23.10)

For the gauge fermions there is a related boundary condition (this is more eas-
ily described in the bosonic formulation which we will discuss in the chapter on
compactification).

Suggested reading

The original heterotic string papers by Gross et al. (1985, 1986) are remarkably
clear. Polchinski’s book (1998) provides a quite thorough overview of these theories.
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For example, for those who are not enamored of the Green–Schwarz formalism, it
develops the non-supersymmetric O(32) in the RNS formalism in some detail.

Exercises

(1) Construct the states corresponding to the gauge bosons of E8 × E8. In particular, use the
creation–annihilation operator construction of O(2N ) spinor representations to build
the 128s of O(16).

(2) Verify that the algebra of O(32) currents is of the Kac–Moody form. To work out the
structure constants, remember that the generators of O groups are just the antisymmetric
matrices:

(ωAB)C D = δACδB D − δADδBC . (23.11)

(3) Verify that, on-shell, the three-gluon vertex has the correct form. In addition to carefully
evaluating the terms in the operator product expansion, it may be necessary to use
momentum conservation and the transversality of the polarization vectors.
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Effective actions in ten dimensions

In ten dimensions, supersymmetry greatly restricts the allowed particle content and
effective actions for theories with massless fields. Without gauge interactions, there
are only two consistent possibilities. These correspond to the low-energy limits of
the IIA and IIB theories. These have N = 2 supersymmetry (they have 32 con-
served supercharges). Because the symmetry is so restrictive, we can understand a
great deal about the low-energy limits of these theories without making any detailed
computations. We can even make exact statements about the non-perturbative be-
havior of these theories. This is familiar from our studies of field theories in four
dimensions with more than four supercharges. In ten dimensions, supersymmetric
gauge theories have N = 1 supersymmetry (16 supercharges). Classically, speci-
fication of the gauge group completely specifies the terms in the effective action
with up to two derivatives. Quantum mechanically, only the gauge groups O(32)
and E8 × E8 are possible.

24.0.1 Eleven-dimensional supergravity

Rather than start with these ten-dimensional theories, it is instructive to start in
eleven dimensions. Eleven is the highest dimension where one can write a super-
symmetric action (in higher dimensions, spins higher than two are required). This
fact by itself has focused much attention on this theory. But it is also known that
eleven dimensions has a connection to string theory. As we will see later, if one
takes the strong coupling limit of the Type IIA string theory, one obtains a theory
whose low-energy limit is eleven-dimensional supergravity.

The particle content of the eleven-dimensional theory is simple: there is a gravi-
ton, gM N (44 degrees of freedom) and a three-index antisymmetric tensor field,
CM N O (84 degrees of freedom). There is also a gravitino, ψM . This has (16 × 8)
degrees of freedom. We have, as usual, counted degrees of freedom by considering
a theory in nine dimensions, remembering that gM N is symmetric and traceless,

365
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and that the basic spinor representation in nine dimensions is sixteen dimensional
(it combines the two eight-dimensional spinors of O(8)).

The Lagrangian for the eleven-dimensional theory, in addition to the Ricci scalar,
involves a field strength for the three-index field, CM N O . The corresponding field
strength, FM N O P , is completely antisymmetric in its indices, similar to the field
strength of electrodynamics:

FM N O P = 3!

4!
(∂MCN O P − ∂N CM O P + · · · )

= 3!

4!

∑
P

(−1)P∂MCN O P , (24.1)

where the sum is over all permutations, and the factor (−1)P is ±1 depending on
whether the permutation is even or odd. It is convenient to describe such antisym-
metric tensor fields in the language of differential forms. For the reader unfamiliar
with these, an introduction is provided later, in Section 26.1. For now, we note that
antisymmetric tensors with p indices are p forms. The operator of taking the curl,
as in Eq. (24.1), takes a p form to a p + 1 form. It is denoted by the symbol d , and
is called the exterior derivative. In terms of forms, Eq. (24.1) can be written quite
compactly as

F = dC. (24.2)

The theory has a gauge invariance:

C → C + d� CM N O → 2

3!

∑
P

(−1)P∂M�N O (24.3)

where � is a two-form.
We will not need the complete form of the action. The bosonic terms are:

Lbos = − 1

2κ2

√
gR − 1

48
√

gF2
M N P Q −

√
2κ

3456
εM1...M11 FM1...M4 FM5...M8CM9···M11 .

(24.4)
The last term is a Chern–Simons term. It respects the gauge invariance of Eq. (24.3)
if one integrates by parts. Such terms can arise in field theories with odd dimensions;
in 2+1-dimensional electrodynamics, for example, they play an interesting role.
The fermionic terms include covariant derivative terms for the gravitino, as well as
couplings to F and various four-Fermi terms. The supersymmetry transformation
laws have the structure:

δeA
M = κ

2
η̄�AψM (24.5)

δAM N P = −
√

2

8
η̄�[M NψP] (24.6)

δψM = 1

κ
DMη + (Fη pieces). (24.7)
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Here eA
M is the “vielbein” field, and the covariant derivative is constructed from the

spin connection (discussed in Section 17.6).

24.0.2 The IIA and IIB supergravity theories

The eleven-dimensional fields are functions of the coordinates x0, . . . , x10. We ob-
tain the IIA supergravity theory (the low-energy limit of the Type IIA string) theory
if we truncate the eleven-dimensional supergravity theory to ten dimensions, i.e.
if we simply eliminate the dependence on x10. We need to relabel fields, as well,
since it is not appropriate to have a 10 index. So we take the components of g
with ten-dimensional indices to be the ten-dimensional metric. Then g10 10 is a
ten-dimensional scalar, which we call φ, and g10 µ is a ten-dimensional vector,
which corresponds to the Ramond–Ramond vector of the IIA string theory. Note
that C11 µν = Bµν is a two-index antisymmetric tensor field in ten dimensions (cor-
responding to the two-index tensor we found in the NS–NS sector). The gravitino
decomposes into two ten-dimensional gravitinos, and two spin-1/2 particles. With
H = d B, the bosonic terms in the ten-dimensional action for the NS–NS fields are:

Lbos = − 1

2κ2
R − 3

4
φ−3/2 H 2

µνρ − 9

16κ2
(∂µφ/φ)2. (24.8)

The IIB theory is not obtained in this way. But from string theory, we can see
that the NS–NS in the action must be the same as in the Type IIA theory. This is
because in the NS–NS sector, the vertex operators of the IIA and IIB theories are
the same, so the scattering amplitudes – and hence the effective action – are the
same as well.

24.0.3 Ten-dimensional Yang–Mills theory

From our studies of the heterotic string, we know the field content of this theory.
There is a metric, an antisymmetric tensor field (which we again call Bµν), a scalar
φ, and the gauge fields, Aa

µ. The Lagrangian for g, B and φ is the same as in the
Type II theories. The gauge terms are:

LYM = −φ−3/4

4g2
F2

µν − 1

2
χ̄a(DMχ)a. (24.9)

It turns out that there is another crucial modification in the Yang–Mills case. The
field strength HM N O is not simply the curl of BM N but contains an additional piece,
which closely resembles the Chern–Simons term we encountered in our study of
instantons in four-dimensional Yang–Mills theory:

H = d B − κ√
2
ω3 (24.10)
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(the notation will be thoroughly explained in Chapter 26), with

ω3 = Aa Fa − 1

3
g fabc Aa Ab Ac = Aad Aa + 2

3
g fabc Aa Ab Ac. (24.11)

There is also a gravitational piece, with a similar form.
This extra term plays an important role in understanding anomaly cancellation.

In four dimensions, we will see that it leads to the appearance of axions in the
low-energy theory.

24.1 Coupling constants in string theory

The Standard Model is defined, in part, by specifying a set of coupling constants.
The fact that there are so many parameters is one of the reasons we have given
that the model is not satisfactory as some sort of ultimate description of nature.
In our discussion of string interactions, we have introduced a coupling constant,
gs. There is one such constant for each of the string theories we have introduced:
bosonic, Type I, Type IIA and Type IIB, and heterotic. But the idea that string theory
possesses a free parameter is, it turns out, an illusion. By changing the expectation
value of the dilaton field, we can change the value of the coupling. This is similar
to phenomena we observed in four-dimensional supersymmetric gauge theories. In
situations with a great deal of supersymmetry, there will be no potential, perturba-
tively or non-perturbatively, for this field, and the choice of coupling will correspond
to a choice of vacuum. But in vacua in which supersymmetry is broken, we would
expect that dynamical effects would fix the value of this and any other moduli.
The coupling constants of the low-energy theory would then be determined fully in
ways which, in principle, one could understand and eventually hope to calculate. In
the next few sections, we explain this connection between coupling constants and
fields.

24.1.1 Couplings in closed string theories

When we constructed vertex operators, we saw that we could include a coupling
constant, gs, in the definition of the vertex operator. In the heterotic string, the same
coupling enters in all vertices. This is a consequence of unitarity. At tree level, for
example, we saw that scattering amplitudes factorize near poles of the S-matrix.
If one introduced independent couplings for each vertex operator, the amplitudes
would not factorize correctly. As a result, all amplitudes can be expressed in terms
of a single parameter. In the heterotic string theory, this means that there is a
calculable relation between the gravitational constant and the Yang–Mills coupling.
To work out this coupling, one needs to calculate the three-point interaction for three
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gravitons, and for three gauge bosons carefully (see the exercises at the end of the
chapter). The results are necessarily of the form:

κ2
10 = ag2(2α′)4 g2

YM = bg2(2α′)3. (24.12)

The calculation yields a = 1/4, b = 1.

A similar analysis, in the Type I theory, gives a relation between the open string
and closed string couplings, and between the gauge and gravitational couplings.

In both theories, we see that the string scale is smaller than the Planck scale:

Ms = (gs)
1/4 Mp. (24.13)

This is a satisfying result. It means that if we think of Ms as the cutoff on the gravity
theory, gravitational loops are suppressed by powers of gs.

24.1.2 The coupling is not a parameter in string theory

So far, in all of the string theories, it appears that there is an adjustable, dimensionless
parameter. As we said earlier, this is not really the case. The reason for this traces
to the dilaton. Classically, in all of the string theories we have studied, the dilaton
has no potential, so its expectation value is not fixed. In the next two short sections,
we will demonstrate that changing the expectation value of the dilaton changes
the effective coupling. With enough supersymmetry, there is no potential for the
dilaton, so the question of the value of the coupling is equivalent to a choice among
degenerate vacuum states. Without supersymmetry (or with N ≤ 1 supersymmetry
in four dimensions), one does expect quantum mechanical effects to generate a
potential for the dilaton, and the value of the coupling is a dynamical question.

24.1.3 Effective Lagrangian argument

Perhaps the simplest way to understand the role of the dilaton is to examine the
ten-dimensional effective action. Start with the case of the heterotic string in ten di-
mensions. We can redefine φ = g−2κ3/2φ′, eliminating g everywhere in the action.
Note that, since κ ∝ g, this means that φ′ ∼ g1/2. Then we can do a Weyl rescaling
which puts a common power of φ in front of the action (dropping the prime on φ):

gµν = φ−1gµν (24.14)

puts a common power of φ out front of the action: φ−4. This is consistent with g
being the string loop parameter, since we have effectively g−2 at the front.

With this rescaling, it is the string scale which is fundamental. Remember that
M2

p = M2
s /(g2)1/4. By rescaling the metric, we have rescaled lengths, which were

originally expressed in units of Mp, in terms of Ms. So we have a consistent picture.
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The cutoff for the effective Lagrangian is Ms. All dimensional parameters in the
Lagrangian are of order Ms, and loops are accompanied by g2 ∼ φ4.

24.1.4 World sheet coupling of the dilaton

Just as we can couple the graviton to the world sheet, we can couple the dilaton.
The dilaton turns out to couple to the two-dimensional curvature:

L� = 1

4π

∫
d2σ

√
h�(X )R(2). (24.15)

In two dimensions, however, gravity is “trivial.” If we use our usual counting rules,
the graviton has −1 degree of freedom. So the R(2) term should not generate any
sensible graviton dynamics. If we go to conformal gauge,

hαβ = eφηαβ (24.16)

the curvature is a total divergence:

R(2) = ∂2φ. (24.17)

So at most this term in the action is topological. To get some feeling for this,
let’s evaluate the integral in the case of a sphere. We have seen that one repre-
sentation for the sphere is provided by the space CP1. This space has one com-
plex coordinate. It is Kahler, which means that the only non-vanishing component
of g is gzz̄:

gzz̄ = (∂z∂z̄ K (z, z̄)) (24.18)

where, in this case:

K = ln(1 + z̄z). (24.19)

So

g =
(

1

1 + z̄z

)2

. (24.20)

From this, we can read off φ:

φ = 2 ln(1 + z̄z) = −2 ln
(
1 + σ 2

x + σ 2
y

)
(24.21)

so the integral over the curvature is:

1

4π

∫
d2σ∂2

( − 2 ln
(
1 + σ 2

x + σ 2
y

)) = 2. (24.22)
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Note that this is invariant under a constant Weyl rescaling; it is topological. It is
known as the Euler character of the surface, and satisfies:

χ = 1

4π

∫
d2σ

√
h R(2) (24.23)

and

χ = 2(1 − g). (24.24)

In this expression, χ is known as the Euler character of the manifold, and g is the
genus. For the sphere, g = 0; for the torus, g = 1, and so on for higher-genus string
amplitudes. So string amplitudes, for constant �, come with a factor:

e−2�(1−g). (24.25)

So we can identify e� with the string coupling constant.

Suggested reading

The ten-dimensional effective actions are described in some detail by Green et al.
(1987). The couplings of the dilaton in string theory are discussed in detail by
Polchinski (1998).

Exercise

(1) By studying the OPEs of the appropriate vertex operators, verify Eq. (24.12). To avoid
making this calculation too involved, you may want to isolate particular terms in the
gravitational and Yang–Mills couplings. The required vertices in general relativity can
be found in Sannan (1986).
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Compactification of string theory I. Tori and orbifolds

We don’t live in a ten-dimensional world, and certainly not in a twenty-six-
dimensional world without fermions. But if we don’t insist on Lorentz invariance in
all directions, there are other possible ways to construct consistent string theories.
In this chapter we will uncover many consistent string theories in four dimen-
sions (and in others). If anything, our problem will shortly be an embarrassment
of riches: we will see that there are vast numbers of possible string constructions.
The connection of these various constructions to one another is not always clear.
Many of these can be obtained from one another by varying expectation values of
light fields (moduli). One might imagine that others could be obtained by exciting
massive fields as well. In general, though, this is not known, and, in any case, the
meaning of such connections in a theory of gravity is obscure. But before explor-
ing these deep and difficult questions, we need to acquire some experience with
constructing strings in different dimensions.

25.1 Compactification in field theory: the Kaluza–Klein program

The idea that space-time might be more than four-dimensional was first put for-
ward by Kaluza and Klein shortly after Einstein published his general theory of
relativity. They argued that, in this case, five-dimensional general coordinate invari-
ance would give rise to both four-dimensional general coordinate invariance and
a U (1) gauge invariance, unifying electromagnetism and gravity. In modern lan-
guage, they considered the possibility that space-time is five-dimensional, with the
structure M4 × S1. This is, on first exposure, a bizarre concept, but its implications
are readily understood by considering a toy model. Take a single scalar field, �, in
five dimensions. Denote the coordinates of M4 by xµ, as usual, and that of the fifth
dimension by y,

0 ≤ y < 2π R. (25.1)

373
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Because y is a periodic variable, we can expand the field � in Fourier modes:

�(x, y) =
∑

n

1√
2π R

φn(x)eipn y pn = n

R
. (25.2)

Taking a simple free field Lagrangian for � in five dimensions, the Lagrangian,
written in terms of the Fourier modes, takes the form:∫

d4xdyL = −
∫

d4xdy
1

2

[
(∂φ)2 + M2φ2)

]
= −

∫
d4x

∑
n

1

2

(
∂µφ2 + (

M2 + p2
n

)
φ2
)
. (25.3)

So, from a four-dimensional perspective, this theory describes an infinite number of
fields, with ever increasing mass. In the gravitational case, symmetry considerations
will force M = 0. If we set M = 0 in our scalar model, we obtain one massless state
in four dimensions (n = 0), and an infinite tower – the Kaluza–Klein tower – of
massive states. If R is very small, say R ≈ M−1

p , the massive states are all extremely
heavy. For the physics of the every-day world, we can integrate out these massive
fields, and obtain an effective Lagrangian for the massless field. The effects of the
infinite set of massive fields – the signature of extra dimensions – will show up in
tiny, higher-dimension operators. So, in the end, finding evidence for these extra
dimensions is likely to be extremely difficult.

Having understood this simple model, we can understand Kaluza and Klein’s
theory of gravitation and electromagnetism. The five-dimensional theory has the
Lagrangian:

L = 1

2κ2

√
gR. (25.4)

Now there is an infinite tower of massive states, corresponding to modes of the
five-dimensional metric: gµν , gµ4 and g44. Our principal interest is in the massless
states, which arise from modes which are independent of y (we will need to refine
this identification shortly). We expect to find a four-dimensional metric tensor, gµν ,
a field which transforms as a vector of the four-dimensional Lorentz group, g4µ,
and a scalar: g44. There are various ways we can rewrite the five-dimensional fields
in terms of four-dimensional fields. The physics is independent of this choice,
but clearly some choices will be better than others. The most sensitive choice
is that of the gauge field; we would like to choose this field so that its gauge
transformation properties are simple. The general coordinate invariance associated
with transformations of the fifth dimension, x4 = x4 + ε4(x), is:

gµ4 = gµ4 + ∂µε4(x). (25.5)
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This looks just like the transformation of a gauge field. So we adopt the conventions:

gµ4 = Aµ; g44(x) = e2σ (x); gµν = gµν. (25.6)

Note we are defining, here, a reference metric and measuring distances relative to
that; we can take the basic distance to be the Planck length. Substituting this Ansatz
back in the five-dimensional action, one can proceed very straightforwardly, work-
ing out the Christoffel symbols and from these the various components of the cur-
vature. Gauge invariance significantly constrains the possible terms. One obtains:

L = 2π R

2κ2

√
geσ (R) + 1

4
e−σ F2

µν. (25.7)

So the theory, at low energies, consists of a U (1) gauge field, the graviton, and
a scalar. The Lagrangian is not quite in the canonical form; usually one writes
the action for general relativity in a form where the coefficient of the Ricci scalar
(the “Einstein term”) is field-independent. One can achieve this by performing an
overall rescaling of the metric, known as a Weyl rescaling,

gµν → e−σ gµν. (25.8)

This introduces a kinetic term for the scalar:

L = 1

2κ2
(R + 3/2(∂φ)2). (25.9)

The scalar field here is particularly significant. As it corresponds to g55, giving
it an expectation value amounts to changing the radius of the internal space. In
the Lagrangian, there is no potential for σ , so at this level, nothing determines this
expectation value. As in our four-dimensional examples, σ is said to be a modulus.
We now show that quantum mechanical effects generate a potential for σ , already
at one loop. This potential falls to zero rapidly as the radius becomes large. If there
is a minimum of the potential, it occurs at radii of order one, where the computation
is certainly not reliable.

The calculation is equivalent to a Casimir energy computation in quantum field
theory; one can think of the system as sitting in a periodic box of size 2π R, and
asking how the energy depends on the size of the box. We can guess the form of
the answer before doing any calculation. Since this is a one-loop computation, the
result is independent of the coupling. On dimensional grounds, the energy density
is proportional to 1/R4.

To simplify matters, we will treat the gravitational field as a scalar field. At one
loop:

� = Tr ln

(
−∂2 + n2

R2

)
, (25.10)
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where we can do the calculation in Euclidean space. We can obtain a more manage-
able expression by differentiating with respect to R. The trace can be interpreted
now as a sum over the possible momentum states in four Euclidean dimensions, in
a box of volume V T . Replacing the sum by an integral gives an explicit factor of
V T ; the coefficient is the energy per unit volume:

∂V

∂ R
=

∫
d4 p

(2π)4 R3

∑
n

n2

p2 + (n2/R2)
. (25.11)

This can be evaluated using the same trick one uses to compute the partition func-
tion in finite-temperature field theory (this is described in Appendix C). One first
converts the sum into a contour integral, by introducing a function with simple
poles located at the integers:

∂V

∂ R
=

∫
d4 p

(2π )3

∮
dz

2π i

1

z2 + p2

1

1 − e2π i Rz
z2/R. (25.12)

The contour consists of one line running slightly above the real axis, and one line
running below. Now deform the contour, so that the upper line encircles the pole at
z = i p, and the lower line encircles the pole at z = −i p. The resulting expression
is divergent, but we can separate off a piece independent of R and a convergent,
R-dependent piece:

∂V

∂ R
= 1

R

∫
d4 p

(2π )4

p2

2p

[
1 + 1

e2πpR − 1

]
= 24ζ [5]

(2π )4 R5
+ R-independent. (25.13)

25.1.1 Generalizations and limitations of the Kaluza–Klein program

So far we have considered compactification of a five-dimensional theory on a cir-
cle, but one can clearly consider compactifications of more dimensions on more
complicated manifolds. It is possible to obtain, in this way, non-Abelian groups. So
one might hope to understand the interactions of the Standard Model. The principal
obstacle to such a program turns out to be obtaining chiral fermions in suitable rep-
resentations. The existence of chiral fermions in a particular compactification is a
topological question. As one varies the size and shape of the manifold, it is possible
that some fields will become massless; equivalently, massless fields can become
massive. But fields which gain mass must come in vector-like pairs. Chiral fermions
will not simply appear or disappear as one continuously changes the parameters of
the compactification. Spinors in higher dimensions decompose as left–right sym-
metric pairs with respect to four dimensions, but for suitable compactification mani-
folds, it is possible to obtain chiral fermions. However, it turns out to be impossible
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to obtain chiral fermions in the required representations of the Standard Model
group. We will see, though, that string theory can generate both gauge groups and
chiral fermions upon compactification.

25.2 Closed strings on tori

So far we have considered compactifications of field theories in higher dimensions.
But general higher-dimensional field theories are non-renormalizable, and must be
viewed as low-energy limits of some other structure. The only sensible structure
we know in higher dimensions is string theory. At the same time, if string theory
is to have anything to do with the world around us, it must be compactified to four
dimensions.

It is not complicated to repeat this analysis for the case of closed strings on
circles, or more generally on tori. Consider first compactifying one dimension, X9,
on a circle of radius 2π R. We require that states be invariant under translations by
2π R. This means that the momenta, as in the field theory case, are quantized,

p9 = n

R
. (25.14)

But now there is a new feature. Because of the identification of points, the string
fields themselves (X9) need not be strictly periodic. Instead, we now have the mode
expansion:

X9 = x9 + p9τ + 2m Rσ + i

2

∑
n �=0

1

n

(
α9

ne−in(τ−σ ) + α̃9
ne−in(τ+σ )

)
, (25.15)

where m is an integer. The states with non-zero m are called “winding” states.
They correspond to the possibility of a string winding around, or wrapping, the
extra dimension. Now the mass operator, in addition to including a contribution
(p9)2 = n2/R2, includes, as well, a contribution from the windings, m2 R2 (if there
is no momentum). If R is large compared with the string scale, these states are
very heavy. At small R, however, these states become light, while the momentum
(Kaluza–Klein) states become heavy. This reciprocity often corresponds, as we will
see, to a symmetry between compactification at large and at small radius.

Let’s focus on the various superstring theories. It is convenient to break up X9

in terms of left- and right-moving fields:

X9
L = x9

2
+
( n

2R
+ m R

)
(τ − σ ) + i

2

∑
n �=0

1

n
α9

ne−in(τ−σ ) (25.16)

X9
R = x9

2
+
( n

2R
− m R

)
(τ + σ ) + i

2

∑
n �=0

1

n
α̃9

ne−in(τ+σ ). (25.17)
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It is then natural to define left- and right-moving momenta:

pL = n

2R
+ m R pR = n

2R
− m R. (25.18)

The world-sheet fermions are untouched by this compactification. The mass oper-
ators are essentially as before, with p replaced by pL for the left movers and pR for
the right movers:

L0 = 1

2
p2

L + N L̃0 = 1

2
p2

R + Ñ . (25.19)

Suppose we compactify on a simple product of circles. The left- and right-moving
momenta form a lattice:

pI
L = nI

RI
+ 2m I RI pI

R = n

RI
− 2m I RI . (25.20)

Let’s determine the spectrum, focusing on the light states. Consider, first, the
heterotic string, and to simplify the formulas, we take the O(32) case. The O(32)
symmetry is unbroken. The original ten-dimensional gauge bosons,∣∣AAB

M

〉 = λA
−1/2λ

B
−1/2ψM −1/2|p〉, (25.21)

now decompose into a set of four-dimensional gauge bosons, corresponding (in
light cone gauge) to M = 2, 3, and six scalars, M = I . The graviton, scalar, and
antisymmetric tensor field now decompose as a set of scalars, gI J , BI J , vectors
gµi , BµI , a four-dimensional graviton, gµν , antisymmetric tensor, bµν , and scalar, φ.

To understand space-time fermions, work in light cone gauge, and return to
our description of O(8) spinors. Group the γ -matrices into a set associated with
the internal six dimensions, and one associated with the (transverse) Minkowski
directions. In other words, instead of the four creation and annihilation operators,
ai , aī , we group these into one set of three (labelled ai , where now i = 1, 2, 3, and
b, and their conjugates). So the 8s, which previously consisted of the states

|0〉 ai†a j†|0〉 a1†a2†a3†a4†|0〉, (25.22)

now decomposes as:

|0〉 ai†a j†|0〉 b†a j†|0〉 b†a1†a2†a3†|0〉. (25.23)

There are four states with no bs, and four with one b. These groups have opposite
four-dimensional helicity. They can also be classified according to their transfor-
mation properties under O(6). O(6) is isomorphic to the group SU (4). We have
just seen that 8s = 4 + 4̄. We can also see that under the SU (3) subgroup of SU (4),
the spinor decomposes as

8 = 3 + 3̄ + 1 + 1. (25.24)
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Consider how the gravitino in ten dimensions decomposes under O(3, 1) ×
SU (4). We see that the gravitino consists of a set of spin-3/2 particles in the 4
of SU (4), and their antiparticles. So, from the perspective of four dimensions,
this is a theory with N = 4 supersymmetry. This is not really surprising since the
ten-dimensional theory was a theory with 16 supercharges, and none of these are
touched by this reduction to four dimensions.

Because of the high degree of SUSY, one cannot write a potential for the scalar
fields, gI J , bI J , etc.; they are exact flat directions. If we redo our Casimir energy
calculation, we will find that, because there is a fermionic state degenerate with
every bosonic state, there is a cancellation.

What do these moduli correspond to? Those which arise from the diagonal
components of the metric correspond to the fact that the radii are not fixed. There is
a string solution for any value of the RI . The off-diagonal components are related
to the fact that the general torus in six dimensions is not simply a product of circles;
there can be non-trivial angles.

The massless scalars arising from the gauge bosons, AI , are also moduli. For
constant values of these fields, there is no associated field strength, so they carry
zero energy. But there are non-trivial Wilson lines:

UI = ei
∫ 2π RI

0 dx I AI . (25.25)

Because of the periodicity, these are gauge-invariant, and correspond to distinct
physical states. These moduli are often themselves called Wilson lines.

The periodicities of a general N -dimensional torus can be characterized in terms
of N basis vectors, eI

a , a = 1, . . . , N . The theory is defined by the identifications:

X I = X I + 2πnaeI
a . (25.26)

The set of integers define a lattice. To determine the allowed momenta, we define
the dual lattice, with unit vectors: ẽ I

a , satisfying:

ẽ I
aeI

b = δa,b. (25.27)

In terms of these, we can write the momenta for the general torus:

pI = naẽI
a, (25.28)

while the windings are:

w I = maeI
a . (25.29)

We can break these into left-moving and right-moving parts:

pI
L = (pI /2 + w I ) pI

R = (pI /2 − w I ). (25.30)
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The lattice of left- and right-moving momenta, (pL, pR), has some interesting fea-
tures. Thought of as a Lorentzian lattice it is even and self-dual. The “even” refers
to the fact that the inner product of a vector with itself:

p2
L − p2

R = 2nm, (25.31)

is even. The self-duality means that the basis vectors of the lattice and the dual are
the same (Eq. (25.27)).

In bosonic or Type II theories, these are are the most general four-dimensional
compactifications with N = 8 supersymmetry. The different possible choices of
torus define a moduli space of such theories. These moduli correspond to varying the
metric and antisymmetric tensor fields. In the heterotic case, the four dimensional
theory has N = 4 supersymmetry. Additional moduli arise from Wilson lines. As
for the simple compactification on a circle, these are essentially constant gauge
fields. A constant gauge field is almost a pure gauge transformation (take I fixed,
for simplicity):

AI = ieixI AI
∂ I e−i xI AI = ig∂ I g† (25.32)

but the gauge transformation is only periodic if AI = 1/RI . In this case, the Wil-
son line is unity. But we can do a redefinition of all of the charged fields, which
eliminates the AI s:

φ = gφ′. (25.33)

With this choice, charged fields are no longer periodic, but obey boundary
conditions:

φ′(X I ) = e2π i RI AI
φ′. (25.34)

This means that the momenta are shifted:

pI = n

RI
+ AI . (25.35)

Shortly, we will see how all of the different momentum lattices can be understood
in terms of constant background fields.

25.3 Enhanced symmetries

For large radius, the spectrum of the toroidally compactified string theory is very
similar to that expected from Kaluza–Klein field theories. The principal new fea-
ture, the winding states, is not important. At smaller radius, however, these states
introduce startling new phenomena. We focus, first, on compactification of just one
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dimension. Examining the momenta

pL = m

2R
+ n R pR = m

2R
− n R (25.36)

we see that these are symmetric under R → 1/(2R). This symmetry is often called
“T-duality.” It means that there is not a sense in which one can take the compact-
ification radius to be arbitrarily small; it is our first indication that there is some
sort of fundamental length scale in the theory. T-duality is not a feature of the
compactification of field theory; the string windings are critical.

What is the physical significance of this symmetry? The answer depends on
which string theory we study. Consider the heterotic string. We first ask whether
duality is truly a symmetry, or just a feature of the spectrum. To settle this, we can
check that it has a well-defined action on all vertex operators. Alternatively, we note
that there is a self-dual point: Rsd = 1/

√
2. Examining Eq. (25.19) we see that, at

this radius, various states can become massless. These include both scalars (from
the point of view of the non-compact dimensions) and gauge bosons:

ψ
I,µ
−1/2|n = ±1, m = ∓1〉. (25.37)

Together with the U (1) gauge boson, the spin-one particles form the adjoint of
an SU (2). We can check this by studying the operator product expansions of the
associated vertex operators (see the exercises at the end of this chapter).

Now we can understand the R → 1/R symmetry. At the fixed point, the sym-
metry is an unbroken symmetry. It transforms:

pL → −pL pR → pR. (25.38)

In world sheet terms, this corresponds to a change of sign of ∂ XL:

∂ XL → −∂ XL ∂ XR → ∂ XR. (25.39)

From (25.37), XL is the third component of isospin, T3 so T3 → −T3 under
T -duality.

This transformation is a 90◦ rotation about the 1 or 2 axis in the SU (2) space, i.e.
it is a gauge transformation! This means that the large and small radii not merely
exhibit the same physics, they are the same. It also means that, provided the theory
makes sense, the symmetry is an exact symmetry of the theory, in perturbation
theory and beyond. As for any gauge symmetry, any violation of the symmetry
would signal an inconsistency.

Returning to the self-dual point, the momentum lattice at this point can be thought
of as a group lattice, with the pLs labeling the SU (2) charges. Much larger symmetry
groups can be obtained by making special choices of the torus, Wilson lines and
antisymmetric tensor fields.
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In other string theories the symmetry has a different significance. Consider the
Type II theories; take the case of IIA for definiteness. Then since ψ9

R → −ψ9
R, the

GSO projection in the right-moving Ramond sectors is flipped. So this transforma-
tion takes the Type IIA theory to the Type IIB theory. In other words, the IIA theory
at large R is equivalent to the IIB theory at small R.

25.4 Strings in background fields

The possibilities for string compactification are much richer than tori, and we will
explore them in this and the next chapter. We can approach the problem in two
ways, each of which is very useful. First, we can examine the low-energy effective
field theory which describes the massless modes of the string in ten dimensions, and
look for solutions corresponding to large internal spaces. The effective action can
be organized into terms with more and more derivatives. The spaces must be large
in order that this use of the low-energy effective action makes sense. Alternatively,
we can look for more direct ways to construct classical solutions in string theory.
Both approaches have turned out to have great value.

We will first formulate the string problem in a more general way. We want to
ask: how do we describe a string propagating in a background which is not flat?
The background might be described by a metric, G M N , but it might also include
an antisymmetric tensor, BM N , a dilaton, φ, and, in the case of the heterotic string,
gauge fields. Let’s first focus on the metric. Start with the bosonic string. It is natural
to generalize the string action:

1

2π

∫
d2σ∂α X M∂α X NηM N (25.40)

to

1

2π

∫
d2σ∂α X M∂α X N G(X )M N . (25.41)

From a world sheet point of view, we have replaced a simple free field theory with
a non-trivial, interacting field theory. We can think of the X Ms as fields which
propagate on a manifold with metric G M N . Often this space is called the “target
space” of the theory; the Xs then provide a mapping from two-dimensional space-
time to this target space.

This looks plausible, but we can give some evidence that it is the correct pre-
scription. Suppose, in particular, we consider a metric which is nearly that of flat
space:

G M N = ηM N + hM N . (25.42)



25.4 Strings in background fields 383

Substitute this form in the action, and examine the path integral for the field
theory:

Z [h] =
∫

[d X M ]ei S0+ 1
2π

∫
d2σ∂α X M∂α X N h(X )M N . (25.43)

Differentiating with respect to h brings down a vertex operator for the graviton.
In other words, the path integral for this action is the generating functional for the
graviton S-matrix.

This observation suggests a general treatment for backgrounds for the massless
particles

I = 1

2π

∫
dτ

∫ π

0
dσ (gI J ∂α X I + εαβ BI J ∂α X I ∂β X J ). (25.44)

The corresponding path integral generates the S-matrix elements for both the gravi-
ton and the antisymmetric tensor field. But we would like to consider configurations
which are not close to the flat metric with vanishing BM N . We can ask: what are
acceptable backgrounds for string propagation? To answer this question, we need to
remember that for the free string, conformal invariance was the crucial feature to the
consistency of the picture. It was conformal invariance which guaranteed Lorentz
invariance and unitarity. So we need to look for interacting two-dimensional field
theories which are conformally invariant.

25.4.1 The beta function

Field theories of the type we have just encountered are called non-linear sigma
models. In 1 + 1 dimensions, these are renormalizable theories: gI J , BI J , etc., are
dimensionless. A priori, however, they are general functions of the fields, and there
are an infinite – continuously infinite – set of possible couplings.

Physically, the statement that these theories must be conformally invariant is the
statement that their beta functions must vanish. To get some feeling for what this
means, let’s consider a special situation. Suppose that BI J vanishes, and that the
metric is close to the flat space metric:

gM N = ηM N +
∫

d Dk hM N (k)eik·x . (25.45)

The action is then:

I = 1

2π

∫
d2σ

(
ηI J ∂α X I ∂α X J +

∑
k

h I J (k)eik·x∂α X I ∂α X J

)
. (25.46)
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We can treat the term involving h as a perturbation. Working to second order,
we have:〈∫

d2z1(hµν(k)eik·X (z1)∂ X (z1)µ∂ X (z1)ν) ×
∫

d2z2
(
hρσ (k ′)eik ′ ·X (z2)∂ X (z2)ρ∂ X (z2)σ

)〉
.

(25.47)

Let’s write this simply as:∫
d2z

∫
d2z′h1O1(z1)h2O2(z2). (25.48)

Ultraviolet divergences will arise in this integral when z1 → z2. In this limit, we
can use the operator product expansion,

O1(z1)O2(z2) = c12 j

|z1 − z2|2O j (z2) + · · ·. (25.49)

The integral over z2 is ultraviolet divergent. If we cut it off at scale �−1, we have
the correction to the world sheet Lagrangian:∫

d2z h1h2c12 j O j ln(�). (25.50)

There is another divergence associated with the couplings h1 and h2; this comes
from normal ordering. In the case of the graviton vertex operator, if we simply
expand the exponential factors and contract the xs, we obtain:∫

d2zh1(x)k2 ln(�). (25.51)

Requiring, then, that the beta function for the coupling h1 vanishes, gives:

k2h1 + h2h3 c123 = 0. (25.52)

Recall, now, that ci jk is the three-point coupling for the three fields. So this is just
the equation of motion, to quadratic order in the fields.

This result is general. At higher orders, one encounters divergences of two types.
First, there are terms involving a single logarithm of the cutoff, times more powers of
the fields. Second, there are terms involving higher powers of logarithms. The higher
powers are, from a renormalization perspective, associated with iterations of lowest
order divergences, and they are systematically subtracted off in computing the beta
functions. From a space-time point of view, these correspond to the appearance
of massless intermediate states, which must be subtracted off in constructing the
effective action or equations of motion.

This procedure can be used to recover Einstein’s equations. A more elegant
and efficient approach is to apply the background field method. For a general
gravitational background, one can view X as a fixed background, which solves the
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two-dimensional equations of motion, and study fluctuations about it. For a suitable
choice of coordinates, the metric is second order in the fluctuations. One can include
in this analysis background antisymmetric tensor fields and a background dilaton.
The antisymmetric tensor can be analyzed along the lines of our analysis of hµν . The
dilaton is more subtle. In our action above, we omitted one possible coupling: the
two-dimensional curvature. The dilaton couples to the world sheet fields through:∫

d2σ�R(2). (25.53)

The full analysis leads to the equations of motion:

βµν = 0 = α′ Rµν + 2α′∇µ∇ν� − α′

4
Hµλω Hλω

ν (25.54)

βB
µν = −α′

2
∇ω Hωµν + α′∇ω�Hωµν + O(α′)2 (25.55)

β� = D − 26

6
− α′

2
∇2� + α′∇ω�∇ω� − α′

24
Hµνλ Hµνλ. (25.56)

It is possible to extend these methods to describe quantum corrections to the equa-
tions, at least in the case of supersymmetric compactifications.

25.4.2 More general tori

As a first application, we consider the heterotic string theory in the case of more
general tori.

For general metric and backgrounds for both the antisymmetric tensor and gauge
fields, one obtains a somewhat more involved expression for the momenta. A partic-
ularly elegant way to derive this is to argue that constant background fields should
effect only slow modes of the string. In the presence of background, constant metric
and antisymmetric tensor fields, the action is:

I = 1

2π

∫
dτdσ

∫ π

0
(gI J ∂α X I ∂α X j + εαβ BI J ∂α X I ∂β X J ). (25.57)

To realize the notion of slowly varying fields, one makes the Ansatz:

X I = q I (τ ) + 2σm I (25.58)

where the second term allows for the possibility of winding. Substituting this back
in the action and performing the integral over σ :

I =
∫

dτ

(
1

2
gI J q̇ I q̇ J + 2BI J q̇ I m J − 2gI J nI n J

)
. (25.59)
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Now we can read off the canonical momenta:

PI = gI J q̇ J + 2BI J m J . (25.60)

In quantum mechanics, it is the canonical momenta which act by differentiation
on wave functions, so it is the canonical momenta which must be quantized for a
periodic system:

PI = nI . (25.61)

In terms of q I , this gives:

q̇ I = gI J m J − 2B I
J n J . (25.62)

Finally, integrating this equation and substituting back into X I :

X I = q I + 2σm I + τ
(
gI J n J − 2B I

J m J
)
. (25.63)

From this, we can read off the left- and right-moving momenta:

pI
L = m I + 1

2
gI J n J − gI J BJ K mK

pI
R = −m I + 1

2
gI J n J − gI J BJ K mK . (25.64)

Once again, pL · p′
L − pR · p′

R is an integer; the lattice, thought of as a Lorentzian
lattice, is even and self-dual.

Including Wilson lines is slightly more subtle, because of their asymmetric cou-
pling between left and right movers. For small A, the modification is essentially
what we guessed above. There is also a modification of the internal, E8 charge
lattice.

25.5 Bosonic formulation of the heterotic string

We have seen that in toroidal compactifications of string theory, new unbroken gauge
symmetries can arise at particular radii. We have also seen that a toroidal compact-
ification can be described by a lattice. So far, in describing the heterotic string, we
have worked in what is known as the fermionic formulation. There is an alternative
formulation, in which the 32 left-moving fermions are replaced by 16 left-moving
bosons.

It is an old result that two-dimensional fermions are equivalent to bosons; more
precisely, two real, left-moving fermions are equivalent to a single real boson, and
vice versa. The correspondence, for a complex fermion, λ, is:

λ(z) = eiφ(z), (25.65)
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where φ is a left-moving boson. The equal sign here is subtle; at finite volume,
care is required with the zero modes, as we will see. To be convinced that this
equivalence is plausible, consider correlation functions at infinite volume. From
our previous analyses of two-dimensional Green functions, we have:

〈λ(z)λ(w)〉 = 〈
eiφ(z)eiφ(w)

〉 ∼ 1

z − w
. (25.66)

This suggests that, say, in the case of the SO(32) heterotic string, we can replace the
32 left-moving fermions by 16 left-moving bosons. Note that this means, loosely,
that we have 26 left-moving coordinates, as in the bosonic string (but still only 10
right-moving bosons). At finite volume (i.e. 0 < σ < π ), we can write the usual
mode expansions for these fields:

X A
L = 1

2
pA

L + i

2

∑
n

1

n
α̃ne−in(τ+σ ). (25.67)

Now the pLs are elements of the group lattice. Modular invariance requires that the
lattice be even and self-dual. In 16 dimensions, there are two such lattices, those of
O(32) and E8 × E8.

The bosonization of fermions which we have described here is useful for the right-
moving fields as well and also for the fermions of the Type II theories. We have
avoided discussing space-time supersymmetry in the RNS formalism because the
fermion vertex operators and the supersymmetry generators must change the bound-
ary conditions on two dimensional fields. But in this bosonized form, this problem
is simpler. Once again, we have relations of the form

ψi ∼ eiφi . (25.68)

The φs live on a torus, whose “momenta” describe both N and RS states. Operators
of the form e

iφ
2 change NS to R states, i.e. they connect bosons to fermions. This

connection allows construction of fermion vertex operators and the supersymmetry
generators.

25.6 Orbifolds

Toroidal compactifications of string theory are simple; they involve free two-
dimensional field theories. But they are also unrealistic. Even in the case of the
heterotic string, they have far too much supersymmetry and their spectra are not
chiral. There is a simple construction which reduces the amount of supersymmetry,
yielding models with interesting gauge groups and a chiral structure. The corre-
sponding world sheet theories are still free, so explicit computations are straight-
forward. These constructions are also interesting in other ways. They correspond
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1

120°

e2πi/3

Fig. 25.1. Torus that admits a Z3 symmetry, allowing an orbifold construction.

to particular submanifolds of the moduli space of larger classes of solutions. They
exhibit interesting features like discrete symmetries and subtle cancellations of
four-dimensional anomalies. At low orders, it is a simple matter to work out their
low-energy effective actions. Through a combination of world sheet and space-time
methods, one can understand their perturbative and in some cases non-perturbative
dynamics.

In this chapter, we will work out one example in some detail. Other examples can
be studied in a similar way. We will also mention some other free field constructions
of interesting string solutions.

We start with a toroidal compactification on a particular lattice, a product of
three tori as shown in Fig. 25.1. It is convenient to introduce complex coordinates,

z1 = x1 + i x2 z2 = x3 + i x4 z3 = x5 + i x6. (25.69)

This lattice is invariant under a Z3 symmetry

zi → e
2π i

3 zi . (25.70)

This can be seen by carefully examining the figure. The lattice vector (1, 0), for
example, in the original cartesian coordinates is rotated into the lattice vector
(−1/2, 1/

√
2). This is related by translation by a lattice vector to (1/2, 1/

√
2).

Now we identify points under the symmetry, i.e. two points related by a symmetry
transformation are considered to be the same point. The result is almost a manifold,
but not quite. There are three points which are invariant under the symmetry. These
are called “fixed points.” These are the points:

(0, 0); (1/2,
√

3/2); (1,
√

3). (25.71)

The geometry near each of these points is singular. If one parallel transports about,
say the point at the origin, after 120◦, one returns where one started. The space
is said to have a deficit angle. It is as if there was an infinite amount of curvature
located at each of the points. Such a space is called an “orbifold.”
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In quantum mechanics, requiring such an identification of points under a symme-
try means requiring that states be invariant under the quantum mechanical operator
which implements the symmetry. Consider the various states of the original ten-
dimensional theory. In the Type II theory, for example, in the NS–NS sector, we
have the states, before making any identifications:

ψ̃
µ

−1/2ψ
ν
−1/2|0〉 ψ̃

j̄
−1/2ψ

i
−1/2|0〉 ψ̃

j
−1/2ψ

ī
−1/2|0〉 (25.72)

ψ̃
j
−1/2ψ

i
−1/2|0〉 ψ̃ ī

−1/2ψ
j̄
−1/2|0〉. (25.73)

After the identification, the first set of states are invariant; the latter are not. These
states all have simple interpretations. The first are the four dimensional graviton,
antisymmetric tensor and dilaton. The second are the moduli of the torus. The parts
symmetric under i → j̄ correspond to the metric components in the original theory
gi j̄ . The antisymmetric parts correspond to the corresponding components of Bi j̄ .

The diagonal components, giī , are easily understood. Changing slightly the value
of these components correspond to changing the overall radius of the i th torus. This
does not change the symmetry properties. The off-diagonal components, g12̄, etc.,
correspond to deformations which mix up the three planes, but leave a lattice with
an overall Z3 symmetry.

To understand what happens to the supersymmetries, focus on the gravitino. It
is convenient to work in light cone gauge, and to decompose the spinors as we did
earlier. To determine how the spinors transform under the Z3, we need to decide
how the state we called |0〉 transforms under the symmetry. Consider a rotation,
say in the 12 plane, by 120◦. The rotation generator is:

S12 = i

4
(γ1γ2 − γ2γ1) = a1†a1 + 1/2. (25.74)

So the rotation of the state |0〉, is described by

e
2π i

6 s12 |0〉 = e
2π i

6 |0〉. (25.75)

The transformations of the other states can then be read off from the transformation
laws of the ai s:

|0〉 → e
−2π i

6 |0〉 aī |0〉 → e
2π i

6 aī |0〉. (25.76)

Now we have to be a bit more precise about the orbifold action. This is a product
of Z3s for each of the planes. But we see that acting on fermions, the separate
transformations are Z6s. In order that the group action be a sensible Z3, we need
to take, for example:

Z1 → e
2π i

3 Z1 Z2 → e
2π i

3 Z2 Z3 → e
−4π i

3 Z3. (25.77)
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With this definition, the fermion component 0 ↔ |0〉 is invariant under the orbifold
projection. The components i ↔ aī |0〉 are not.

We can label the gravitinos:

ψ
µ

0,α ψ̃
µ

0̃,α
ψ

µ

i,α ψ̃
µ

i,α. (25.78)

After the projection, instead of eight gravitinos, as in the toroidal case, there are
only two; we have N = 2 supersymmetry in four dimensions.

In addition to projecting out states, we need to consider a new class of states.
We can consider closed strings which sit at the fixed points. More precisely, in
addition to the strict periodic boundary condition, we can consider strings which
satisfy:

Xi (σ + π ) = e
2π i

3 Xi (σ ). (25.79)

These boundary conditions do not permit the usual bosonic zero modes. Instead,
we have a mode expansion:

Xi = xi
(a) + i

2

∑
n

(
αi

n− 1
3
e2i(n− 1

3 )(σ−τ ) + α̃i
n− 1

3
e2i(n− 1

3 )(σ+τ )
)

. (25.80)

The mode numbers are now fractional; the absence of a momentum term indicates
that the strings sit at the fixed points (labeled by a). In this case, there are 27 fixed
points. For the fermions, we again have to distinguish Ramond and Neveu–Schwarz
sectors. In the NS sectors, the fermions have modes which differ from integers by
multiples of 1/2 − 1/3 = 1/6:

ψ i =
∑

ψn− 1
6
e−2i(n− 1

6 )(τ−σ ) (25.81)

with a similar expansion for ψ̃ .
We can readily work out the normal ordering constant, using the formula we

wrote earlier (Eq. (22.30)). We have, in the NS–NS sector:

a = 6 × 1

4
(1/3 × 2/3) − 6 × 1

4
(1/6) × (5/6) − 4 × 1

4
(1/2) × (1/2) = 0.

(25.82)
So the ground state is massless in the twisted sectors. Again, because of N = 2
supersymmetry, there can be no potential for this field. So there is a modulus in each
twisted sector. Unlike the moduli in the untwisted sector, this modulus does not
correspond to simply changing the features of the torus which defines the orbifold.
Instead, it represents a deformation which, from a space-time viewpoint, smooths
out the orbifold singularity. The resulting smooth space is an example of a Calabi–
Yau manifold, of the type we will discuss in the next chapter.

Let’s turn to the heterotic string theory on this orbifold. We will take the same
projector on the spatial coordinates, Xi , as before. As a result, there is only one
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gravitino; the four-dimensional theory has N = 1 supersymmetry. The moduli are
in one to one correspondence with the scalars of the NS–NS sector of the N =
2 theory: gi j̄ , Bi j̄ , φ. We can also make a projection on the world sheet gauge
degrees of freedom. There are many possible choices of this gauge transformation;
the principal restriction comes from the requirement of modular invariance. A
particularly simple one is almost symmetrical between the left and right movers.
In the fermionic formulation it works as follows. Take E8 × E8 for definiteness.
Of the 16 fermions in the first E8 single out 6, and rewrite them in terms of three
complex fermions, λi . Call the remaining ten fermions λa . Now, in the projection,
require invariance under

Zi → e
2π i

3 Zi ψ i → e
2π i

3 ψ i λi → e
2π i

3 λi . (25.83)

In the untwisted sector, this projection has no effect on the graviton or the moduli
which we have identified previously. But consider the various gauge fields. In ten
dimensions, these were vectors in the adjoint of the two E8s and their fermionic
partners. The fields with space-time indices in the internal dimensions now appear as
four-dimensional scalars. In order that they be invariant under the full projection,
it is necessary to choose their gauge quantum numbers appropriately. In the NS
sector for each of the E8s, the invariant states include the following.

(1) A set of fields in the adjoint of E6, E8 and an SU (3). Of these, an O(10) subgroup
of the E6 is manifest in the NS–NS–NS sector, as well as an O(16) subgroup of E8.
Correspondingly, the gauge bosons are:

λa
−1/2λ

b
−1/2ψ

µ

−1/2|0〉 (25.84)

in O(10),

λA
−1/2λ

B
−1/2ψ

µ

−1/2|0〉 (25.85)

in O(16), and, in SU (3) × U (1):

λi
−1/2λ

ī
−1/2ψ

µ

−1/2|0〉. (25.86)

Note that all of these states are invariant. The U (1) is actually one of the E6 generators.
E6 has an O(10) × U (1) subgroup under which the adjoint representation, which is
78-dimensional, decomposes as:

78 = 450 + 10 + 16−1/2 + 161/2. (25.87)

The remaining E6 gauge bosons are found in the R–NS–NS sector. The left-moving
normal ordering constant vanishes. The ground states in this sector are spinors of O(10),
the 16 and 1̄6 above. The 248-dimensional representation of the second E8 is filled out
as in the uncompactified theory.
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(2) Matter fields. These lie in the fundamental representation of E6, the 27 under O(10).
The 27 decomposes as:

27 = 1−2 + 101 + 16−1/2. (25.88)

There are nine 10s in the untwisted sectors, corresponding to the states:

λa
−1/2λ

i
−1/2ψ

j̄
−1/2|0〉 (25.89)

Each of these is one real scalar; we can use the conjugate fields to form nine more real
scalars, or eight complex scalars. There are nine singlets of charge −2:

λī
−1/2λ

j̄
−1/2ψ

k̄
−1/2|0〉. (25.90)

The 16s come from the R–NS–NS sector.

So we have nine 27s from the twisted sectors, and no 27s; the theory is chiral.
Let’s turn now to the twisted sectors. In the Type II case we found moduli in each

sector. Here we will find moduli, additional 27s, and more. We first need to compute
the normal ordering constants. For the right movers, the calculation is exactly as
in the Type II theory, and gives zero. For the left movers in the NS–NS sector, we
have:

a = − 8

24
+ (6/4) × (1/3) × (2/3) − 16

4
×
(

− 1

24
+ 1

4

)
+ 16

24
− 10

4
(1/4) − 6

4
× (1/6) × (5/6)

= −1/2, (25.91)

where the first two terms comes from the bosons, the next two from the fermions
in the unbroken E8, and the last terms from the fermions in the broken E8. So we
can make massless states in a variety of ways.

(1) We can have 10s of O(10):

λa
−1/2|0〉twist. (25.92)

Note that E6 invariance requires that this state have U (1) charge +1.
(2) Singlet of O(10) with U (1) charge −2:

λ1̄
−1/6λ

2̄
−1/6λ

3̄
−1/6|0〉twist. (25.93)

Together with a set of spinorial states from the R–NS sector, this completes a 27 of E6.
(3) Moduli, other gauge singlets:

αi
−1/3λ

j̄
−1/6|0〉. (25.94)

If we contract the i and j̄ index, we find the analog of the twisted sector modulus we
had in the Type II theory. The other states represent additional singlets.
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All together, then, we have found 9 + 27 = 36 copies of the 27 of E6, and 36
moduli. Each 27 comfortably accommodates a generation of the standard model,
plus an additional vector-like set of fields. So, while this example is hardly realistic,
it is interesting: it predicts a particular number of Standard Model generations,
plus additional fields. Whether variants of these ideas can lead to something more
realistic is an important question, which we will postpone for the time being.

25.6.1 Discrete symmetries

One of the unappealing features of supersymmetric models as theories of nature is
the need to postulate discrete symmetries in order to have a sensible phenomenology.
This seems rather ad hoc. One of the features of the orbifold construction we just
described is that a variety of discrete symmetries appear naturally. This phenomenon
is common, as we will see, in string constructions. Here it is particularly easy to
exhibit the symmetries.

We have, for simplicity, considered a particular form for the torus – a particular
point in the moduli space, at which the six-dimensional torus is a product of three
two-dimensional tori. But at this point (really a surface), there is a large symmetry.
First, there is a separate Z3 symmetry for each plane. (You can check that each plane
in fact admits a Z6 symmetry.) Because of the orbifold projection, one of these acts
trivially on all states, but two are non-trivial. If we take the size of each of the three
two-dimensional tori to be the same, we also have a permutation symmetry, S3,
among the tori.

The Z3s are R symmetries. We have already seen that the spinor with index 0
rotates by a phase, e

2π i
6 , under the symmetry. By definition, this is an R transforma-

tion. This has significant consequences for the low-energy theory, greatly restricting
the form of the superpotential.

As an example of the far-reaching consequences of such symmetries, one can
show that there are exact flat directions involving the matter fields. Consider the
untwisted moduli. One can give expectation values to the O(10) 10 and 1 in one
multiplet in a way which respects supersymmetry. Specifically, consider the field,
φ, corresponding to

φ = λa
−1/2ψ

1̄
−1/2|0〉 (25.95)

and the corresponding singlet. Both of these are neutral under the rotation in the
second plane. So one can not construct any superpotential term involving φ alone.
One can give an expectation value to the singlet and to the 10 so as to cancel the D
terms for E6. The main danger, then, is a superpotential term of the form:

W = �φ2 (25.96)
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with � some other 27. This is E6 invariant (in terms of O(10) representations, it
involves a product of a singlet and two 10s). But no such term is allowed by the
discrete symmetries.

So this simple argument shows that the moduli space is even larger than we
might have thought. Such symmetries, as they forbid not only certain dimension-
four but also dimension-five operators, might also be important to understanding
the problem of proton stability and other important phenomenological issues.

The model possesses other symmetries as well. There is Z3 symmetry under
which the twisted sector states transform but the untwisted sector states do not. We
will not derive this here, but it is plausible, and can be shown readily if one constructs
the vertex operators for the twisted states. Many of the discrete symmetries of the
model are subgroups of the Lorentz symmetry of the original higher-dimensional
theory. As such, they can probably be thought of as gauge symmetries. This is less
obvious for other symmetries, but it is generally believed that the discrete sym-
metries of string theory all have this character. Searches for anomalies in discrete
symmetries, for example, have yielded no examples.

One could ask: why would nature choose a point in the moduli space of some
string theory at which there is an unbroken discrete symmetry? At the moment, our
understanding of how to connect string theory to nature is not good enough to give
a definite answer to this question, but, at the very least, such points are necessarily
stationary points of the effective potential for the moduli; at the symmetric point,
the symmetry forbids linear terms in the action for the charged moduli.

25.6.2 Modular invariance, interactions in orbifold constructions

As in our original string theory constructions, there seems much which is arbitrary
in the choices we made above. We also did not spell out what are the appropriate
GSO projectors. As for the simple ten-dimensional constructions, the possible GSO
projections are constrained by modular invariance. We will leave for the exercises
checking some particular cases, but the basic result is easy to state. One can project
by any transformation, provided that it has sensible action on fermions and on spinor
representations of the gauge group, and provided that one has “level matching” in
all of the twisted sectors. This means that one must be able to construct an infinite
tower of states in each sector. To understand the significance of this statement,
consider a different choice of group action than that we considered above. Instead
of twisting by (1/3, 1/3, −2/3), project by (1/3, −1/3, 0). In this case, for example,
in the NS–NS–NS sector, the left-moving normal ordering constant is −13/18. As
a result, one cannot construct any states in the twisted sector which satisfy the level
matching condition.
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There are other constructions of compactifications with N = 1 supersymmetry
based on free fields. These include models based purely on free fermions. These
models are believed equivalent to orbifold models in which one mods asymmetri-
cally on the left- and right-moving fields. The latter, “asymmetric orbifold,” models
are interesting in that they potentially have very few moduli. In order to have sen-
sible, unbroken discrete symmetries acting on the left and right, the original lattice
typically must sit at a self-dual point. So many moduli are fixed – they are projected
out by the orbifold transformation. It is not difficult, in this way, to construct mod-
els where there are no moduli neutral under space-time symmetries, except for the
dilaton.

25.7 Effective actions in four dimensions for orbifold models

While string theory provides a very explicit set of computational rules, at least for
low orders of perturbation theory, these rules are complicated and rather cumber-
some. Moreover, except in some special circumstances, we lack a non-perturbative
formulation of the theory. Effective field theory methods have proven extremely
useful in understanding the dynamics of string theory, both perturbative and non-
perturbative. In this section, we will work out the effective action for the orbifold
models introduced above. More precisely, we work out the Lagrangian for a subset
of the fields, up to and including terms with two derivatives. Many of the features
of these Lagrangians will be relevant to the more intricate Calabi–Yau compactifi-
cations we will encounter shortly.

In principle, to calculate the effective action, we should calculate the string S-
matrix, and write an action for the massless fields which yields the same scattering
amplitudes. Alternatively, we can calculate the equations of motion from the beta
function and look for an action which reproduces these. But for low order terms
in the derivative (α′) expansion, for the fields in the untwisted sector, there is a
simpler procedure. We know the form of the ten-dimensional effective action; we
can simply truncate the theory to four dimensions. To do this, we start by setting
all of the charged fields to zero (this includes the gauge fields). We also work at a
point with a large discrete symmetry: Z3

3/Z3 × S3. We set all of the fields which
transform under these symmetries to zero. This includes all of the moduli, except
the overall size of the torus and its superpartners. We then write the metric as:

gi j̄ (x
µ) = g j̄i (x

µ) = eσ (xµ)δi j̄ . (25.97)

With this parameterization, we are describing the size of the space with respect to
a reference metric. We make a similar ansatz for the antisymmetric tensor:

bi j̄ (x
µ) = −b j̄i (x

µ) = b(σ (xµ))δi j̄ . (25.98)
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We must keep also the four-dimensional metric components, gµν the scalar field
φ, and the antisymmetric tensor, Bµν . Take all of them to be functions of xµ, the
uncompactified coordinates, only. Substituting these fields in the ten-dimensional
Lagrangian, Eq. (24.8), the integral over the six internal coordinates is easy, since
all fields are independent of the coordinates. One simply obtains e3σ (x) from the√

g factor. This is just the volume of the internal space, if σ is constant. There are
additional factors of e−σ coming from the factors of the inverse metric: one from
the four-dimensional pieces of the Ricci curvature; one from the kinetic term for
φ, and three from the Hµνρ terms. The ten-dimensional curvature term also gives
derivative terms in σ . After a short computation, we obtain

L = −1

2
e3σ R(4) − 3e3σ ∂µσ∂µσ − 9

16
e3σ ∂µφ∂µφ/φ2

− 9

2
eσφ−3/2∂µb∂µb − 3

4
φ−3/2 Hµνρ Hµνρ. (25.99)

It is customary to rescale the metric so that the Einstein term has the standard form:

gµν = e−3σ g′
µν. (25.100)

After this Weyl rescaling, the action becomes:

L = −1

2
R(4) − 3∂µσ∂µσ − 9

16
(∂µφ∂µφ)/φ2 − 3

2
e−2σφ−3/2∂µb2 − 3

4
φ−3/2e6σ H 2

µνρ.

(25.101)

It should be possible to cast this Lagrangian as a standard four-dimensional, N = 1
supergravity Lagrangian, with a particular Kahler potential. Having thrown away
all but a few moduli, there is no superpotential. To determine the Kahler potential,
we first note that, in four dimensions, an antisymmetric tensor field is equivalent to
a scalar. This follows from counting degrees of freedom; with our usual rules, an
antisymmetric tensor in four dimensions has only one degree of freedom. To make
this explicit, one performs a “duality transformation” (the word is starting to seem
a bit overused)

φ−3/2e6σ Hµνρ(x) = εµνρσ ∂σ a(x). (25.102)

The field a is often called the “model-independent axion,” because it couples like
an axion and its features do not depend on the details of the compactification. Then
we define two chiral superfields, whose scalar components are:

S = e3σφ−3/4 + 3i
√

2a (25.103)

and

T = eσφ3/4 − i
√

2b. (25.104)
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Choosing the Kahler potential:

K = − ln(S + S∗) − 3 ln(T + T ∗) (25.105)

reproduces all of the terms in Eq. (25.101). The reader may want to check all of
the terms in this equation carefully, but at the least it is good to make sure one
understands how the σ and φ dependences are reproduced.

Let’s now return to the ten-dimensional gauge field terms, Eq. (24.9). This will
allow us to include the matter fields as well as the gauge fields. Rather than consider
the full set of fields, we can restrict ourselves to the set which is invariant under
each of the separate Z3s, combined with three separate Z3s in the gauge group
(λi → e

2πki i
3 λi ). This leaves us with three complex scalars, Ci , corresponding to the

states

Ci ↔ λi
−1/2λ

a
−1/2ψ

ī
−1/2|0〉 (25.106)

(i is not summed). From the point of view of ten dimensions, these are Aia
ī . We

also need to include the four-dimensional gauge fields, Aab
µ . In this way we obtain

the additional terms, after the Weyl rescaling:

Lgauge = −1

4
φ−3/4e3σ F2

µν − 3e−σφ−3/4 DµC∗ī DµCi + · · ·. (25.107)

This can still be put in the standard supergravity form. First, we need to remember
that in the duality transformation, Hµνρ now includes the Chern–Simons terms. Then
it is necessary to modify the definition of T to include a contribution from the C
fields:

T = eσφ3/4 − i
√

2b + C∗ī Ci (25.108)

and to modify the Kahler potential:

K = − ln(S + S∗) − 3 ln(T + T ∗ − C∗C). (25.109)

There is also a coupling of the field S to the gauge fields:

LS = −1

4
SW 2

α . (25.110)

This includes a coupling of φ and σ to F2
µν , already apparent in Eq. (24.9). The

aF F̃ coupling arises from the Chern–Simons term in Eq. (24.10). Recall that

Hµνρ = ∂[µ Bνρ] − ωµνρ. (25.111)

So
∫

d4x H 2, using the definition of a and integrating by parts, gives an aF F̃
coupling. Finally, there is a superpotential cubic in the C fields.
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25.7.1 Couplings and scales

It is worth pausing to note the connections between the couplings and scales in dif-
ferent dimensions. We’ll focus first on the heterotic string. We see from Eq. (25.110)
that S determines the gauge coupling, S = 1/g2. This is as we would naively ex-
pect. The ten-dimensional gauge coupling is essentially 1/g2

s ; when we reduce to
four dimensions, the four-dimensional gauge fields correspond to modes which are
constant on the internal manifold, so

1

g2
4

= 1

g2
s

V M6
s . (25.112)

In terms of the fields we defined above, V = e3σ .
These simple formulas pose a serious problem for the application of weakly

coupled heterotic string phenomenology. If we simply identify S with the four-
dimensional coupling, then the string coupling satisfies:

g2
s = g2

4 V M6
s . (25.113)

So we see that large volume, the limit in which an α′ expansion is valid, conflicts
with small gs if g4 is fixed. We can also write a relation between the string scale
and the Planck scale in four dimensions:

M2
p = M8

s V g−2
s . (25.114)

Solving for Ms and substituting in the previous expression, gives an expression for
gs which is incompatible with weak coupling, if we assume that V = M−6

GUT.
Later, we will sharpen this strong coupling problem, and consider possible

solutions.

25.8 Non-supersymmetric compactifications

So far, we have considered supersymmetric compactifications. This is not necessary,
but we will see that non-supersymmetric compactifications raise new conceptual
and technical problems.

Perhaps the simplest non-supersymmetric compactification is Scherk–Schwarz
compactification. Here one compactifies the theory (this can be Type I, Type II, or
heterotic) on a torus. In one of the directions, say the ninth direction, one imposes the
requirement that bosons should obey periodic boundary conditions, and fermions
anti-periodic ones. One can describe this by taking the radius of the extra dimension
to be 2 × 2π R, and performing a projection by

P = (−1)F ei(2π i)Rp9 . (25.115)
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This projection eliminates, for example, the massless gravitinos; there is no super-
symmetry, and there is no Bose–Fermi degeneracy in the spectrum. Indeed, in the
simplest version, there are no massless fermions at all.

As a result, the usual Fermi–Bose cancellation of supersymmetry does not take
place, and at one loop, there is a non-zero vacuum energy. More precisely, there
is a potential for the classical modulus R. The calculation of this potential is just
the Casimir calculation we encountered earlier. Only the massless ten-dimensional
fields contribute; the massive string states give effects which are exponentially
suppressed for large R. To see this, one can return to our earlier calculation with
a massive state (one of the oscillator excitations of the string). Replacing the sum
over integers by an integral in the complex plane and deforming the contour, as
before, yields a term exponentially small in the mass. The detailed results depend
on the particular model, but typically the potential is negative and goes to zero at
large R. In other words, at one loop, the dynamics tends to drive the system to small
R. It is not well understood how to study the system beyond one loop.

One can obtain non-supersymmetric theories in four dimensions in many other
ways. For example, one can compactify the non-supersymmetric O(16) × O(16)
heterotic theory on a torus (it can also, in some cases, be compactified on the Calabi–
Yau spaces discussed in the next chapter). Again, one obtains a one loop potential
for the moduli, and the theories are difficult to interpret at the quantum level.
Compactifications of the Scherk–Schwarz theories and the non-supersymmetric
theories are often related by T -dualities.

Suggested reading

An introduction to Kaluza–Klein theory prior to the development of string theory
is provided in the text Modern Kaluza–Klein Theories by Appelquist et al. (1985).
More thorough discussions of aspects of string compactification are provided by
the texts of Green et al. (1987) and Polchinski (1998). Many of the original papers,
particularly the orbifold papers, are highly readable; see, for example, Dixon et al.
(1986). There are many topics here we have only touched on in this chapter. We gave
an argument that vanishing of the beta function of the two-dimensional σ model is
equivalent to the equations of motion in space-time, but readers may wish to work
through the background field analysis which leads to Einstein’s equations. This
is described in Polchinski’s book and elsewhere. The bosonic formulation of the
heterotic string is also well described there, but the original papers are quite read-
able (Gross et al. 1985, 1986). Bosonization and space-time supersymmetry in the
RNS formulation are thoroughly discussed by Polchinski; a clear, and rather brief,
introduction, is provided by Peskin’s 1996 TASI lectures (Peskin, 1997). The non-
supersymmetric compactification described here was introduced by Rohm (1984).
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Exercises

(1) Derive the gauge terms in the Lagrangian of Eq. (25.7). You can do this by taking the
metric to be flat.

(2) Derive the scalar kinetic terms of Eq. (25.8). You can do this by taking the four-
dimensional metric, at first, to be flat, and allowing only σ to be a function of x .

(3) Verify, by studying the OPEs of the vertex operators for the different massless fields, that
the enhanced symmetry of the bosonic string at the point R = 1/

√
2 is SU (2) × SU (2).

Explain why, in the heterotic string, the symmetry is only SU (2). What is the symmetry
in the IIA theory?

(4) For the orbifold model, work out the spectrum in the untwisted sectors in greater detail,
paying particular attention to spinorial representations of the O groups, and to the space-
time spinors. In particular, make sure you are clear that the 27s are chiral, i.e. all the
states in 27s have one four-dimensional chirality, all of those in 27 have the opposite
chirality.

(5) Derive the terms in Eq. (25.99) involving ∂σ 2.
(6) Verify that the Kahler potential of Eq. (25.109) properly reproduces the kinetic terms

of the matter fields.
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Compactification of string theory II.
Calabi–Yau compactifications

So far, we have focussed on rather simple models, involving toroidal compactifi-
cations and their orbifold generalizations. But while by far the simplest, these turn
out to be only a tiny subset of the possible manifolds on which to compactify string
theories. A particularly interesting and rich set of geometries is provided by the
Calabi–Yau manifolds. These are manifolds which are Ricci flat, RM N = 0. Their
interest arises in large part because these compactifications can preserve some sub-
set of the full ten-dimensional supersymmetry. This is significant if one believes that
low-energy supersymmetry has something to do with nature. It is also important at
a purely theoretical level, since, as usual, supersymmetry provides a great deal of
control over any analysis; at the same time, there is less supersymmetry than in the
toroidal case, so a richer set of phenomena are possible.

This chapter is intended to provide an introduction to this subject. In the first
section, we will provide some mathematical preliminaries. Unlike the toroidal or
orbifold compactifications, it is not possible, in most instances, to provide explicit
formulas for the underlying metric on the manifold and other quantities of interest.
The six-dimensional Calabi–Yau spaces, for example, have no continuous isome-
tries (symmetries), so at best one can construct the metrics by numerical methods.
But it turns out to be possible to extract much important information without detailed
knowledge of the metric from topological considerations. The machinery required
to define these spaces and to extract at least some of this information includes al-
gebraic geometry and cohomology theory, subjects not part of the training of most
physicists. The following mathematical interlude provides a brief introduction the
the necessary mathematics. There is much more in the suggested reading.

26.1 Mathematical preliminaries

Two notions are very useful for understanding Calabi–Yau spaces: differential forms
and vector bundles. Differential forms have already appeared implicitly in our
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discussion of IIA and IIB string theory. Start with an antisymmetric tensor field,
Ai1i2···in . Suppose that there is a gauge invariance:

Ai1...in → Ai1...in + 1

n

{
∂i1�i2...in − ∂i2�i1i3...in + · · · (−1)r∂ir �i1...ir−1ir+1...in

}
,

(26.1)

where � is antisymmetric in all of its indices. We can write a shorthand for this:

δA = d�, (26.2)

where d� is the “exterior derivative.” Acting on an antisymmetric tensor of rank
p, the exterior derivative produces a rank p + 1 antisymmetric tensor, d H :

d Hi1...i p+1 =
(

1

p + 1

) [
∂i1 Hi2...i p+1 − ∂i2 Hi1i3...i p+1 + · · · ] . (26.3)

We can think of this object more abstractly as follows. Antisymmetric tensors
with p indices we will call p-forms. A “basis” for the p-forms is provided by the
antisymmetrized products of differentials:

dxi1 ∧ dxi2 ∧ · · · ∧ dxi p . (26.4)

We can then write:

H = 1

p!
Hi1...i p dxi1 ∧ · · · ∧ dxi p . (26.5)

The product of two forms, A, B is known as the wedge product, A ∧ B. If A is an
n-form and B an m-form,

(A ∧ B)i1...in+m = n!m!

(n + m)!
Ai1...in Bin+1...in+m + (−1)Ppermutations (26.6)

or, more compactly:

A ∧ B = 1

(n + m)!
Ai1...in Bin+1...in+m dx1 ∧ · · · ∧ dxn+m . (26.7)

In this language, the exterior derivative can be written as d ∧ H or simply d H ,
where d is thought of as a one form with components di = ∂i .

It is important to practise with this notation, and some exercises are provided at
the end of the chapter. One should check that

d2 H = 0. (26.8)

It is instructive to write electrodynamics in the language of forms. One should
verify that the field strength tensor is a two form, which can be written as

F = d A. (26.9)
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The homogeneous Maxwell’s equations (the Bianchi identities for the field strength)
follow from d2 = 0,

d F = 0. (26.10)

Apart from multiplication and differentiation, there is another important opera-
tion denoted by ∗, and called the Hodge star. In d dimensions, this takes a p-form
to a d − p-form:

(∗H )i1...id−p = 1

p!
ε

id−p+1...id
i1...id−p

Hid−p+1...id
. (26.11)

A particularly interesting object is ∗d. For example, ∗d ∧ d is a d-form. But the
components of a d-form are necessarily proportional to εi1...id . With a little work,
one can show that:

∗(∗d ∧ d) = ∂2. (26.12)

Using the ∗ operation, we can write the action for a p-form field:

S = 1

2(p + 1)!

∫
∗F ∧ F (26.13)

with F = d A. This is clearly gauge-invariant. It is easy to check that this reproduces
the standard action for electrodynamics.

For physics, we are particularly interested in zero modes of A, i.e. field config-
urations that satisfy d A = 0, but which are not simply gauge transformations, i.e.
which cannot everywhere be written as

A = d�. (26.14)

A simple example of what is at issue is provided by a gauge field on a circle,
0 ≤ y ≤ 2π R. The one-form gauge field,

Ay = ∂y� � = c y (26.15)

is not a pure gauge transformation unless c = n/R. In electrodynamics, for example,
this corresponds to the fact that the Wilson line,

U = ei
∫ 2π R

0 dy Ay (26.16)

is gauge-invariant, and non-trivial, again, unless c = n/R.
This suggests that we want to consider closed p-forms, α, which satisfy

dα = 0 (26.17)

but that we are not interested in exact forms,

α = dβ. (26.18)
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More generally, we want to define an equivalence class, known as the cohomology
class of α. We will view α and α′ as equivalent if

α′ = α + dβ, (26.19)

where β is well defined everywhere on the manifold.
In general, for field configurations on a manifold M , the number of linearly inde-

pendent zero modes is known as the Betti number, bp. This number is related to the
number of (basis) p-dimensional submanifolds which are not boundaries of p + 1-
dimensional surfaces. We won’t prove this, but we will at least make it plausible.
Consider integration of a p-form, α, over a p-dimensional submanifold, �:∫

�

αi1...i p d�i1i p . (26.20)

By Stokes’ theorem, the integral of the exterior derivative of a p − 1-form, β, over
�, is related to the integral of β over the boundary of �:∫

�

dβ =
∫

∂�

β. (26.21)

If � is compact, it has no boundary, so the integral of dβ = 0.
Two p-forms are in the same cohomology class if∫

�

(α − α′) =
∫

�

dβ =
∫

∂�

β = 0. (26.22)

Note, as before, it is important in this expression that β is defined throughout the
manifold.

If we consider the structure of a massless chiral multiplet, we note that there
are two scalars and a chiral fermion. In compactifications preserving N = 1 super-
symmetry, modes of antisymmetric tensor fields which are annihilated by d will
correspond to massless scalars; supersymmetry guarantees that the other elements
of the multiplet are also present. The suggested readings at the end of the chapter
contain more detailed discussion of these issues, but it is not too hard to understand
how the various states in terms of the forms annihilated by d. The other massless
scalar arises because one can also choose the form so the Laplacian vanishes. The
Dirac operator is closely related to differential forms on manifolds. This can be
shown using the creation–annihilation operator construction of the Dirac matrices
we have used in our discussion of orthogonal groups. One can exhibit in this way
the required pairing.

With this machinery, we can define an important set of topological invariants
of manifolds: characteristic classes. Consider a gauge field, F , F = d A. Note that
F is closed: d F = 0. Also, F is said to be an element of H1(M, R), the second
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cohomology group of the manifold M with real coefficients. The cohomology class
of such two forms is known as the first Chern class.

If the manifold is topologically non-trivial, then if we consider a gauge field,
it may not be possible to describe the field everywhere by a single, non-singular
potential. This problem is familiar to us from the case of the Dirac monopole.
Instead, in different regions, α and β, we have to use different potentials. A(α), A(β).
In regions where α and β overlap (transition regions), A(α) and A(β) will be gauge
transforms of one another,

A(α) = A(β) + φ(αβ). (26.23)

Another set of gauge fields are said to be in the same topological class if

Ã(α) = Ã(β) + φ(αβ) (26.24)

with the same transition function, φ. Now since the functions A and Ã are not
uniquely defined everywhere, F = d A and F̃ = d Ã are not in the trivial cohomol-
ogy class, in general. On the other hand, F − F̃ is, since the difference, A − Ã = B
is well defined. So F − F̃ = d B, and F and F̃ are in the same cohomology class.
So the cohomology class of F , the first Chern class, is a topological invariant.

There is a theorem that if the first Chern class is non-zero, one can always find
a two-dimensional surface, �, with the property:

I (�) = 1

2π

∫
�

F �= 0. (26.25)

Note that this is a kind of magnetic flux. By Dirac’s argument, I (�) is an in-
teger. The first Chern class plays an important role in the theory of Calabi–Yau
spaces.

These ideas can be generalized to complex spaces. Here we define, as we did
for the orbifold, complex coordinates, zi and z̄i . We then define a (p, q)-form
ψ to be an object with p zi -type indices and q z̄i -type indices. Note that ψ is
totally antisymmetric in both types of indices. We can define two types of exterior
derivatives, ∂ and ∂̄ , in the obvious way:

∂ψa1...ap+1,ā1...āq = 1

p + 1
∂a1ψa2...ap+2ā1...āq + (−1)P permutations. (26.26)

Note that ∂2 = 0; ∂̄ is defined similarly. In terms of these definitions,

d = ∂ + ∂̄ . (26.27)

These are known as the Dolbeault operators. We can then consider differential forms
annihilated by these operators. The numbers of independent forms annihilated by
the ∂ and ∂̄ operators are known as the Hodge numbers, h p,q . Then, for example,
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one has the Hodge decomposition:

bn =
∑

p+q=n

h p,q . (26.28)

Again, is is possible to choose these forms so that they are annihilated by the
Laplacian.

26.2 Calabi–Yau spaces: constructions

We have already constructed a rather rich set of four-dimensional string theories.
But they are only a small subset of what appears to be a vast set of possibilities.
We saw, for example, that the orbifold compactifications give rise to moduli which
describe states which are not orbifolds. A rich set of compactifications of string
theory, of which the orbifolds we studied in the last chapter are special cases, are
provided by the Calabi–Yau spaces. In this section, we introduce these.

Our strategy to construct solutions is to look for solutions of the ten-dimensional
field equations. One can ask: why is this sensible? There are two answers. First, if we
consider spaces in which the massless, ten-dimensional fields are slowly varying,
it should be appropriate to integrate out the massive string modes and study the
low-energy equations. A more serious question is: why can we simply look at the
low-order equations? Even at the classical level, integrating out the massive states
will lead to terms with arbitrary numbers of derivatives. This question is far more
serious. If we solve the equations, say, involving two derivatives, we can try to
find solutions of the terms up to four derivatives perturbatively. To do this, we
expand the fields in modes of the lowest-order theory (e.g. eigenfunctions of the
Laplace operator on the complex space). These are precisely the Kaluza–Klein
modes. Calling these φn , plugging our lowest-order solution into the next order
terms, we will obtain equations of the form:(∇2 + m2

n

)
φn = α′

R2
�n. (26.29)

For mn �= 0, i.e. for the massive Kaluza–Klein modes, we simply obtain a small
shift. But the massless modes are problematic. In the case of Calabi–Yau compact-
ifications, it is supersymmetry which will come to our rescue. We will see that, for
the massless modes, the tadpoles (�ns) vanish.

We begin with the Type II theory. Rather than examine the equations of motion,
we look at the supersymmetry variations. In flat space four-dimensional theories,
we are familiar with the idea that we find minima of the potential by setting the
auxiliary fields to zero. We can phrase this in a different, seemingly more obscure
way. We can find static solutions of the classical equations by requiring that the
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supersymmetry variations of all of the fields vanish. That is, we require:

δψ = εF = 0 δλ = εD = 0. (26.30)

We will try the same strategy. In Chapter 17, we introduced the essential elements
required to understand spinors in a gravitational background (the reader may want
to reread Section 17.6). To make things simple, we will look for solutions where
the antisymmetric tensor vanishes and the dilaton is constant, so only the metric
is spatially varying. Then the condition that there be a conserved supersymmetry
becomes:

δψM = DMη = 0. (26.31)

So η is covariantly constant. This means that under parallel transport around any
closed curve, η returns to itself. As in gauge theories, the effect of parallel transport
can be described in terms of Wilson lines, where now the Wilson line is written in
terms of the spin connection, ω:

U = Pei
∮

ω·dx . (26.32)

The fact that η is unchanged under any such transformation greatly restricts the
form of ω. To see how this works, consider that in the ten-dimensional Lorentz
group, there is an O(6) which acts on the compactified coordinates, as well as
the four-dimensional Lorentz group acting on the Minkowski coordinates. The
16-component spinor in ten dimensions decomposes under these groups as

η = (4, 2) + (4̄, 2∗). (26.33)

By local Lorentz transformations, we can take the (4, 2) to have the form (suppress-
ing the four-dimensional spinor index):

η =


0
0
0
η0

 . (26.34)

In order that this be invariant, we require that the spin connection lie in an SU (3)
subgroup of O(6). The space is said to be a space of SU (3) holonomy.

In general, ω is an O(6) matrix. Restricting to SU (3) is a strong constraint.
Already U (3) holonomy requires that the manifold be complex. We encountered
this already in the orbifold case, where we introduced three complex coordinates
and their conjugates. There is no unique way to introduce the complex coordinates.
The continuous set of choices will lead to a set of moduli of our solutions, known
as the “complex structure moduli.” In addition, a manifold of U (3) holonomy is
Kahler. This means that the metric can be derived from a function K (xi , x ī ), the
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Kahler potential, through:

gi j̄ = ∂i∂ j̄ K . (26.35)

While proving that a manifold of U (3) holonomy must be Kahler is challenging, it
is not hard to check that a Kahler manifold has U (3) holonomy. Some aspects of
these manifolds are discussed in the exercises.

The Christoffel symbols and curvature for a Kahler manifold can be written in
quite compact forms. (Verification of these formulas is left for the exercises.) The
components of the affine connection (Christoffel symbols) are given by

�a
bc = gad̄∂bgcd̄ �ā

b̄c̄ = gād∂b̄∂ b̄gc̄d . (26.36)

As a result, the non-zero components of the Riemann tensor are:

Rā
b̄cd̄ = ∂c�

ā
b̄d̄ (26.37)

and the Ricci tensor is

Rb̄c = −∂c�
ā
b̄ā. (26.38)

Using

�ā
b̄ā = ∂b̄ ln det g, (26.39)

this can be further simplified:

Rb̄c = −∂b̄∂c ln det g. (26.40)

Note that our result, Eq. (24.17), for the curvature of a two-dimensional Riemann
surface is a special case of this.

The requirement that the metric have SU (3) holonomy has a dramatic conse-
quence for the curvature: the Ricci tensor vanishes. This follows from our discussion
of the spin connection as a gauge field for local Lorentz transformations. On a six
(real)-dimensional Kahler manifold, we have seen that the spin connection is not an
O(6) field, but rather a U (3) field (in four dimensions, it is a U (2) field, etc.). The
U (1) part of the Riemann tensor is the trace over the Lorentz indices – the group in-
dices, thinking of the Riemann tensor as a non-Abelian field strength. But this object
is the Ricci tensor. So SU (3) holonomy requires that the Ricci tensor itself vanish
everywhere on the manifold. For such a configuration, the lowest-order Einstein
equation is automatically satisfied, Ri j̄ = 0. The question which we would like to
address is, given a Kahler manifold, is it possible to deform the Kahler potential
so that the Ricci tensor vanishes. Clearly a necessary condition for this is that the
integral,

c1 = 1

2π

∫
TrR (26.41)
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vanish. This quantity is the first Chern class, the topological invariant which we
discussed earlier. It was Calabi who conjectured that the vanishing of the first Chern
class for a manifold was a necessary and sufficient condition that the manifold admit
a unique metric of SU (3) holonomy. Yau later proved this conjecture. The spaces
constructed in this way are the famous Calabi–Yau spaces. In general, while one
can prove that such metrics exist, actually constructing them is a difficult numer-
ical problem. Fortunately, many properties relevant to the low-energy behavior of
string theory on these manifolds can be obtained from more limited, topological
information.

It is worthwhile comparing this with our orbifold constructions. The orbifolds
are everywhere flat. But the existence of a deficit angle associated with the fixed
points means that there is actually a δ-function curvature; this gives precisely the
holonomy of these manifolds. If we decompose the spinors, as before, then as
we transport them about the fixed points, the i components pick up a phase, e

2π i
3 ,

while the 0 components are invariant. Correspondingly, we found one unbroken
supersymmetry.

When we discuss the heterotic theory on a Calabi–Yau space, we will have to
choose values for the gauge fields as well. It will not be possible to simply set the
gauge fields to zero. From the point of view of four dimensions, gauge fields with
indices in the extra dimensions are like scalars, so this will result in breaking of
some or all of the gauge symmetry. As we will see in Section 26.6.1, there are many
possible choices for these fields, with distinct consequences for the structure of the
low-energy theory. In an interesting subclass, some features of the heterotic theory
are closely related to those of Type II on Calabi–Yau spaces.

26.3 The spectrum of Calabi–Yau compactifications

In both the Type II and heterotic cases, many features of the low-energy spec-
trum follow from general topological features of the manifold and do not depend
on details of the metric. In the heterotic case, the number of generations (mi-
nus the number of anti-generations) is a topological invariant. Suppose that we
have some number of generations for some choice of metric. If we now make
smooth, continuous changes in the metric, the massless spectrum can change
as generations and anti-generations pair to gain mass or become massless. In
other words, a mass term in an effective action can pass through zero, but the
net number of generations cannot change. In some cases, other features of the
spectrum are similarly invariant. So while it is difficult to write down explicit
metrics for manifolds of SU (3) holonomy, it is possible to determine many im-
portant features of the low-energy theory from basic topological features of the
manifold.
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In the Type II theory, the numbers of hypermultiplets and vector multiplets are
separately topological. They do not pair up as one moves about on the moduli
space; the N = 2 supersymmetry insures that if a field is massless at one point in
the moduli space, it is massless at all points. Even more dramatic is the fact that
massless states found in the lowest order of the α′ expansion are exactly massless.
So it is enough to study the lowest-order supergravity equations of motion to count
massless particles.

The important non-zero Hodge numbers are h2,1 and h1,1. In the IIA theory,
there are h1,1 vector multiplets and h2,1 hyper-multiplets. In the IIB theory, this
is reversed. In the heterotic case, the (2, 1) forms will correspond, effectively to
generations, the (1, 1)-forms to anti-generations.

The counting of massless fields is not difficult to understand. Since we have
taken the antisymmetric tensor fields and fermions to vanish in the background,
the equations for these fields are particularly simple. Consider the antisymmetric
tensor, Bµν . On a complex manifold, as we explained earlier, there are h1,1 (1, 1)
forms, b(a)

i, j̄ and h2,1 (2, 1)-forms annihilated by the operators ∂ and ∂̄ . Since the
corresponding three-index field strengths, H = d B, vanish, there is no energy cost
to giving a constant expectation value to the associated four-dimensional fields;
they correspond to massless scalars in four dimensions. The fields connected to the
(1, 1)-forms, biī , are easy to describe. In addition to the antisymmetric tensor, there
is also a massless perturbation of the metric:

igi ī (x, y) = φ(x)biī (y). (26.42)

Here x refers to the ordinary four-dimensional Minkowski coordinates, and y refers
to the compactified coordinates. Similarly, in the IIA theory, one can find a massless
gauge field, rounding out the bosonic components of the vector multiplet. This
comes from the three-index Ramond field,

Cµi ī (x, y) = Aµ(x)biī (y). (26.43)

We will leave for the reader the problem of working out the structure of the hyper-
multiplets in terms of the (2, 1)-forms, and also determining the pairings in the IIB
case.

One (1, 1)-form which is always present is the Kahler form:

bK
iī = igi ī ; bīi = −igi ī . (26.44)

This satisfies

∂bK = ∂̄bK = 0 (26.45)

because giī = ∂i∂ī K . The real scalar which sits in the multiplet with bK is just
the metric itself. The corresponding massless field is the radius of the compact
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space:

gi,ī (x
µ, zi ) = R2(xµ)gi,ī (z); Bi,ī (x

µ, zi ) = b(xµ)biī (z). (26.46)

That the field is massless is no surprise; the condition Riī = 0 is not changed under
an overall rescaling of the metric so the vev is undetermined.

26.4 World sheet description of Calabi–Yau compactification

So far, we have described compactification of string theory in terms of ten-
dimensional space-time. This analysis makes sense if the radius of the compactified
space is large compared to the string length, �s. We can also formulate these ques-
tions in world sheet terms. This provides a complementary way to understand many
features of the compactified theory. This is useful for at least two reasons. First,
it provides tools to ask what happens when the compactification radius is of order
the string scale or smaller. Second, there are some features of the spectrum and
interactions which are more readily accessible in this framework.

In the Type II theory, the non-linear sigma model which describes compactifi-
cation on a Calabi–Yau space has some striking features. First, in the absence of
background antisymmetric tensor fields, it is left–right symmetric. Second, there
are two left-moving and two right-moving supersymmetries on the world sheet, as
opposed to the one left-moving and one right-moving supersymmetry of a general
configuration. This can be usefully understood in a number of ways. In the light
cone gauge, one can work with the covariantly constant spinor η and its conjugate,
η̄, to construct two left-moving and two right-moving supersymmetry generators,
both in the sense of the world sheet and in space-time. We have already seen this
in the case of orbifold constructions. There, in the light cone gauge, we have eight
left-moving and eight right-moving supersymmetry generators, before the orbifold
projection. We can organize these in terms of their transformation properties under
the SU (3) × U (1) holonomy group. For both the left and right movers, there are
triplets, Qi , anti-triplets, Q̄ī , and singlets, Q0 and Q̄0. The triplets and anti-triplets
are charged under the U (1); the singlets are not. The orbifold projection eliminates
the triplets. The two singlets survive.

In a purely world sheet description, non-linear sigma models described by a
Kahler metric automatically have two left-moving and two right-moving super-
symmetries. To describe these, we can introduce a superspace with four Grassmann
coordinates, two left movers and two right movers: θ A

+ and θ A
− . This superspace can

be thought of as the truncation of N = 1 supersymmetry in four dimensions. We
can define, as in four dimensions, operators Dα and d̄α, and left- and right-moving
chiral fields annihilated by the d̄s. Correspondingly, we can define chiral left- and
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right-moving fields:

Xi
+(z, θ ) = xi (z) + θ A

+ψ i
A(z) + auxiliary field (26.47)

and similarly for Xi
−. In terms of these fields, we can write the action of the con-

formal field theory as: ∫
d2σ

∫
d2θ+d2θ−K (X, X̄ ). (26.48)

Integrating over the θs, the bosonic terms are just
∫

d2σgiī∂αxi∂αx ī , with giī the
Kahler metric.

The superconformal algebra, in these backgrounds, is enlarged to what is referred
to as the N = 2 superconformal algebra (one such algebra for the left movers, one
for the right movers). In addition to the stress tensor and the two supercurrents, this
algebra contains a U (1) current. The supersymmetry generators can be constructed
by the Noether procedure. They can also be guessed by taking the generators in a
flat background, and making the expressions covariant:

G+ = giī DXiψ ī G− = giī DX īψ i . (26.49)

These have opposite charge under the U (1) current (an R current) constructed from
the fermions:

j(z) = ψ ī (z)ψ i (z) (26.50)

and a similar current for the left movers. The full algebra is:

T (z)G±(0) ≈ 3

2z2
G±(0) + 1

z
∂G±(0)

T (z) j(0) ≈ 1

z2
j(0) + 1

z
∂ j(0)

j(z)G±(0) ≈ ±1

z
G±(0). (26.51)

These equations say that G has dimension 3/2, while j has dimension 1, and G±

have U (1) charges plus and minus one. The central charge appears in the relations:

G+(z)G−(0) ≈ 2c

3z3
+ 2

z2
j(0) + 2

b
T (0) + 1

z
∂ j(0)

G+(z)G+(0) ≈ 0

j(z) j(0) ≈ c

3z2
. (26.52)

The non-linear sigma models appropriate to heterotic compactifications on
Calabi–Yau spaces have a number of interesting features. We will see that, for a par-
ticular choice of gauge fields, the world sheet theory which describes the heterotic
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compactification is identical to that of the Type II theory. Thus, again, they have
two left-moving and two right-moving supersymmetries ((2, 2) supersymmetry).
The fact that the world sheet theories of the two different string theories are the
same allows us to argue, as we will below, that Calabi–Yau spaces are solutions of
the full, non-perturbative string equations of motion. But this observation also tells
us about interesting features of the spectrum.

To understand the spectrum, it is helpful to ask, first, what is a vertex operator
from the perspective of the two-dimensional conformal field theory? The answer
is that a vertex operator is a marginal deformation of the theory, a perturbation
of dimension 2 ((1, 1), in terms of the left- and right-moving Virasoro algebras).
The standard way to compute the dimensions of operators is to treat them as per-
turbations, and calculate, for example, the beta function of the perturbation. For
marginal operators, the beta function vanishes to first order. Moduli correspond to
“exactly marginal deformations” of the theory. For these, the beta functions vanish
to all orders in the perturbation (and non-perturbatively), corresponding to the fact
that the theory, even for a finite perturbation, is conformal.

The existence of moduli means that there is a multiparameter set of conformal
field theories. Varying the action with respect to the parameters yields operators
which are exactly marginal. In this way, we have the two-dimensional version of
the correspondence between moduli and massless fields.

An example of a modulus is the radius of the complex space. The lowest-order
equation for the metric is invariant under an overall scaling of lengths. But this
is not obviously true of the higher-order corrections. For Type II theories, the
space-time supersymmetry guarantees that there is no potential for the moduli,
so the sigma model is a good conformal field theory, suitable for heterotic string
compactification. On the heterotic side, we can also give a more direct world-
sheet argument. Here R−2 is the coupling constant of the σ model. In other words,
writing the metric as R2 times a reference metric of order the string scale, R2

scales out of the Lagrangian. We know that the lowest-order beta function equation
is the same as the field theory equation. It is trivially independent of R2, since
it is a one-loop effect. For higher orders, there is a non-renormalization theorem.
This follows from a combined world sheet, space-time argument. The superpartner
of fluctuations in the radius is the fluctuation of the antisymmetric tensor field,
biī = igi ī . The associated vertex operator (term in the action) is a total derivative
on the world sheet at zero momentum. It is perhaps easiest to see this by writing
the vertex operator at zero momentum in the form:

Vb = bM Nεαβ∂α X M∂β X N

= ∂M∂N K εαβ∂α X M∂β X N

= ∂α[εαβ∂β X M∂M K ]. (26.53)
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So b decouples at zero momentum. Because b is in a supermultiplet with R2, this
means that the superpotential, which is a holomorphic function of the superfields,
is independent of R2.

Actually, this statement is not precisely correct, because K is not single-valued.
In perturbation theory, it is true, since one is not sensitive to the global structure of
the manifold (in perturbation theory, all fluctuations are small). Non-perturbatively,
one can encounter instantons in the world sheet theory. A more detailed analysis
is required to determine whether there are corrections to the superpotential. In
left–right symmetric compactifications of the heterotic string, those with two left-
moving and two right-moving supersymmetries ((2, 2) models), a study of fermion
zero modes in the presence of the instanton shows that no superpotential for the
moduli is generated; this is consistent with the expectations from the Type II theory.
For compactifications with two right-moving but no left-moving supersymmetries
((2, 0) models), corrections can be generated, though in some cases intricate cancel-
lations still prevent the appearance of a potential for the moduli. These two classes
of models are phenomenologically quite distinct, as we will see shortly.

26.5 An example: the quintic in CP4

It is helpful to have a concrete example of a Kahler manifold with c1 = 0, on
which we know one can construct a metric of SU (3) holonomy. We have previ-
ously encountered the complex projective spaces in N dimensions, CPN . These are
defined as the spaces with N + 1 complex coordinates, Za , with the identification
Za → λZa , for any complex number λ. We have written down a Kahler potential
on this space:

K = ln

(
1 +

N∑
a=1

Za Z̄a

)
. (26.54)

Any complex submanifold of a Kahler manifold is also a Kahler manifold; one
can simply take the Kahler potential to be the Kahler potential of the full manifold
evaluated on the submanifold. To obtain a manifold with three complex dimensions,
we can start with CP4, and write an equation for the vanishing of a polynomial,
P(Z ). The polynomial should be homogeneous, in order that it have a sensible
action in CPN . It turns out that it should satisfy other conditions. Its gradient should
vanish, at most, at the origin (which is not a point in CPN ). In order that the first
Chern class vanish, it should be quintic. We will give an argument for this shortly.

The simplest (most symmetric) possibility is:

P = Z5
1 + Z5

2 + Z5
3 + Z5

4 + Z5
5 = 0, (26.55)
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but there are obviously many more. We can deform this polynomial by adding other
quintic polynomials. These correspond to varying the complex structure. Since each
deformation produces another solution of the string equations, each deformation
corresponds to a modulus, the “complex structure moduli.” Associated with each of
these deformations is a form of type (2, 1), which we will not attempt to construct
here.

Before listing the deformations, note that not every deformation corresponds to
a change of the physical situation – and thus to a massless particle. Holomorphic
changes of the coordinates which are non-singular and invertible do not change the
complex structure. The transformation

Zi → Zi + εi j Z j (26.56)

is well-defined in CP4. As a consequence, deformations such as Z4
1 Z2 are not

physical. So we can list the possible deformations:

Z3
1 Z2

2 . . . ; Z3
1 Z2 Z3 . . . ; Z2

1 Z2
2 Z3, . . . ; Z2

1 Z2 Z3 Z4, . . . ; Z1 Z2 Z3 Z4 Z5. (26.57)

All together there are 101 possible deformations of the polynomial, corresponding
to h2,1 = 101. In this example, there is only one Kahler modulus, the overall radius
of the compact space.

We can understand heuristically why the first Chern class vanishes in a way which
we will help us understand other features of these manifolds. A characteristic feature
of the Calabi–Yau spaces is the existence of a covariantly constant 3-form, ωi jk .
The existence of this form follows from the existence of the covariantly constant
spinor, η:

ωi jk = η̄�[i jk]η. (26.58)

Working in terms of the creation–annihilation operator basis for the �s, one sees
that ω is holomorphic. The �i s can be defined so that the �ī matrices annihilate
η. Then, because of the complete antisymmetrization, only components of ω with
i, j, k indices are non-vanishing. In the space defined by the vanishing of a quintic
polynomial in CP4, we can show that there exists a holomorphic three-form which
is everywhere non-vanishing. Calling xi = Zi/Z5, i = 1, . . . , 4:

ω = dx1 ∧ dx2 ∧ dx3

(
∂ P

∂x4

)−1

. (26.59)

One can show that this expression does not depend on singling out a particular
coordinate, and that it is not singular at the points where the derivative vanishes,
provided that the polynomial P is quintic and that the gradient of P vanishes only
at the origin. The existence of such a form can be shown to be equivalent to the
vanishing of the first Chern class.
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26.6 Calabi–Yau compactification of the heterotic string at weak coupling

Much effort has been devoted to the study of compactifications of the weakly
coupled heterotic string on Calabi–Yau spaces. These theories have many of the
features of the Standard Model. They also allow one to consider many of the ques-
tions of beyond the Standard Model physics. Before beginning an analysis of these
models, it is worth listing some of the points that we can address in this framework.

(1) Low-energy supersymmetry: solutions of the classical equations of the heterotic string
theory on Calabi–Yau spaces exist. They have N = 1 supersymmetry. Supersymmetry,
as in field theory, is unbroken to all orders of perturbation theory, but may be broken
non-perturbatively.

(2) Low-energy gauge groups: the simplest constructions have gauge group E8 × E6, bro-
ken perhaps by Wilson lines, which preserve the rank of the gauge group. But many
models have a moduli space in which the gauge group is broken to precisely that of the
Standard Model.

(3) Generations: the number of generations is typically determined in terms of topological
features of the underlying manifold.

(4) Massless particles, not protected by symmetries: various massless states arise, which
are not protected by chiral symmetries. This is precisely what we want in order to
understand the presence of light Higgs fields in supersymmetric theories. We know that
if such fields are present in the low-energy field theory, they are protected from gaining
large masses by non-renormalization theorems. In field theory, the vanishing of such
mass terms appears mysterious; in these string constructions, it is automatic. Such states
could play the role of Higgs fields in supersymmetric models. In other words, the µ

problem of ordinary supersymmetric field theories is readily solved in this framework.
(5) Unification of couplings: the string theories we are studying are not grand unified

theories in the conventional sense. There is no energy scale at which these compactifi-
cations appear as four-dimensional theories with a single unbroken gauge group. Yet,
generically, couplings are unified. These last two points, which we will see are easy
to understand in terms of the microscopic structure of string theory, are quite surpris-
ing from a low-energy point of view. They have sometimes been referred to as “string
miracles.”

(6) Continuous and discrete symmetries: it is easy to prove that, for these compactifica-
tions (and for weak-coupling heterotic models in general) there are no continuous global
symmetries; all continuous symmetries must be gauge symmetries. Discrete symme-
tries, on the other hand, proliferate, and might play the role of R-parity or lead to other
interesting phenomena. These discrete symmetries are typically gauge symmetries, in
the sense that they are residual symmetries left over after the breaking of continuous
gauge symmetries.

We will also see that there are a number of problems with these models, which
illustrate some of the basic difficulties in developing a string phenomenology.
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(1) There are too many of them. While there are models with three generations (many),
there are models with hundreds of generations, with non-standard gauge groups and the
like.

(2) The problem of moduli: non-perturbatively, moduli can acquire potentials, but they
typically vanish in various asymptotic regimes. Simple general arguments indicate that
stable, supersymmetry-breaking minima, if they exist, must be in regions which are in-
herently strongly coupled, in the sense that no weak coupling approximation is available.

(3) The problem of the cosmological constant: this is closely related to the previous one. In
many instances moduli potentials can be calculated. For any given value of the moduli,
the size of these potentials is scaled as one would expect by the scale of supersymmetry
breaking. As a result, even if strongly coupled, stable minima exist, it is not clear why
the cosmological constant should be small at these points.

We will not offer a solution to these problems in this chapter, but will explore at
least one proposed answer known as the “landscape” in the concluding chapter.

26.6.1 Features of Calabi–Yau compactifications of the heterotic string

In the previous section, we asserted that, in suitable backgrounds, the world sheet
conformal field theory which describes the heterotic string is the same as that which
describes the Type II theory. Here, we describe compactifications of the heterotic
string theory in more detail.

To construct solutions, we still look for solutions which preserve a space-time
supersymmetry. Again, we require the supersymmetry variation of the gravitino to
vanish, giving Dµη = 0, so once more we need a covariantly constant spinor. There
is now an equation for the variation of the ten-dimensional gaugino, as well:

δλ ∝ �i j Fi jη. (26.60)

One strategy, then, to find solutions which preserve N = 1 supersymmetry is to
require that Fi j�

i j is an SU (3) matrix. There is a simple Ansatz which achieves
this. Both E8 and O(32) have SU (3) subgroups:

SU (3) × E6 × E8 ⊂ E8 × E8 SU (3) × O(26) ⊂ O(32). (26.61)

On the Calabi–Yau space, the spin connection is an SU (3) valued field, so take
the gauge field to be a field in one of these SU (3) subgroups. Then for gauge
generators not in SU (3), Eq. (26.60) is automatically satisfied. For those in SU (3),
the condition is mathematically identical to that for the gravitinos, and is again
satisfied.

This Ansatz satisfies another condition. We put the antisymmetric tensor field B
to zero, but, because of the Chern–Simons terms, this does not by itself guarantee
that the field strength H is zero. But with this Ansatz, the Chern–Simons terms for
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the gauge and gravitational fields are identical. As a quick check, note that

d H = Tr R ∧ R − Tr F ∧ F, (26.62)

and these terms clearly cancel.
This establishes that this is a solution of the equations of motion to lowest order

in the α′ expansion. But there is another way to see this, which will allow us to
establish, as we did for the Type II theory, that this is an exact solution, perturbatively
and non-perturbatively. If we write the non-linear sigma model which describes the
heterotic string in this background, it is identical to that for the Type II theory. To
see this, as in the orbifold case, we divide the left-moving gauge fermions into
three sets. First, there are the fermions in the “other” E8, which are not affected
by the background gauge field and remain free, λA, A = 1, . . . 16. In the first E8,
10 fermions, λa , a = 1, . . . , 10 (transforming as a vector in the O(10) subgroup of
E6) are also free. The remaining six interacting fermions can be grouped, like the
left-moving coordinates, into three complex fermions, λi and λī . These fermions
interact in precisely the same way as the left-moving fermions in the Type II theory.
This can be seen by writing the action of the Type II fermions in terms of the vierbein
and spin structure, rather than the metric and the Christoffel connection.

We see from this that the moduli of the Type II theory are also moduli of the
heterotic theory. Actually, we knew this had to be, since we know that each of these
conformal field theories, on the Type II side, is a good conformal field theory for the
heterotic theory. But we can also see this pairing more directly in the language of
vertex operators. Here it is somewhat more convenient to work in the RNS picture.
The vertex operators correspond to small deformations of the background in the
directions of the moduli. In the Type II theory, they are built from right-moving
fields, ∂ Xi and ψ i , and left-moving fields, ∂̄ Xi , ψ̃ i . In the heterotic case we can trade
ψ̃ i with λi . Since the action for the λi s is the same as for the ψ̃ i s, the dimensions
of the vertex operators are exactly the same. This does not preclude the existence
of additional moduli on the heterotic side, and we will see that there are typically
additional moduli in these compactifications.

While all moduli of the Type II theory are moduli of the heterotic theory, not
all heterotic moduli correspond to states of the Type II theory. Vertex operators for
moduli which preserve only two right-moving supersymmetries ((2, 0)) are not suit-
able vertex operators for the Type II theory. The moduli we are considering here are
distinguished because they preserve the two left-moving world sheet supersymme-
tries, and we will refer to these as Type II moduli. Perhaps more interesting, though,
than the pairing of moduli is is a pairing of the Type II moduli with matter fields.
The moduli associated with (2, 1)-forms are paired with 27s of E6; (1, 1) moduli
with 27s. This is most readily seen in the language of vertex operators, using the
world sheet superconformal symmetry. The vertex operators for the Type II theory
are the highest components of the corresponding superconformal multiplets with
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respect to both left- and right-moving supersymmetries. In superspace, they are the
θ2
+θ2

− components of operators of the form:

f (Xi , X̄ i ). (26.63)

The θ+θ2
− component has dimension (1/2, 1). We can form an operator of dimension

(1, 1) by multiplying by λa , one of the free fermions. This operator is not highest
weight with respect to the left-moving N = 2 algebra, but this is not a problem; this
symmetry is not a gauge symmetry on the world sheet, but simply an “accident” of
our choice of background field. It is highest weight with respect to the left-moving
Virasoro algebra, which is all that matters.

We already observed this pairing in the Z3 orbifold model, which is a special
case of the Calabi–Yau construction. In the untwisted sector, the vertex operators
for the moduli took the form, on the left:

∂̄ Xi , (26.64)

while for the 27s they took the form:

λaλi . (26.65)

The supersymmetry transformation of the latter operator changes λi to ∂̄ Xi .
The distinction between 27s and 27s is readily understood. In the Type II case,

we can distinguish two types of moduli, depending on their charges under the U (1)
within the left-moving N = 2 algebra. In the orbifold context some vertex operators
involve ∂̄ Xi , some ∂̄ Xī . In the heterotic case, the world sheet U (1) symmetry
corresponds to the U (1) subgroup of E6 in the decomposition O(10) × U (1) ⊂ E6.
This U (1) charge is precisely what distinguishes the 10s, for example, in the 27 and
27. In the Type II case, this distinction corresponds to the distinction between (2, 1)
and (1, 1) moduli, so we obtain precisely the pairing we described above (note that
what one calls a 27 and a 27 is a matter of convention; if one adopts the opposite
convention, the identification is reversed).

This result holds everywhere in the moduli space; since the number of moduli
of each type does not change as one moves in the moduli space, the number of 27s
and 27s does not change. This is a surprising result. One might have thought that,
in a complicated construction such as this, 27 and 27s would, whenever possible,
pair to gain mass. But this is not the case. This is precisely the sort of phenomena
one needs to understand light Higgs particles in supersymmetric theories. We will
see shortly how this works in a more detailed model.

26.6.2 Gauge groups: symmetry breaking

So far, the heterotic models we are considering have group E8 × E6. If we are to
describe the Standard Model, we need to be able to break this symmetry. We have
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seen in the case of toroidal compactifications that gauge symmetries can be broken
by expectation values of gauge fields with indices in compactified dimensions.
Stated in a more gauge-invariant fashion, these are non-trivial expectation values
for Wilson lines. In the Calabi–Yau case, the same is possible.

Let’s consider a specific example: the quintic in CP4, with vanishing of the
polynomial:

Z5
1 + Z5

2 + Z5
3 + Z5

4 + Z5
5 = 0. (26.66)

The corresponding Calabi–Yau manifold, we saw, has 101 27s and one 27. This
polynomial has a variety of symmetries. As for the torus, we can use these to project
out states and simplify the spectrum. Consider, for example, the symmetry:

Zi → αi Zi α = e
2π i

5 . (26.67)

This is a symmetry of the polynomial. It is somewhat different than the orbifold
symmetries we have discussed, since, as the reader can check it acts without fixed
points. Mathematicians call such a symmetry “freely acting.” For physics, it means
that if we mod out the Calabi–Yau by this symmetry, while it is still necessary to
include twisted sectors, the twisted strings have mass of order R, the Calabi–Yau
radius, and there are no light states in these sectors if R is large.

We can readily classify the states invariant under this symmetry. Among the
moduli, there are 21 h2,1 fields, associated with polynomials such as Z3

1 Z3 Z4 and
Z1 Z2 Z3 Z4 Z5. The Kahler modulus (overall radius) is also invariant under this
transformation, and so survives the projection. The corresponding Euler number is
40, 1/5 the Euler number of the covering space. There are, as well, 21 27s of E6

and one 27. Further symmetries can be used to reduce the number of generations
to as few as four.

But what interests us here is obtaining smaller gauge groups. We can define
the Z5 to include a transformation in E6. This is equivalent to the presence of a
Wilson line on the manifold. An interesting way to do this is to consider a somewhat
different decomposition of E6 than we have considered up to now:

SU (3) × SU (3) × SU (3) ⊂ E6. (26.68)

An example of a Wilson line in this product of SU (3)s is:

U =
1 0 0

0 1 0
0 0 1

 ×
α 0 0

0 α 0
0 0 α3

 ×
α 0 0

0 α 0
0 0 α3

. (26.69)

This breaks E6 to SU (3) × SU (2) × SU (2) × U (1)2.
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26.6.3 Massless Higgs fields, or the µ problem

When we mod out so as to reduce the gauge symmetry, we also alter the spectrum.
We have seen that we greatly reduce the number of moduli and the number of
generations. The presence of the Wilson lines also disrupts the left–right symmetry
of the model. As a result, the pairing of moduli and matter fields is no longer quite
so simple.

In the presence of the Wilson line, one still obtains 20 complete E6 generations.
If one thinks, loosely, of some of the massless fields “gaining” mass, elements
of the 27 and 27s must pair up to gain mass. More precisely, in this modding
out procedure, states disappear, but they must disappear in pairs. But one also
obtains some incomplete multiplets, where paired states do not disappear. Con-
sider the 27. This is invariant under the original Z5s, so any state which survives
must be invariant under the Wilson line. Using the decomposition of the 27 under
SU (3)3:

27 = (3, 1, 3̄) + (3̄, 3, 1) + (1, 3̄, 3). (26.70)

So we obtain Z5 singlets from only the third multiplet. These form a (1, 2, 2) under
SU (3) × SU (2) × SU (2), as well as a singlet. There is a corresponding pair of
states from the 27s. This is the sort of multiplet we would like to understand the
presence of light Higgs particles in supersymmetric models: massless states, at tree
level, which arise, from a low-energy point of view, more or less by accident.

26.6.4 Continuous global symmetries

In the heterotic string theory, there are no continuous global symmetries. We won’t
give the formal proof here, but the basic argument is not hard to understand. If
there is a global symmetry, it should be a symmetry of the world sheet theory.
In this way, we are guaranteed that vertex operators can be chosen to have well
defined transformation properties, and so the S-matrix will transform properly.
The global symmetry will be associated with a world sheet current. This current
can be decomposed into left- and right-moving pieces. But from any left-moving
current, we can build a gauge boson vertex operator, so the symmetry is necessarily
a gauge symmetry. Right-moving currents will not commute with the world sheet
supersymmetry generators, and will not have well-defined action on states (in the
BRST language, they do not commute with the BRST operator). So they are not
symmetries in space-time.

This argument also indicates that there are no global symmetries in the Type II
theories. This is in accord with our expectation that global symmetries are unlikely
to arise in a theory of quantum gravity.
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26.6.5 Discrete symmetries

When we studied orbifold models, we found discrete symmetries existed in a subset
of vacua on the full moduli space. This is also the case for the Calabi–Yau manifold
constructed from the vanishing of a quintic polynomial in CP4. Such symmetries
turn out to be quite common.

The quintic polynomial, P = ∑
Z5

i , exhibits a set of Z5 symmetries:

Zi → αki Zi α = e
2π i

5 . (26.71)

An overall phase rotation of all of the Zi s has no effect in CP4, so the symmetry here
is Z4

5. There is also a permutation symmetry, S5. This symmetry group is a subgroup
of the O(6) symmetry which would act on six non-compact, flat dimensions. We can
thus think of these symmetries as discrete gauge transformations. So their existence
in a theory of gravity is not surprising.

We would like to know if these symmetries are R-symmetries or not. We can
address this by asking their effect on the covariantly constant spinor, η. This is
more challenging to do than in the orbifold context, since we do not have quite such
explicit expressions. It is simplest to look at the covariantly constant 3-form. We
already gave a construction:

ω = dx1 ∧ dx2 ∧ dx3

(
∂ P

∂x4

)−1

(26.72)

with xi = Zi/Z5. This construction treats the coordinates asymmetrically, but, as
we explained, ω is symmetric among the coordinates. Note that ω transforms es-
sentially like η2, i.e. like θ2. So symmetries under which ω transforms non-trivially
are R-symmetries, and W transforms like ω.

Consider, first, the Z5 transformations of the separate Zi s. We can read off
immediately how ω transforms under transformations of the first three; the other
two follow by symmetry. So

ω → α
∑

ki . (26.73)

Similarly, under those S5 transformation which permute Z1, Z2, Z3, we can see
how ω transforms. If the permutation is odd, ω changes sign. So again, the general
S5 transformation is an R-symmetry.

Turning on the various complex structure moduli typically breaks some or all
of this symmetry. For example, if we turn on the modulus associated with the
polynomial

z1z2z3z4z5 (26.74)
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we break the Z4
5 symmetry down to a subgroup satisfying

∑
ki = 0 mod 5. This

group is Z3
5, but it is a non-R-symmetry, in light of the transformation law of ω. An

expectation value for this field clearly preserves the permutation symmetry.
Similarly, turning on, say, aZ3

1 Z2 + bZ2
1 Z3

2 breaks the symmetries acting on Z1

and Z2, as well as some of the permutation symmetry. Turning on enough fields
breaks all of the symmetry.

One might ask why one should be interested in points or surfaces in the moduli
space which preserve a discrete symmetry, when in the bulk of the space there is no
symmetry. This question is closely related to the question: what sorts of dynamics
might fix the moduli? This is a subject which we will deal with extensively later, but
for which we will provide no definitive resolution. But even without understanding
this dynamics, there is a simple reason to suspect that points in the moduli space
with symmetries might be singled out by dynamics. Imagine that we somehow
manage to compute an effective potential for the moduli, arising, perhaps, due to
some non-perturbative string effects. Symmetry points are necessarily stationary
points of this effective potential. There is, of course, no guarantee that they are
minima of the potential, but they are certainly of interest as candidates for string
ground states.

There are, as we have seen, certain facts of nature which suggest that discrete
symmetries might play some role in extensions of the Standard Model, including
proton decay and dark matter.

26.6.6 Further symmetry breaking: the Standard Model gauge group

The Wilson line mechanism, as we have described it, provides a path to reduce
the gauge symmetry from E6 × E8, but leaves the rank untouched.1 We can hope
to reduce the gauge symmetry further by giving expectation values to some of the
matter fields. Ideally, these expectation values would be large. The presence of
other gauge groups (as well as unwanted matter multiplets) can spoil the prediction
of coupling unification, and lead to severe difficulties with proton decay and other
rare processes. We are led, then, to ask if we can consider more general states, in
which the spin connection is not equal to the gauge connection, and the rank is
reduced.

This is a complex subject, which has only been partially explored. At lowest order
in the α′ expansion, there are such flat directions. They are not left–right symmetric,
and while, in order that they exhibit space-time supersymmetry, they have two right-
moving supersymmetries, they have only one left-moving supersymmetry. So they
are not suitable backgrounds for Type II theories, and one cannot argue as easily as

1 Non-Abelian discrete symmetries offer possibilities for reducing the rank, but we will not explore these here.
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for the standard embedding that these (0, 2) configurations are solutions of exact
classical string equations. They are still subject to perturbative non-renormalization
theorems in α′. But detailed study of instanton amplitudes is required to determine
if these flat directions are lifted non-perturbatively, i.e. by corrections of the form
e−R2α′

.
There are, however, a class of vacua with Standard Model gauge group which

can be found by symmetry arguments, much as we found additional flat directions
in the Z3 orbifold model. Consider, again, the quintic in CP5, with the symmetric
polynomial. We can find flat directions of the D terms by taking 27 = 27. More
precisely, starting with the E6 decomposition into O(10) representations,

27 = 101 + 1−2 + 16−1/2, (26.75)

we can give expectation values to the singlets in the 27 and one of the 27s. These are
also flat directions of the F terms. For example, consider the 27 corresponding to the
polynomial Z1 Z2 Z3 Z4 Z5. The product, 27 27 is invariant under all of the discrete
R-symmetries; no terms of the form (27 27)n can appear in the superpotential. So

this direction is exactly flat (terms of the form 273, 27
3

cannot lift these directions
either). In combination with Wilson lines, these flat directions readily break to the
SU (3) × SU (2) × U (1) group of the Standard Model.

26.6.7 Gauge coupling unification

One of the striking successes of low-energy supersymmetry is its prediction of
unification. Within the context of grand unification – where the gauge group of
the Standard Model is unified in a simple group at a scale MGUT – the fact that
the couplings unify is readily understood. In the context of the compactifications
considered here, it is not immediately obvious why this should be the case. In the
case of symmetry breaking by Wilson lines, for example, the compactification scale
and the scale of the symmetry breaking are of the same order. So there is no energy
scale where one has a unified, four-dimensional effective theory.

In the weakly coupled heterotic string, however, the couplings do unify under
rather broad conditions. In the case of Wilson line breaking this can be understood
immediately in field-theoretic terms. The effect of the Wilson line is to eliminate
states from the E6 unified theory, but at tree level no couplings are altered. So the
couplings of all groups emerging from E6 are the same. Perhaps more surprising is
the fact that the E6 and E8 couplings are the same. This can be seen by considering
the vertex operators for the gauge bosons in each group. In both cases, the vertex
operators are constructed in terms of free two-dimensional fields, which obey the
same algebra (in the unbroken subgroup) as in the flat space theory. So, for example,
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the operator product expansions of these gauge boson vertex operators are unaltered.
There are constructions where unification does not hold. These involve replacing the
two-dimensional fermions with a current algebra with a different central extension.

In the (2, 1) flat directions considered above, we can give an argument based
on the low-energy field theory that the couplings remain unified as one moves out
along the flat direction. A change in the coupling requires that there be a coupling
of this modulus to the gauge fields. But at the classical level, we know that there
are no such couplings, because any such coupling would violate the axion shift
symmetry. This symmetry is unaffected by the expectation value of these moduli.

When we come to consider strongly coupled strings, the problem of coupling
unification will be more complicated. It will be less clear in what sense unification
is generic. Whether this is a problem for the theory, or a clue, is a question for the
student to ponder.

26.6.8 Calculating the parameters of the low-energy Lagrangian

As we have explained, string theory is a theory without fundamental dimensionless
parameters. On the other hand, the structure of the low-energy theory, we now see,
depends on discrete choices: which Calabi–Yau, orbifold, etc., in how many dimen-
sions, with how much supersymmetry, with which Wilson lines, and continuous
dynamical quantities, the moduli. For any given choice, at least classically, it should
be a straightforward problem to calculate the parameters of the low-energy theory.

It is easy to calculate the four-dimensional gauge couplings in terms of the ten-
dimensional dilaton and the radius. We have already seen how this works for simple
compactifications, and this carries over directly to the Calabi–Yau case, since the
vertex operators for the gauge fields are constructed in terms of two-dimensional
fields, as in the orbifold or toroidal case.

The cosmological constant is another interesting quantity in the low-energy
theory. At the classical level in the Calabi–Yau compactifications, it vanishes. This
can be understood in a variety of ways. First, if we examine the solution of the ten-
dimensional equations of motion, we see that since the Ricci tensor vanishes, there
is no cosmological term. Second, in the two-dimensional conformal field theory,
the cosmological constant would give rise to a tadpole for the dilaton, but this
is forbidden by conformal invariance. Ultimately, the absence of a cosmological
constant is inherent in the form of the solution: we assumed that four dimensions
are flat. We will see later that this is not necessary: string theory admits AdS spaces,
as well as Minkowski spaces, as classical solutions.

From the perspective of trying to understand the Standard Model, a particularly
important set of parameters are the Yukawa couplings. These can certainly be
computed in the string theory. In principle, we should construct the vertex operators
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for the appropriate matter fields, and then construct the required OPE coefficients
or suitable scattering matrices. In practice, this can often be short-circuited. In the
orbifold models, for example, in the untwisted sectors we can read off the Yukawa
couplings by dimensional reduction of the ten-dimensional Lagrangian. The scalar
fields are components of the original ten-dimensional gauge fields, Ai . Similarly the
fermions are components of the ten-dimensional gauginos. In the orbifold theory,
alternatively, it is not difficult to construct the vertex operators and to compute the
required OPE coefficients.

In the Calabi–Yau case, we have seen that, in the α′ expansion, the superpotential
is independent of R. So one can work at very large radius, and pick off the leading
contribution. To actually do the computation, one can construct the zero modes of
the scalar and spinor fields, and substitute in the Lagrangian. A priori, one might
expect that this would be quite difficult, given that one does not have an explicit
formula for the metric. But it turns out that the Yukawa couplings have a topological
significance, and their values can be inferred by general reasoning. We will not have
use for explicit formulas here, but it is important to be aware of their existence.

26.6.9 Other perturbative heterotic string constructions

The quintic is just one of a large class of Calabi–Yau models which can be con-
structed. The exact number is not actually known. It is not even known, with cer-
tainty, whether the number of Calabi–Yau vacua is finite or infinite.

So while we will not assess here the size of this space, there is clearly a large
class of string solutions with gauge group identical to that of the Standard Model.
These theories have varying numbers of generations, including both orbifold (or
free fermion) models and Calabi–Yau constructions with three. There are many
models with groups, numbers of generations, and other features radically different
than those of the Standard Model. Still, it is remarkable how easily we have ob-
tained models which accord with some of our speculations for Physics Beyond the
Standard Model. We have found low-energy supersymmetry, coupling unification,
light Higgs particles, discrete symmetries which can potentially suppress proton
decay and give rise to a stable dark matter candidate, all in a framework where we
can imagine that real calculations are possible.

In subsequent chapters, we will turn to the problems of actually turning these
observations and discoveries into a real theory which we can confront with
experiment.

Suggested reading

Volume 2 of Green et al. (1987) provides a comprehensive introduction to Calabi–
Yau compactification, and I have borrowed heavily from their presentation. Weakly
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coupled string models with three generations have been constructed in the context
of Calabi–Yau compactification; their phenomenology is considered by Greene
et al. (1987). Models based on free fermions have been constructed by Faraggi
(1999). We will encounter non-perturbative constructions in Chapter 28. At special
points in their moduli spaces, some Calabi–Yau spaces can be described in terms
of solvable conformal field theories. This program was initiated by Gepner (1987),
and is described at some length by Polchinski (1998). A very accessible description,
including computations of physically interesting couplings, appears in Distler and
Greene (1988).

Exercises

(1) Write the field strength of electrodynamics as a two-form, and express its gauge in-
variance in the language of forms. Verify that d F = 0 is the Bianchi identity (the
homogeneous Maxwell equations).

(2) Show that for a Kahler manifold, the non-vanishing components of the affine connection
(Christoffel symbols) are given by Eq. (26.36). Then show that the non-zero components
of the Riemann tensor are given by Eq. (26.37) and verify Eq. (26.38). Derive Eq. (26.40)
by noting that

�ā
b̄ā = ∂b̄ ln det g. (26.76)

Show that our result for the two-dimensional curvature of a Riemann surface is a special
case of this.

(3) For a flat, two-dimensional torus, introduce complex coordinates and verify that the
bosonic and fermionic terms are just those of the free string action. You can take
K = X †X for this case.

(4) Write out the action of the heterotic string propagating in the Calabi–Yau background
with spin connection equal to the gauge connection in some detail. Determine the form
of the vertex operators for the 27 and 27 fields, in the RNS formulation (you can limit
yourself to the NS–NS sector).

(5) Exhibit a combination of Wilson lines and SU (5) singlet expectation values which break
the gauge group to that of the Standard Model in the case of the quintic in CP4.
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Dynamics of string theory at weak coupling

In previous chapters, we have seen that string theory at the classical level shows
promise of describing the Standard Model, and can realize at least one scenario
for physics beyond: low-energy supersymmetry. But there are many puzzles, most
importantly the existence of moduli and the related question of the cosmologi-
cal constant. At tree level, in the Calabi–Yau solutions, the cosmological constant
vanishes. But whether this holds in perturbation theory and beyond requires under-
standing of the quantum theory.

In studying string theory, we have certain tools:

(1) weak coupling expansions,
(2) long-wavelength (low-momentum, α′) expansions.

We have exploited both of these techniques up to this point. In analyzing string
spectra, we have worked in a weak coupling limit. There are corrections to the
masses and couplings, for example, in string perturbation theory, and most of
the states that we have studied have finite lifetimes. At weak coupling, these ef-
fects are small, but at strong coupling, the theories presumably look dramatically
different.

In asserting that Calabi–Yau vacua are solutions of the string equations, we used
both types of expansions. We wrote the string equations both in lowest order in
the string coupling, and also with the fewest number of derivatives (two). Even at
weak coupling and in the derivative expansion, we can ask whether Calabi–Yau
spaces are actually solutions of the string equations, both classically and quantum
mechanically. For example, we have seen that, at lowest order in both expansions,
there are typically many massless particles. We might expect tadpoles to appear for
these fields, both in the α′ and in loops. There is in general no guarantee we can
find a sensible solution by simply perturbing the original one.

Yet there are many cases where we can make exact statements. In both Type II
and heterotic string theories, we can often show that Calabi–Yau vacua correspond

429
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to exact solutions of the classical string equations. We can also show that they are
good vacua – there are no tadpoles for massless fields – to all orders of the string per-
turbation expansion. More dramatically, we can sometimes show that these vacua
are good, non-perturbative states of the theory. This is perhaps surprising, since
we lack a suitable non-perturbative formulation in which to address this question
directly. The key to this magic is supersymmetry. In the framework of quantum
field theory, we have already seen that supersymmetry gives a great deal of control
over dynamics, both perturbative and non-perturbative. We were able to prove a va-
riety of non-renormalization theorems from very simple starting points. The more
supersymmetry, the more we could establish. The same is true in string theory.
We can easily prove a variety of non-renormalization theorems for string perturba-
tion theory. We can show that with N = 1 supersymmetry in four dimensions, the
superpotential is not renormalized from its tree level form in perturbation theory;
the gauge coupling functions are not renormalized beyond one loop. These same
considerations indicate the sorts of non-perturbative corrections which can (and do)
arise. In theories with more supersymmetries, one can prove stronger statements:
the superpotential is not renormalized at all, and there are strong constraints on the
kinetic terms. These sorts of results will be important when we try to understand
weak–strong coupling dualities.

27.1 Non-renormalization theorems

In each of the superstring theories one can prove a variety of non-renormalization
theorems. Consider, first, the case of ten dimensions. At the level of two derivative
terms, the actions with N = 1 or N = 2 supersymmetry (16 or 32 supercharges)
are unique. So, perturbatively and non-perturbatively, there is no renormalization.
This is a variant of our discussion in four-dimensional field theories. If we di-
mensionally reduce the Type II theories on a six-dimensional torus, we obtain a
four-dimensional theory with 32 supercharges (N = 8 in four dimensions); if we
reduce the heterotic theory, we obtain a theory with N = 4 supersymmetry in four
dimensions (16 supercharges). In either case, the supersymmetry is enough to pre-
vent corrections to either the potential or the kinetic terms, not only perturbatively
but non-perturbatively.

These are quite striking results. From this we learn that the question of whether
the universe is four-dimensional or not, or whether it has, say, four or eight su-
persymmetries, or none, is not simply a dynamical question (at least in the naive
sense of comparing the energies of different states or their relative stability). Other
issues, perhaps cosmological, must come into play. We will save speculations on
these questions for later.
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27.1.1 Non-renormalization theorems for world sheet perturbation theory

Let us turn, now, to compactified theories. Consider, first, a Type II theory com-
pactified on a Calabi–Yau space. In this case, the low-energy theory has N = 2
supersymmetry. Again, this is enough to guarantee that there is no potential gen-
erated for the moduli, perturbatively or non-perturbatively. In other words, starting
with a solution of the equations of the low-energy effective field theory, at lowest
order in gs and R2/α′, we are guaranteed that we have an exact solution to all orders –
and non-perturbatively – in both parameters.

Now consider the compactification of the heterotic string theory on the same
Calabi–Yau space, with spin connection equal to the gauge connection. Then the
world sheet theory, as we saw, has two left-moving and two right-moving super-
symmetries. It is identical to the theory which describes the corresponding Type
II background. But we just established that the Calabi–Yau space is a solution of
the classical string equations, which means that there is a corresponding super-
conformal field theory with central charge c = 9. This is an exact statement; so
the background corresponds to an exact solution of the classical string equations.
This does not establish that the Calabi–Yau space corresponds to an exact vacuum
quantum mechanically, as it does in the Type II case. For example, the intermediate
states in quantum loops in the two theories are different.

We can establish this result in a different way. Consider the h1,1 (1, 1)-forms,
b(a)

i ī ; one of these is the Kahler form, where biī = giī . In world sheet perturbation
theory we have seen that these fields decouple at zero momentum. The fact that
all scattering amplitudes involving external b particles vanish at zero momentum
has consequences for the structure of the low-energy effective Lagrangian: only
derivatives of b appear in the Lagrangian. This is reminiscent of the couplings of
Goldstone bosons; the Lagrangian, in world sheet perturbation theory, is symmetric
under

b(x) → b(x) + α (27.1)

for constant α.
This result implies a non-renormalization theorem for σ -model perturbation

theory; b lies in a supermultiplet with r2, the modulus which describes the size of
the Calabi–Yau space. This is apparent from the fact that they are both Kaluza–
Klein modes associated with the metric, giī ; r2 is the symmetric part; b is the
antisymmetric part. So this is similar to the situation in which we could prove non-
renormalization theorems in field theory. Different orders of σ -model perturbation
theory are associated with different powers of r−2. But in holomorphic quantities
such as the superpotential and gauge coupling function, additional powers of r−2

are accompanied by powers of b. So only terms which are independent of r−2 are
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permitted by the shift symmetry. As a result, the superpotential computed at lowest
order is not corrected in σ -model perturbation theory. This means that particles
which are moduli at the leading order in α′ are moduli to all orders of σ -model
perturbation theory.

This non-renormalization theorem does not quite establish that these are good so-
lutions of the classical string theory; there is still the possibility that non-perturbative
effects in the σ -model will give rise to potentials for the lowest-order moduli. In-
deed, our argument for the vanishing of the b couplings is not complete. At zero
momentum, the vertex operator for b, Vb, is topological; while it is the integral of
a total divergence, it does not necessarily vanish. There generally exist classical
Euclidean solutions of the two-dimensional field theory – instantons – for which
the vertex operator is non-zero. These world sheet instantons raise the possibility
that non-perturbative effects on the world sheet will lift some or all of the vac-
uum degeneracy. For the (2, 2) theories, however, we already know that this does
not occur. We earlier argued, by considering the compactification of the related
Type II theories, that these corresponding sigma models are exactly conformally
invariant. It is possible (and not terribly difficult) by examining the structure of
the two-dimensional instanton calculation (“world-sheet instanton”) to show that
no superpotential is generated. While we will not review this analysis here, the
techniques involved are familiar from our discussion of four-dimensional instan-
tons. One wants to determine whether instantons can generate a superpotential.
One needs, as in four dimensions, to count fermion zero modes, and see if they
can lead to a non-vanishing correlation function at zero momentum for an appro-
priate set of fields. In the (2, 2) case, one finds that they cannot. One can then
ask whether quantum corrections (small fluctuations) to the instanton result can
yield such a correction. Here, one notes that, as in perturbation theory, holomorphy
fixes uniquely the dependence on the coupling. So if the lowest-order contribution
vanishes, higher orders vanish as well.

In the case of (2, 0) compactifications of the heterotic string, the situation is
more complicated. Perturbatively, we can argue, as before, that solutions of the
string equations at lowest order are solutions to all orders in the α′ expansion.
Non-perturbatively, however, the situation is less clear. For such compactifications,
there is no corresponding Type II compactification, so we can not rely on the magic
of N = 2 supersymmetry. It is necessary to examine in detail the effects of world
sheet instantons. In general, if one does the sort of zero-mode counting described
above, one finds that it is possible to generate a superpotential. But in many cases,
one can argue that there are cancellations, and the superpotential vanishes.

It is important to understand that the non-renormalization theorems do not imply
that the Calabi–Yau manifold is itself an exact solution to the classical string equa-
tions; rather, the point is that there is guaranteed to exist a solution nearby. There
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can be – and are – tadpoles for massive particles in σ -model perturbation theory.
A tadpole corresponds to a correction of the equations of motion:

∇2h + m2h = �. (27.2)

This is solved by a perturbatively small shift in the h field:

h = − �

m2
. (27.3)

For the massless fields, however, one cannot find a solution in this way, and in
general, if there is a tadpole, there is no nearby (static) solution of the equations.
This is why the low-energy effective action is such a useful tool in addressing such
questions: it is precisely the tadpoles for the massless fields which are important.

27.1.2 Non-renormalization theorems for string perturbation theory

In field theory, we proved non-renormalization theorems by treating couplings as
background chiral fields, and exploring the consequences of holomorphy of the
effective action as functions of these fields. In string theory, we have no coupling
constants, but the moduli determine the effective couplings, and since they are
themselves fields, they are restricted by the symmetries of the theory. We exploited
this connection in the previous section to prove non-renormalization theorems for
σ -model perturbation theory. In this section, we prove similar statements for string
perturbation theory.

We begin with the heterotic string theory, on a Calabi–Yau manifold or an orb-
ifold. In this case, we saw that there is a field, S, which we called the dilaton
(it is sometimes called the four-dimensional dilaton). The vertex operator for the
imaginary part of this field, a(x), at k = 0, is simply:

Va =
∫

d2σεab∂a Xµ∂b X νbµν. (27.4)

This is, again, a total derivative on the world sheet. So this particle, which we saw
earlier is an axion, decouples at zero momentum. So again there is a shift symmetry –
this is just the axion shift symmetry. Again, this means that the superpotential must
be independent of S. But since powers of perturbation theory come with powers
of S, this establishes that the superpotential is not renormalized to all orders of
perturbation theory!

As in the world sheet case, there can be non-perturbative corrections to the
superpotential, and this raises the possibility that potentials will be generated for
the moduli. We will see shortly that gluino condensation, as in supersymmetric
field theories, is one such effect.
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First, we consider other string theories. In the case of Type II compactified
on a Calabi–Yau space, the N = 2 supersymmetry is enough to insure that no
superpotential is generated perturbatively or non-perturbatively: Calabi–Yau spaces
correspond to exact ground states of the theory, and the degeneracies are exact as
well. As in field theories with N = 2 supersymmetry, corrections to the metric
(Kahler potential) are possible. Theories with more supersymmetry (heterotic on
tori or Type II theories on K3 spaces with N = 4 supersymmetry, or Type II on tori
with eight supersymmetries) are even more restricted.

27.2 Fayet–Iliopoulos D-terms

In deriving the non-renormalization theorems for string perturbation theory, we
established that there is no renormalization of the superpotential, or of the gauge
coupling function beyond one loop. But this is not quite enough to establish that
there is no renormalization of the potential. We must also check whether Fayet–
Iliopoulos terms are generated. From field-theoretic reasoning, we might guess that
any renormalization would occur only at one loop. In globally supersymmetric
theories in superspace, a Fayet–Iliopoulos term has the form:

ζ 2 D =
∫

d4θV . (27.5)

This term is just barely gauge invariant; under V → V + � + �†, this is invariant
because

∫
d4θ� = 0 since � is chiral. If we treat the gauge coupling (or any other

couplings) as background fields, any would-be corrections to D would have the
form: ∫

d4θg(S, S†)V (27.6)

which is only invariant if g is a constant. Thus any D-term is independent of the
coupling, in the normalization where 1/g2 appears in front of the gauge terms. So
at most there is a one-loop correction.

Before going on to string theory, it is interesting to look at the structure of any one-
loop term. Call the associated U (1) generator Y . If supersymmetry is unbroken,
massive fields come in pairs with opposite values of Y , so only massless fields
contribute. The Feynman diagram which contributes to the D-term is shown in
Fig. 27.1. It is given by:

ζ 2 = Tr(Y )
∫

d4k

(2π )4

1

k2
. (27.7)

So a vanishing D-term requires that the trace of the U (1) generator vanish. The
one-loop diagram is quadratically divergent, but let’s rewrite this in a way which
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Fig. 27.1. The Feynmann diagram which contributes to the D-term.

resembles expressions we have seen in string theory. We can introduce a “Schwinger
parameter,” which we will call τ2. Then:

ζ 2 = 2πTr(Y )
∫ ∞

0
dτ1

∫
d4k

(2π )4
e−2πτ2k2

(27.8)

= 1

32π3
Tr(Y )

∫ ∞

0

dτ2

τ 2
2

∫ 1/2

−1/2
dτ1.

We have written things in this way because we want to think think of this as an
integral over the modular parameter of the torus. At this stage, the integral is still
quadratically divergent. But, under modular transformations, the complex τ plane
is mapped into itself several times. We can define a fundamental domain,

−1

2
≤ τ1 ≤ 1

2
, |τ | ≥ 1. (27.9)

If we restrict the integration to the fundamental domain, the result is finite. In string
theories, this turns out to be the correct answer:

ζ 2 = 1

192π2
Tr Y. (27.10)

This result can be derived by a straightforward string computation. But instead,
in string models where Tr(Y) is non-zero, we can give a low-energy field theory
argument which completely fixes the coefficient of the D-term, and also sheds light
on possible perturbative corrections. If Tr(Y) �= 0, the low-energy theory has a
gravitational anomaly. This anomaly is rather similar to the gauge anomalies we
have discussed in field theory. It arises from a diagram with one external gauge
boson and an external graviton. String models with such anomalies typically have
gauge anomalies as well, which we can readily evaluate. As an example, consider
the compactification of the O(32) heterotic string on a Calabi–Yau space, with
spin connection equal to the gauge connection. In this case, the low-energy gauge
group is SO(26) × U (1). There are h1,1 26s with U (1) charge 1, and h2,1 26s with
U (1) charge −1. There are also corresponding singlets, with charge +2 and −2
respectively. These are in precise correspondence with the fields we found in E6;
the 26s arise in parallel to the O(10) 10s; the singlets to the O(10) singlets. But
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now it is clear that there are anomalies in the gauge symmetries. For example, there
is a U (1) × O(26)2 anomaly proportional to

A = (h2,1 − h1,1) (27.11)

and a U (1)3 anomaly:

A′ = (h2,1 − h1,1)(26 − 8). (27.12)

On the other hand, this is a modular invariant configuration of string theory, so
there should not be any inconsistency, at least in perturbation theory. So something
must cancel the anomaly. The cancellation is actually a variant of the mechanism
discussed originally by Green and Schwarz in ten dimensions, now specialized to
four dimensions. We know that there is a coupling:∫

d2θ SW 2
α . (27.13)

This gives rise to a coupling of the axion to the F F̃ terms of each group. The
anomaly calculation in the low-energy theory implies a variation of the action
proportional to the anomaly coefficient and F F̃ . So if the axion transforms under
the gauge symmetry as

a(x) → a(x) + cω(x) (27.14)

this can cancel the anomaly. It is crucial that the anomaly coefficients are the same
for each group.

We can check whether this hypothesis is correct. If a(x) transforms, then it must
couple to the gauge field. The required covariant derivative is

Dµa = ∂µa − 1

c
Aµ. (27.15)

So from the kinetic term in the action, there is a coupling of Aµ to a. One can
compute this coupling without great difficulty and verify that it has the required
magnitude.

More interesting, however, is to consider the implications of supersymmetry. We
can generalize the coupling above to superspace. The transformation law for a now
becomes a transformation law for S:

S → S + � + �† (27.16)

where � is the chiral gauge transformation parameter. The gauge-invariant action
for S is:

−
∫

d4θ ln

(
S + S† − 1

c
V

)
. (27.17)
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If we Taylor series expand this Lagrangian, we see that, in addition to the Aµ∂µa
coupling, we generate a Fayet–Iliopoulos D-term:∫

d4θ
1

c(S + S†)
V . (27.18)

One can verify that this term – and the other terms implied by this analysis – are
present. First, we can ask: at what order in perturbation theory should each of these
terms appear? To establish this, we need to remember that the standard supergravity
Lagrangian is written in a frame where M2

p appears in front of the Einstein term
in the effective action. In the string frame, it is the dilaton – essentially S – which
appears out front. If we rescale the four-dimensional metric by:

gµν → Sgµν (27.19)

then S appears in front of the Lagrangian. With this same rescaling, the “kinetic”
term, which had an S out front, has S3. The Fayet–Iliopoulos D-term, originally
has a 1/S out front. Correspondingly, the resulting scalar mass term would be
proportional to 1/S2. After the metric rescaling, this is independent of S, i.e. in the
heterotic string theory, the D-term should appear at one loop, in accord with our
field theory intuition. Similarly, the coupling Aµ∂µa should appear at one loop,
while there should be a contribution to the cosmological constant at two loops. All
of these can be found by straightforward string computations (some of these are
described in the Suggested reading).

In essentially all known examples, this one-loop D-term does not lead to super-
symmetry breaking. There always seem to be fields which can cancel the D-term.
Consider, again, the O(32) theory. Here we can try to cancel the D-term by giving
an expectation value to one of the singlets, 1−2. The question is whether this gives
a non-zero contribution to the potential when we consider the superpotential. The
most dangerous coupling is a term 1−21+2 involving some other singlet. But such
terms are absent at lowest order, and their absence to higher orders is guaranteed by
the non-renormalization theorems. Charge conservation forbids terms of the form
1n

−2; there are no other dangerous terms. So this corresponds to an exact “F-flat” di-
rection of the theory. So in perturbation theory there exists a good vacuum. While a
general argument is not known, empirically this possibility for cancellation appears
to arise in every known example.

What does the theory look like in this new vacuum?

(1) Supersymmetry is restored and the vacuum energy vanishes.
(2) The U (1) gauge boson has a mass-squared of order g2

s times the string scale.
(3) The longitudinal mode of the gauge boson is principally the imaginary part of the

charged scalar field whose vev canceled the D-term. There is still a light axion.



438 27 Dynamics of string theory at weak coupling

From the perspective of a very-low-energy observer, the D-term is not a dramatic
development. It plays some role in determining physics at a very-high-energy scale
(albeit not quite as high as the string scale). What is perhaps most impressive is
the utility of effective field theory arguments in sorting out a microscopic string
problem. Prior to the discovery of the D-term, for example, there had been many
papers “proving” a strict non-renormalization theorem for the potential; this, we
see, is not correct (it is not hard to determine, in retrospect, what went wrong in the
original proofs). The effective field theory arguments make clear when the potential
is renormalized in perturbation theory and when it is not. They also permit easily
finding the “new vacuum” in cases where a Fayet–Iliopoulos term appears. It is
possible, in principle, to find this vacuum by stringy methods, but this is distinctly
more difficult. Finally, these arguments give insight into the non-perturbative fate
of the non-renormalization theorems.

27.3 Gaugino condensation

We have seen that in string theory, if supersymmetry is unbroken at tree level, it
is unbroken to all orders of perturbation theory. The argument, as in field theory,
allows exponential dependence on the coupling. In the case of the heterotic string
compactified on a Calabi–Yau space, gaugino condensation, as in supersymmetric
field theories, generates a superpotential on the moduli space.

Consider the E8 × E8 theory compactified on a Calabi–Yau space, with spin
connection equal to the gauge potential, and without Wilson lines. In this case,
there is an E6 × E8 gauge symmetry. There are typically several fields in the 27
of E6, but there are no chiral fields transforming in the E8. So one has a pure E8

supersymmetric gauge theory. The couplings of the E6 and E8 are equal at the
high scale, so the E8 coupling becomes strong first. This leads, as we have seen, to
gaugino condensation. We have also seen that at tree level there is a coupling:

SW 2
α . (27.20)

Just as before, this leads to a superpotential for S:

W (S) = Ae−3S/b0 . (27.21)

One often hears this described as a “field theory analysis,” as if it is not necessarily
a feature of the string theory. But string theory obeys all of the principles of quantum
field theory. If we correctly integrate out high-energy string effects, the low-energy
analysis is necessarily reliable. So the only question is: are there terms in the low-
energy effective action that lead to larger effects. One might worry that, since we
understand so little about non-perturbative string theory, it would be hard to address
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this. But with some very mild assumptions, we can establish that the low-energy
effects are parametrically larger than any high-energy string effects.

The basic assumption is that, as in field theory, non-perturbatively the theory
obeys a discrete shift symmetry (for a suitable normalization of a):

a(x) → a(x) + 2π. (27.22)

When we discuss non-perturbative string theory, we will give some evidence for
this; this will turn out to be one of the more mild assertions in the subject of string
duality. For now, note that if we accept this, any superpotential for S arising from
high-energy string effects is of the form

Wnp = Cne−nS (27.23)

for integer n. So such effects are exponentially smaller than gaugino condensation.
What does the low-energy theory look like? The dilaton potential goes rapidly

to zero for large S, i.e. in the weak coupling limit. We might have hoped that
somehow we would find supersymmetry is broken and the moduli are fixed. But
instead, gaugino condensation leads to a runaway potential. At large S, we have
just argued that no additional stringy effects can stabilize this behavior.

We can imagine more elaborate versions of this phenomenon, involving matter
fields as well, in some sort of hidden sector. But it is difficult to construct models
where the moduli are stabilized in any controlled fashion along these lines.

27.4 Obstacles to a weakly coupled string phenomenology

We have seen that string theory is a theory without dimensionless parameters. This
is an exciting prospect, but it also raises the question: how are the parameters of
low-energy physics determined? We have argued that the answer to this question
lies in the dynamics of the moduli: the expectation values of these fields determine
the couplings in the low-energy Lagrangian.

In non-supersymmetric string configurations, perturbative effects already lift the
degeneracy among different vacua, giving rise to a potential for the moduli. In
the previous section, we have learned that in supersymmetric compactifications
non-perturbative effects generically lift the flat directions of the potential. In other
words, the moduli are not truly moduli at the quantum level. At best, we can speak of
approximate moduli in regions of the field space where the couplings are weak. The
potentials, both perturbative and non-perturbative, all tend to zero at zero coupling.
This is not surprising; with a little thought, it becomes clear that this behavior is
not specific to perturbation theory or some particular non-perturbative phenomenon
such as gaugino condensation. At very weak coupling, we expect that the potential
always tends rapidly to zero. This means that if the potential has a minimum, this
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occurs when the coupling is not small. This is troubling, for it means that it is likely
to be hard – if possible at all – to do computations which will reveal detailed features
of the state of string theory (if any) which describes the world we see around us.

In the next chapter, we will see that much is known about non-perturbative string
physics. Most striking are a set of dualities, which relate regimes of very strong
coupling in one string theory to weak coupling in another. While impressive, these,
by themselves, do not help with the strong coupling problem we have elucidated
above. If, at very strong coupling, the theory is equivalent to a weakly coupled
theory, the potential will again tend to zero. In other words, it is likely that stable
ground states of string theory exist only in regions where no approximation scheme
is available.

Perhaps just as troubling is the problem of the cosmological constant. Neither
perturbative nor non-perturbative string theory seems to have much to say. The
potentials are more or less of the size one would guess from dimensional analysis
(and the expected dependence on the coupling). Perhaps most importantly, they are,
up to powers of coupling, as large as the scale set by supersymmetry breaking.

There are, however, some reasons for optimism. Perhaps the most important is
provided by nature itself: the gauge and Yukawa couplings of the Standard Model
are small. Another is provided by string theory. As we will discuss later, there are
ways in which large pure numbers can arise. These might provide mechanisms to
understand the smallness of couplings, even in situations where asymptotically the
potential vanishes. Finally, we will see that there is, at present, only one proposal
to understand the smallness of the cosmological constant, and string theory may
provide a realization of this suggestion.

Suggested reading

The result that there are no continuous global symmetries in string theory is a
fundamental one. For the heterotic theory, it appears in Banks and Dixon (1988).
Non-renormalization theorems for world sheet perturbation theory and issues in
construction of (0, 2) models are described by Witten (1986) and by Green et al.
(1987). The non-renormalization theorem for string perturbation theory is described
by Dine and Seiberg (1986). The space-time argument for the Fayet–Iliopoulos D-
term appears in Dine et al. (1987c); world sheet computations appear in Atick
et al. (1987) and Dine et al. (1987a). World sheet instantons are discussed in Dine
et al. (1986, 1987b); cancellations of instanton effects relevant to (0, 2) theories are
studied by Silverstein and Witten (1995).
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Beyond weak coupling: non-perturbative string theory

In the previous chapter, we were forced to face the fact that string theory, if it de-
scribes nature, is not weakly coupled. On the other hand, the very formulation we
have put forward of the theory is perturbative. We have described the quantum me-
chanics of single strings, and given a prescription for calculating their interactions
order by order in perturbation theory in a parameter gs. There is a parallel here to
Feynman’s early work on relativistic quantum theory: Feynman guessed a set of
rules for computing perturbative amplitudes of electrons. In this case, however, one
already had a candidate for an underlying description: quantum electrodynamics. It
was Dyson who clarified the connection. For Abelian theories, the non-perturbative
theory probably does not really exist, but in the case of non-Abelian gauge theories
it does. The field theoretic formulation provides an understanding of the underlying
symmetry principles, and access to a trove of theoretical information.

A string field theory would be a complicated object. The string fields themselves
would be functionals of the classical two-dimensional fields which describe the
string. The quantization of such fields is sometimes called “third quantization.”
Much effort has been devoted to writing down such a field theory. For open strings,
one can write relatively manageable expressions which reproduce string perturba-
tion theory. For closed strings, infinite sets of contact interactions are required. But
apart from their cumbersome structure, there are reasons to suspect that this is not a
useful formulation. There would seem to be, for example, vastly too many degrees
of freedom. At one loop, we have seen that string amplitudes are to be integrated
only over the fundamental region of the moduli space. Naively a field theory which
simply describes all of the states of the string would have amplitudes integrated
over the whole region, and the cosmological constant would be extremely divergent.
The contact terms mentioned above solve this problem, but not in a very satisfying
way.

Despite this, there has been great progress in understanding non-perturbative as-
pects of the known string theories. Most strikingly, it is now known that all theories
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with 16 or more supersymmetries are the same. Many tools have been developed
to study phenomena beyond string perturbation theory, especially D-branes and
supersymmetry. There exist some cases where non-perturbative formulations of
string theory are possible, and we will discuss them briefly in this chapter. They
are technically and conceptually much simpler than string field theory. They have
a puzzling, perhaps disturbing feature, however: they are special to strings prop-
agating in particular backgrounds. It is as if, in Einstein’s theory, for each pos-
sible geometry, one had to give a different Hamiltonian. All of these results are
“empirical.” They have been developed by collecting circumstantial evidence on a
case-by-case basis. There is still much which is not understood. In the last chapter,
we will discuss how this developing understanding might lead to a closer connection
of string theory to nature.

28.1 Perturbative dualities

Before considering examples of weak–strong coupling dualities, we return to the
large/small radius duality we studied in Section 25.3. Many of the dualities we will
study have a similar flavor, even though they cannot be demonstrated so directly.
We saw that there is an equivalence of the heterotic string theory at small radius
to the theory at large radius. By examining the action of these transformations at
their fixed points, we saw that these duality symmetries are gauge symmetries. We
could ask, as well, the significance of duality transformations in the IIA and IIB
theories. As in other closed strings, in addition to transforming the radii, the duality
transformation takes:

∂ X9 → −∂ X9; ∂̄ X9 → ∂̄ X9. (28.1)

Because of world sheet supersymmetry, it has the same action on the fermions;
ψ9 → −ψ9; ψ̃9 → ψ̃9. But under this the chirality operator appearing in the GSO
projector is reversed in sign, i.e. duality interchanges the IIA and IIB theories; the
small-radius IIA theory is equivalent to the large-radius IIB theory, and vice versa.
There are other perturbative connections. For example, the compactified O(32)
heterotic string theory is equivalent to the E8 × E8 theory.

28.2 Strings at strong coupling: duality

Duality is a term used in physics to label different descriptions of the same physical
situation. At the level of perturbation theory, we have learned about five apparently
different string theories. Based on the perturbative dualities discussed above, we
see that there are at most three inequivalent string theories, the Type I, Type II, and
heterotic theories. But it is tempting to ask whether there are more connections. In
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this chapter, we will see that all of the known string theories are equivalent in a
similar way, but these equivalences relate small and large coupling. For example, the
strong coupling limit of the O(32) heterotic string theory is the weak coupling limit
of Type I string theory; the strongly coupled limit of E8 × E8, compactified to six
dimensions on a torus, is the weakly coupled limit of Type II theory compactified on
a K3 manifold (K3 manifolds are essentially four-dimensional Calabi–Yau spaces);
the ten-dimensional Type II theory is self-dual, and, perhaps most intriguingly of all,
the strong coupling limit of Type IIA theory in ten dimensions is described, at low
energies, by a theory whose low-energy limit is eleven-dimensional supergravity.

Lacking a non-perturbative formulation of the theory, the evidence for these
connections is necessarily circumstantial. While circumstantial, however, it is com-
pelling. All of the evidence relies on supersymmetry. We will not be able to review
all of this here, but will try to give the flavor of some of the arguments. Supersym-
metry, especially supersymmetry with 16 or 32 supercharges, allows one to write
a variety of exact formulas, for Lagrangians (based on strong non-renormalization
theorems) and for spectra (based on BPS formulas) which can be trusted in
both weak and strong coupling limits. This allows detailed tests of the various
dualities.

28.3 D-branes

When we discussed strong–weak (electric–magnetic) dualities in field theory, topo-
logical objects played a crucial role. The same is true in string theory, where the
solitons are various types of branes. In general, a p-brane is a soliton with a p + 1-
dimensional world volume, so a 0-brane is a particle, a 1-brane a string, a 2-brane a
membrane, and so on. In general, one might construct these by solving complicated
non-linear differential equations. But a large and important class of topological ob-
jects can be uncovered in string theory in a different – and much simpler – way.
These are the D-branes. These branes fill an important gap in our understanding
of the Type I and Type II theories. In these theories, we encountered gauge fields
in the Ramond–Ramond sectors: two-forms in Type I, one-forms and three-forms
in the IIA theories, zero-forms, two-forms, and four-forms in the IIB. One natural
question is: where are the charged objects that couple to these fields? They are
not within the perturbative string spectrum. The vertex operators for these fields
involved the gauge-invariant field strengths only, so in perturbation theory there
are no objects with minimal coupling. The answer is the D-branes. Their masses
(tensions) are proportional to 1/gs , so at weak coupling they are very heavy. This
is why they are not encountered in the string perturbation expansion.

When we discussed open strings, we noted that there are two possible choices
of boundary conditions: Neumann and Dirichlet. At first sight, Neumann boundary



444 28 Beyond weak coupling: non-perturbative string theory

conditions appear more sensible; Dirichlet boundary conditions would violate trans-
lational invariance, implying that strings end at a particular point(s). But we have
already encountered violations of translational invariance within translationally
invariant theories: solitons, such as magnetic monopoles or higher-dimensional ob-
jects like cosmic strings and domain walls. Admitting the possibility of Dirichlet
boundary conditions for some or all of the coordinates leads to a class of topologi-
cal objects known as D-branes (for Dirichlet branes). If d − p − 1 of the boundary
conditions are Dirichlet, while p + 1 are Neumann, the system is said to describe
a Dp-brane.

We can be quite explicit. Start first with the bosonic string. For the Neumann
directions, we have our previous open string mode expansion of Eq. (21.16). For
the Dirichlet directions, we have:

X I = x I
0 + i

∑
n �=0

1

n
α I

n e−inτ sin(nσ ) I = 1, d − p − 1. (28.2)

Note that there are no momenta associated with the Dirichlet directions. The x I
0 s

should be thought of as collective coordinates. We will argue shortly that the tension
of the branes is proportional to M p+1

s /gs .
Consider an “extreme” case, that of a D0-brane. There are 25 collective coor-

dinates and no momenta, so this object is a conventional soliton. In field theory,
the excitations near the soliton, which describe scattering of mesons (field theory
excitations) from the soliton must be found by studying the eigenfunctions of the
quadratic fluctuation operator. But here they are very simple: they are just the ex-
citations of the open string. As a second example, consider a D3-brane. Now the
momentum has four components. So the excitations which propagate on the brane
are four-dimensional fields. These break up into two types. The Neumann fields,
Xµ, give rise to a massless gauge boson, the state α

µ

−1|0〉; the Dirichlet fields, X I ,
give rise to massless scalars on the brane α I

−1|0〉. In the superstring version of this
construction, there are six scalars and a gauge boson, and their superpartners. In
N = 1 language, this is a vector multiplet and three chiral multiplets, the content
of N = 4 Yang–Mills theory with gauge group U (1).

Before considering some of these statements in greater detail, let us explore a
further aspect of this construction. Suppose we have several branes, say D3-branes,
parallel to each other. Here parallel just means that the strings which end on these
branes have Dirichlet or Neumann boundary conditions in the same direction. Now,
however, we have the possibility that the strings end on different branes. Take the
simplest case of two branes. If the branes are separated by a distance r , in addition
to the modes above, labeled by the collective coordinate x I

i , i = 1, 2, we have to
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allow for expansions of the form:

X I (σ, τ ) = x I
i +σ

r

π

(
x I

j − x I
i

) + i
∑
n �=0

1

n
α I

n e−inτ sin(nσ ) I = 1, . . . , d − p − 1.

(28.3)

There are two such configurations, one starting on the first brane and ending on the
second, and one starting on the second and ending on the first. The ground states
in these sectors have mass-squared proportional to r2. For r �= 0, all of these states
are massive. The massless bosons consist of a U (1) gauge boson on each brane,
as well as scalars. As r → 0, we have two additional massless gauge bosons. If
we generalize to n branes, we have n massless gauge bosons and 6n scalars; as we
bring the branes close together, we have n2 gauge bosons and 6n2 scalars.

There is a natural conjecture as to what is going on here. When all of the branes
are on top of one another, we have a U (n) gauge symmetry, with 3n complex
scalars transforming in the adjoint representation of the group. As the branes are
separated, the adjoint scalars acquire (commuting) expectation values; these break
the gauge symmetry to U (1)n , giving mass to the other gauge bosons. In principle,
we would like to check that these n2 gauge bosons interact as required for Yang–
Mills theories, as we did for the gauge bosons of the heterotic string. This is more
challenging here, since we need vertex operators which connect strings ending on
different branes and we will not attempt this. We will provide further evidence for
the correctness of this picture shortly.

The branes break some of the supersymmetry of the Type II theory in infinite
space; instead of 32 conserved supercharges, there are 16. A simple way to un-
derstand this uses the light cone gauge construction. There are now open strings
ending on the brane. For the world sheet fermions, the boundary conditions relate
the left and right movers on the string. Calling these Sa and S̃a , we have

Sa(σ, τ ) =
∑

n

Sa
n e−in(τ+σ ) S̃a(σ, τ ) =

∑
n

Sa
n e−in(τ−σ ). (28.4)

Recall that half of the supercharges have the very simple form:

Qa =
∫

dσ Sa Q̃a =
∫

dσ S̃a (28.5)

so Qa = Q̃a . This is the structure of a broken supersymmetry generator, with S the
goldstino. The same is true for the other set of supercharges. Other configurations
of branes, such as non-parallel sets of branes, preserve less supersymmetry. Brane–
anti-brane configurations preserve no supersymmetry at all.

We can imagine other sets of branes, which would respect different amounts of
supersymmetry. If we have branes which are not parallel, for example, different sets
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of supersymmetries will be preserved. In order to count supersymmetries, we need
to compare the supersymmetries on different branes, at different angles relative to
one another.

28.3.1 Brane charges

We have seen that the simplest D-brane configurations preserve half of the super-
symmetries. In other words, they are BPS states. Typically BPS states are associated
with conserved charges. In the case of IIA and the IIB theories, in the Ramond–
Ramond sectors there are gauge fields, but, in perturbation theory, no charged
objects. Polchinski guessed – and showed – that the objects which carry Ramond–
Ramond charges are D-branes. In the IIA case, the gauge fields are a one form and a
three form; in the IIB case they are a zero-form, a two-form, and a (self-dual) four-
form. In relativistic mechanics, a gauge field couples to a particle – a zero-brane.
We have seen that a two-index tensor couples naturally to a string – a one-brane.
So this suggests that in the IIA theory, there should be Dp-branes with p even, cou-
pling to the corresponding R–R gauge fields, while in the IIB theory there should be
Dp-branes with p odd. Polchinski verified this by direct calculation. He computed
the one-loop amplitude for two separated branes. For large separations, he found
the poles associated with exchange of the massless gauge fields (more precisely,
for fixed separation, r , one should see falloff with powers of 1/r ). His calculation
not only yields the brane charges, but it also gives the brane tensions.

Consider the case of two branes, separated by a distance y. In empty flat space,
the trace over states in the one-loop amplitude for open strings gives a result of the
form:

A = C
∫ ∞

0

dt

t2
. (28.6)

The power of t arises from the momentum integral,
∫

d8k exp(−k2), as well as
from the manipulation of the oscillator traces. The main difference in the case of
two separated branes is that the mass-squared has a contribution from the brane
separation, y2, and 9 − p coordinates of the brane are fixed, so they don’t have
associated momenta. So the result has the form:

A = C
∫ ∞

0

dt

t2
(8π2α′t)(9−p)/2exp

(
− t y2

2πα′

)
∼ y−(7−p) ∼ G9−p(y). (28.7)

Here Gd(y) is the scalar Green function in d dimensions. So one can think of a
potential between the branes associated with the exchange of massless states. These
massless states are antisymmetric tensor fields and their superpartners, as well as
gravitons and gravitinos. These contributions can be isolated, and the tensions and
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charges of the D-branes determined. In the case of the superstring, the full potential
vanishes due to boson and fermion cancellations.

28.3.2 Brane actions

We are familiar with the actions for zero-branes and one-branes. The action for a
general p-brane is a generalization of these:

Sp = −Tpξ

∫
d p+1ξ det

(
∂ Xµ

∂ξ a

∂ X ν

∂ξ b
ηµν

)1/2

. (28.8)

In the zero-brane case, this is the action for a particle; Xµ(τ ) is the collective
coordinate which describes the position of the soliton, and T0 is its mass. For a
general background with a bulk metric, dilaton and antisymmetric tensor field this
generalizes to

Sp = −Tp

∫
d p+1ξe−�[− det(Gab + Bab + 2πα′Fab)]1/2. (28.9)

The terms involving the metric and antisymmetric tensor are similar to those we
have encountered elsewhere in string theory, and their form is not surprising. The
e−� reflects the fact that in the open string sector, the coupling constant is the square
root of that of the closed string sector.

28.4 Branes from T-duality of Type I strings

There is another way to think about D-branes, which provides further insight. We
have seen that closed string theories exhibit a duality between large and small radius.
In the heterotic theory there is an exact equivalence of the theories at large and small
radius, which can be understood as a gauge symmetry. In Type II theories, T -duality
relates two apparently different theories. It is natural to ask what is the connection
between large and small radius in theories with open strings. Open strings have
momentum states, but no winding states. So there cannot be a self-duality. Instead,
we look for an equivalence between the open string theory at one radius and some
other theory at the inverse radius. Here we uncover D-branes.

Consider the boundary conditions on the strings in the compactified direction.
For the closed string fields, the effect of the duality transformation is to take:

XL → XL XR → −XR. (28.10)

In terms of left- and right-moving bosons in open string theories, Neumann bound-
ary conditions are the conditions

∂τ X = (∂σ+ + ∂σ−)X = 0. (28.11)
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So after a T -duality transformation, we would expect

(∂σ+ − ∂σ−)X = ∂σ X = 0, (28.12)

i.e. we have traded Neumann for Dirichlet boundary conditions. While this follows
from simple calculus manipulations, it is instructive to formulate this in terms of
the mode expansion for the open string. Ordinarily, we have:

X9 = x9
i + 1

2
p(τ + σ ) + 1

2
p(τ − σ ) + i

∑
n �=0

1

n

(
α9

ne−in(τ+σ ) + α9
ne−in(τ−σ )

)
.

(28.13)

The effect of the duality transformation is to change the sign of the terms which
depend on τ − σ . So instead of writing an expansion in terms of cosines, we have
an expansion in terms of sines:

X9 = x9
0 + pσ + i

∑
n �=0

1

n
α9

ne−inτ sin(nσ ). (28.14)

These are precisely the Dirichlet branes. Note the role of p: in the T-dual picture, it
is a sort of winding: it describes strings which start on the brane, wind around the
compact dimension some number of times, and then end on the brane.

This T -duality of open strings also allows us to better understand the appearance
of gauge interactions associated with stacks of branes. In the original open string
picture, gauge degrees of freedom are described by Chan–Paton factors, i.e. charges
on the ends of the string. In the case of Type I strings, these are described by states
of the form |AB〉, A, B = 1, . . . , 32. Now consider a U (16) subgroup of O(32).
The string ends carry labels, i, j , within U (16). Taking the diagonal generators of
U (N ) to be the matrices

T1 = diag(1, 0, 0, . . . ) T2 = diag(0, 1, 0, . . . ), (28.15)

etc., the state (ī, j) carries charge −1 under Ti , +1 under Tj , and zero under the
other generators.

We can consider constant, background gauge fields in the 9 direction. We can
write these as:

A = diag(a1, a2, . . . , a16). (28.16)

This has a gauge-invariant description in terms of the Wilson line:

U = ei
∮

d�x · �A, (28.17)

where the integral is taken in the periodic directions. Such a background gauge field
breaks the gauge symmetry to U (1)16, in general; the other gauge bosons should
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gain mass. In field theory, the corresponding mass terms are proportional to

[Aµ, A9]2 (28.18)

so the diagonal gauge bosons are massless, and those corresponding to the non-
Hermitian generator

T kl
i j = δk

i δ
l
j (28.19)

have mass-squared

m2 = (ai − a j )
2. (28.20)

This is similar to the calculations we did of symmetry breaking in grand unified
theories.

We would like to understand how this result arises directly in the string theory.
It is simplest to consider the case of a string which is constant in σ . The coupling
of the string depends on the Chan–Paton factors. In the light cone, the action in the
presence of a gauge field is like that of a particle:

1

2

∫
dτ

((
∂ Ẋ9

∂τ

)2

+ (ai − a j )
∂ X9

∂τ

)
. (28.21)

For a non-constant string, the situation is somewhat more complicated, since the
gauge fields couple at the string end points.

The extra term modifies the canonical momenta. These are now:

P = n

R
= ∂ Ẋ9

∂τ
+ (ai − a j ). (28.22)

This means that the leading term in the string mode expansion is:

X9 =
( n

R
− (ai − a j )

)
τ. (28.23)

This gives an extra contribution to the mass. If n = 0, this is exactly what we expect
from field-theoretic reasoning.

Now let’s consider the T -dual picture. Under T -duality, the zero-mode part of
X transforms into:

X9 = x0 +
( n

R
− (ai − a j )

)
σ. (28.24)

For i = j , this corresponds to a string beginning and ending on the same D-brane.
For i �= j , the string ends at different points, i.e. on separated D-branes. At least for
the Type I theory, we have derived the picture we conjectured earlier: a stack of N
coincident branes describes a U (N ) gauge symmetry; as the branes are separated,
the gauge symmetry is broken by a field in the adjoint representation.
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28.4.1 Orientifolds

We have seen that we can understand the appearance of D-branes by considering
T -duality transformations of open strings. The Type I theory is a theory of oriented
strings. In the closed string sector, the action has a parity symmetry, which inter-
changes left and right on the world sheet. Calling the corresponding operator �, one
keeps only states which are invariant under the action of �. This is necessary for
the consistency of interactions of open and closed strings. This means that closed
string states like

α−2α̃−1α̃−1|0〉 (28.25)

are not allowed, but symmetrized combinations such as

α−2α̃−1α̃−1 + α̃−2α−1α−1|0〉 (28.26)

are permitted. This projection is similar to the orbifold projections we have encoun-
tered earlier.

Consider the action of � in the T -dual theory. We have seen that in terms of the
original fields,

X9′ = −X9
L + X9

R. (28.27)

So the effect of interchanging left and right is to change the sign of X9, i.e. � is a
combination of a world sheet parity transformation and a reflection in space-time.

The effect of this projection on states is similar to a Z2 orbifold projection. We can
combine momentum states to form states with definite transformation properties
under the reflection:

|p〉 ± | − p〉. (28.28)

Gravitons, for example, in the non-compact directions, Gµν , must have momentum
states which are even; in coordinate space, this means that graviton states must be
even functions of x . The fields Gµ9 must be odd functions, and so on. It is as if there
is an entity, the orientifold, sitting at the origin – the fixed point of the reflection.
This object in fact has a negative tension. One way to see this is simply to note
that the effect of the T -duality transformation was to produce a set of D-branes.
These branes have a positive tension. From the point of view of the non-compact
dimensions, this is a cosmological constant. But the original theory had no such
cosmological constant – this must be canceled by the orientifold.

Just as it is not necessary to start from the Type I theory and its dualities to
encounter D-branes, it is not necessary to start from the Type I theory to consider
orientifolds. Starting from Type II theories, in particular, we can perform a pro-
jection by world sheet parity times some Z2 space-time symmetry. For example,
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consider a Type II theory with a single compact dimension. On this theory, we can
make a projection which is a combination of world sheet parity, �, and reflection
in the compact dimension.

28.5 Strong–weak coupling dualities: the equivalence of
different string theories

We have seen that at weak coupling, there are a variety of connections between
different string theories which are surprising from a field-theoretic perspective.
The heterotic string, compactified on a circle of very large radius, is equivalent to
a string theory compactified at very small radius (with a different coupling). The
Type IIA theory at large radius is equivalent to the IIB theory at small radius. The
O(32) heterotic string is equivalent to the E8 × E8 theory. All of these equivalences
involve significant rearrangement of the degrees of freedom. Typically Kaluza–
Klein modes, which are readily understood from a space-time field theory point of
view, must be exchanged with winding modes, which seem inherently “stringy.” So
perhaps it is not surprising that there are other equivalences, involving weak and
strong coupling. Again, we have had some inkling of this in field theory, when we
studied N = 4 Yang–Mills theory. There, the theory at weak coupling is equivalent
to a theory at strong coupling. To see this equivalence, one needs to significantly
rearrange the degrees of freedom. States with different electric and magnetic charge
exchange roles, as the coupling is changed from strong to weak.

In string theory, there is a complex web of dualities. The IIB theory in ten
dimensions exhibits a strong–weak coupling duality very similar to that of N = 4
Yang–Mills theories; weak and strong coupling are completely equivalent. The
O(32) heterotic string theory, in ten dimensions, is equivalent at strong coupling
to the weakly coupled Type I theory. These relations are surprising, in that these
theories appear to involve totally different degrees of freedom at weak coupling.
But there are more surprises still. The strong coupling limit of the IIA theory in ten
dimensions is a theory whose low-energy limit is eleven-dimensional supergravity.
If we allow for compactifications of the theory, this set of dualities is already enough
to establish an equivalence of all string theories, as well as some as yet not fully
understood theory whose low-energy limit is eleven-dimensional supergravity. But
as we compactify, we find further, intricate relations. For example, the Type IIA
theory on K 3 is equivalent to E8 × E8 on T 4. Given that all of the sensible theories
of quantum gravity we know are equivalent, it is plausible that, in some sense, there
is a unique theory of quantum gravity. As we will see, however, we only know
this reliably for theories with at least 16 supercharges. For theories with four or
less, this situation is less clear; it is by no means obvious that the statement is even
meaningful.
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In the next sections, we will explore some of these dualities, and the evidence
for them. We will also discuss two particularly surprising equivalences. We will
argue that certain string theories are equivalent to quantum field theories – even
to quantum mechanical systems. The very notion of space-time in this framework
will be a derived concept.

28.6 Strong–weak coupling dualities: some evidence

In the case of T -dualities, those dualities which relate the behavior of string theories
at weak coupling and different radii, it is straightforward to understand the precise
mappings between the different descriptions. Lacking a general non-perturbative
definition of string theory, it is not possible to do something similar in the case
of strong–weak coupling dualities. Instead, one can try to put together compelling
circumstantial evidence. Without supersymmetry, even this is essentially impos-
sible. But in the presence of sufficient supersymmetry one has a high degree of
control over the dynamics. Evidence for equivalence can be provided by studying
the following.

(1) The effective action: in ten or eleven dimensions, the terms in the action with up to two
derivatives are uniquely determined by supersymmetry, so they are not corrected either
perturbatively or non-perturbatively. A similar statement holds for N ≥ 4 actions in
four (and actions with varying degrees of supersymmetry in between). In some cases,
one can check higher-derivative terms in the effective action as well.

(2) The spectrum of BPS objects: in many cases, the low-lying states are BPS objects. They
cannot disappear from the spectrum as the coupling or other parameters are varied. With
16 or more supercharges, they obey exact mass formulae. The identity of the BPS states
for different theories provides non-trivial evidence for these equivalences.

We will explore only some of the simplest connections here, but it is important
to stress that these identifications are often subtle and intricate. In many instances
where one might have thought the dualities mentioned above might fail, they do
not.

28.6.1 IIA → eleven-dimensional supergravity (M theory)

We start with the IIA theory, where we can readily access both aspects of the
duality. Comparing the actions of eleven-dimensional supergravity and the IIA
theory is particularly straightforward, as the Lagrangian of the IIA theory is often
obtained by compactifying eleven-dimensional supergravity on a circle, keeping
only the zero modes. The basic degrees of freedom in eleven dimensions are the
graviton, gM N , the antisymmetric tensor gauge field, CM N O , and the gravitino, ψM .
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We are not going to work out the detailed properties of this theory, but it is a useful
exercise to check that the numbers of bosonic and fermionic degrees of freedom
are the same. As usual, we can count degrees of freedom by going to the light
cone (or using the “little group,” the group of rotations in D = 11 − 2 = 9). The
metric is a symmetric, traceless tensor; for the gravitino, we need also to impose the
constraint γ I ψi = 0. For the metric, then, we have ((9 × 10)/2) − 1 = 44, while
from the three-index antisymmetric tensor we have (9 × 8 × 7)/3! = 84, for a total
of 128 bosonic degrees of freedom. From the gravitino, we have 9 × 16 − 16 = 128
degrees of freedom.

If we compactify x10 on a circle of radius R, we obtain the following bosonic
degrees of freedom in ten dimensions.

(1) The ten-dimensional metric, gµν (µ, ν = 0, . . . , 9).
(2) From g10µ we obtain a vector gauge field. This is identified with the Ramond–Ramond

vector field of the IIA theory.
(3) From C10µν we obtain an antisymmetric tensor field, identified with the antisymmetric

tensor, Bµν of the NS–NS sector of the IIA theory.
(4) From Cµνρ , we obtain the three-index antisymmetric tensor field of the R–R sector of

the IIA theory.
(5) From g10,10 we obtain a scalar field in ten dimensions, the dilaton of the IIA theory.

Note that this mode corresponds to the radius, R, of the eleventh dimension.

Now consider the action. We will examine just the bosonic terms. These are
constructed in terms of the curvature tensor, the three-index antisymmetric tensor,
and its corresponding four-index field strength, F :

L = −1

2κ2

√
gR − 1

48
√

gF2
M N P Q −

√
2κ

3456
εM1...M11 FM1...M4 FM5...M8CM9 M10 M11 .

(28.29)

As we indicated, the dimensional reduction of this theory gives the Lagrangian of
the IIA theory in ten dimensions. It is convenient to parameterize the fields in terms
of the vielbein, eA

M . Then:

eA
M =

(
eA
µ Aµ

0 R11

)
. (28.30)

Correspondingly, the metric has the structure:

gM N = eA
MeB

NηAB =
(

gµν R11 Aµ

R11 Aν R2
11

)
. (28.31)

If we simply plug these expressions into the Lagrangian, the coefficient of the
Einstein, R, term, will be proportional to R. In order to bring this Lagrangian to the
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canonical, Einstein form, it is necessary to perform a Weyl rescaling of the metric.
But instead, we will perform the rescaling so as to bring the action to “string frame.”
In this frame, all of the NS–NS fields have a factor of e−2φ out front, where e−2φ

is the string coupling (dilaton). In ten dimensions,
√

g = e transforms like (gµν)5

under an overall rescaling of the metric; R transforms like (gµν)−1. So we need to
rescale:

gµν → R−2/3
11 gµν. (28.32)

The three form, C , upon reduction, leads to various fields in ten dimensions. The
components C10µν give the NS–NS two-form. The fields Cµνρ give the R–R three-
form. The R–R one-form field arises from the g10,µ components of the metric. The
ten-dimensional action becomes:

S = SNS + SR (28.33)

with

SNS = 1

2

∫
d10x

√
ge−2φ

(
R + (∇φ)2 − 1

2
H 2

)
(28.34)

IR = −
∫

d10x
√

g

(
1

4
F2 + 1

2 × 4!
F2

4

)
− 1

4
F4 ∧ F4 ∧ B. (28.35)

We have seen that, when the action is written this way, R is related to the coupling
of the ten-dimensional string theory. The Weyl rescaling, gµν → R−3/4

11 gµν gives
an action with R3 out front, i.e.

L = R−3
11

(
−1

2
R − 3

4
R−3/2 H 2

µνρ − 9

16

(
∂µ R11

R11

)2
)

. (28.36)

In this form, the unit of length is the string scale, �s. So loops come with a factor
of R3

11 (the ultraviolet cutoff is �−1
s ). So we see that

g2
s = R3

11

�3
11

. (28.37)

We can derive this relation another way (not keeping 2πs), which makes a
more direct connection between eleven-dimensional supergravity and strings. The
eleven-dimensional theory has membrane solutions. We will not exhibit these here,
but this should not be too surprising: the three-form, CM N O , couples naturally to
membranes. The eleven-dimensional theory has only one scale, �11, so the tension
of the membranes is of order �−3

11 . We can wrap one of the coordinates of the
membrane around the eleventh dimension. If the eleventh dimension is very small,
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the result is a string propagating in ten dimensions, with a tension:

T = �−3
11 R = �−2

s . (28.38)

Now, again, the ten-dimensional gravitational coupling is related to �11 by

G10 = �9
11

R11
. (28.39)

So we find, again,

g2
s = R3

11

�3
11

. (28.40)

So we have our first piece of circumstantial evidence for the connection. Let’s
turn now to the BPS spectrum. Consider, first, the eleven-dimensional supersymme-
try algebra. Eleven-dimensional spinors can be decomposed into ten-dimensional
spinors of definite chirality, with indices α and α̇. In this basis,

�11 =
(

0 1
1 0

)
. (28.41)

The eleven-dimensional momenta decompose into ten-dimensional momenta and
p11 in an obvious way:

{Qα, Qα̇} =� pα,α̇ + p11δα,α̇. (28.42)

From a ten-dimensional point of view, the last term is a central charge. In the
presence of such a central charge, we can prove a BPS bound as we did for the
monopole. This bound is saturated by the Kaluza–Klein modes of the graviton and
the antisymmetric tensor field. What charge does this central charge correspond
to in the IIA theory, and to which states do the momentum states correspond? It
is natural to guess that this is one of the R–R charges. The simplest possibility
is the charge associated with the one-form gauge field. The carriers of the one-
form charge are D0-branes. The D0-branes are BPS states – they preserve half
of the ten-dimensional supersymmetry. So states of definite eleven-dimensional
momentum are states of definite D-brane charge. More precisely, localized states
with N units of Kaluza–Klein momentum correspond to zero-energy bound states
(so-called threshold bound states) of N D-branes.

There are numerous further tests of this duality. For example, if one compactifies
the theory further, there are connections to IIB theory. There are also connections
involving M5-branes. But this discussion gives some flavor of the duality, and the
evidence.
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28.6.2 IIB self-duality

The IIB theory exhibits an interesting self-duality. We can understand this, first,
from the Lagrangian. The Lagrangian for the NS–NS fields is the same as for the
IIA theory. For the R–R fields, we have now zero and two, and four-form fields.
The Lagrangian for these is similar, with appropriate indices, to that for the R–R
fields of the IIA case. A careful examination shows that under the transformation
φ → −φ the Lagrangian goes into itself. At the classical level, the action is also
invariant under shifts of the axion.

Grouping the dilaton, eφ , and the Ramond–Ramond scalar, θ , into a complex
field,

τ = 4π i

gs
+ θ

2π
, (28.43)

it then is natural to conjecture that the underlying theory has an SL(2, Z ) symmetry
similar to that of N = 4 Yang–Mills theory:

τ → aτ + b

cτ + d
ad − bc = 1. (28.44)

Further evidence for this symmetry is obtained by studying BPS objects: the
various branes of the theory. In the IIB theory, we have fundamental strings and
D1-branes; we also have D5-branes. Under this duality, the fundamental strings
are mapped into D1-branes by the SL(2, Z ) transformations. Correspondingly,
the H3 form (which couples to fundamental strings) should be mapped into the
F3 form (which couples to D1 strings). The D3-branes are associated with the
gauge-invariant five-form field strength, which is self-dual, so we might expect
the D3-branes to be invariant. Study of the BPS formulae for these states lends
support to these conjectures.

This leaves the D5-branes. These couple to the Ramond–Ramond six-form form
gauge field, which is associated with a seven-form field strength, which is in turn
dual to the three form R–R field strength. In other words, the D5-brane is a magnetic
source for F3. So we might expect these to be dual to something which is a magnetic
source for the NS three form. This would be an NS 5-brane. Such an object can
be constructed as a soliton of the ten-dimensional IIB supergravity theory. It plays
an important role in understanding the duality of these theories. It also appears in
other contexts. For example, in M theory, it is associated with a seven-form field
strength, which is dual to the four-form field strength we have already encountered.
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The M5 solution is:

gmn = e2φδmn; gµν = ηµν (28.45)

Hmno = −ε p
mno ∂pφ (28.46)

e2φ = e2φ(∞) + Q

2π2r2
. (28.47)

Here µ, ν are the coordinates tangent to the brane (they are the world-volume
coordinates); m, n . . . are the coordinates transverse to the brane. The SL(2, Z )
duality of the IIB theory is quite intricate and beautiful. There are many subtle and
interesting checks.

28.6.3 Type I –O(32) duality

The duality between the Type I and O(32) theories is particularly intriguing, as it
is a duality between a theory with open and closed strings and a theory with closed
strings only. It is also puzzling since the perturbative spectra of these theories, at
the level of massive states, are quite different. The O(32) heterotic theory contains
towers of massive states in spinor representations; there is nothing like this in the
perturbative spectrum of the Type I theory. By way of evidence, we can begin,
again, with the effective Lagrangian. For the heterotic theory this can be written∫

d10xe−2φ(R + |∇φ|2 + F2 + d B2). (28.48)

Here e−2φ is the dilaton field, and we have written the action in string frame.
Consider, now, the transformation:

g = eφg′ φ = −φ′. (28.49)

This takes the action to:∫
d10x

√
g(e−2φ′

(R + |∇φ′|2) + e−φ′
F2 + d B2). (28.50)

This is the action for the bosonic fields of the Type I theory. The closed string fields
couple with g2, while the open string fields couple with g. In the Type I theory, the
antisymmetric tensor is an R–R field, and as a result, no factor of the coupling (the
dilaton) appears out front of its kinetic term.

Now we can ask: how do the hetorotic strings appear in the open string theory?
Here, we might guess that these strings would appear as solitons. More precisely,
these strings are just the D1-branes of the Type I theory. At weak coupling, the
tension of these strings will behave as 1/g, i.e. it will be quite large. In this sector,
one can find states in spinorial representations of O(32), arising from configurations
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Aµ
ψµ

gµν

Aµ

Fig. 28.1. The strongly coupled heterotic string is described by an eleven-
dimensional bulk theory and two segregated walls, on which gauge degrees of
freedom propagate.

of D1–D9-branes. Most important, the D1-branes are BPS. As a result, they persist
to strong coupling, and in this regime their tension is small. We will not explore the
various subtle tests of this correspondence, but other features one can investigate
include the identification of the winding strings of the heterotic theory.

Many other dualities among different string theories have been explored. These
include an equivalence between heterotic string theory on a four-torus and Type IIA
on K3, and equivalences of Calabi–Yau compactifications of the Type II theory and
heterotic theory on K 3 × T 2.

28.7 Strongly coupled heterotic string

In ten dimensions, we have seen that the strong coupling limit of the IIA theory
is a theory whose low-energy limit is eleven-dimensional supergravity. The strong
coupling limit of the IIB theory is again the IIB theory. The strong coupling limit of
the O(32) heterotic string is the Type I string. This still leaves the question: what is
the strong coupling limit of the E8 × E8 heterotic string? The answer is intriguing. It
has some tantalizing connections to facts we see in nature. It also suggests different
ways of thinking about compactifications – inklings of the large extra dimension
and warped space pictures which we will discuss in the next chapter.

Horava and Witten recognized that the strong coupling limit of the heterotic
string, like the IIA theory, is an eleven-dimensional theory. The theory is defined
on an interval of radius R11. The relation of R11 to the string tension and coupling
are exactly as in the IIA case. This means that as the coupling gets large, the interval
becomes large. We will refer to the full eleven-dimensional space as the “bulk.” The
fields propagating in the bulk are a full eleven-dimensional supergravity multiplet:
graviton, gravitino and three-form field. At the end of the interval, there are two
walls (Fig. 28.1). These walls are similar to orientifolds, in that they are not dynam-
ical (there are no degrees of freedom corresponding to motion of the walls). The
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low-lying degrees of freedom on each wall are those of a supersymmetric E8 gauge
theory: gauge bosons and gauginos in the adjoint representation. The Lagrangian
has the structure of a bulk plus boundary term:

S = − 1

2κ2

∫
d11x

√
gR −

2∑
i=1

1

8π
(4πκ2)2/3

∫
d10x

√
gTrF2

i + · · · . (28.51)

Note that the gauge coupling is simply proportional to the sixth power of the eleven-
dimensional Planck length.

Support for this picture comes from a variety of sources. First, there is a subtle
cancellation of gauge and gravitational anomalies. Second, the long-wavelength
limit of this theory is ten-dimensional gravity plus Yang–Mills theory, with the
relation between the gauge and gravitational couplings appropriate to the heterotic
string (this is one way to fix the coupling constants). Further compactifications
provide further checks.

28.7.1 Compactification of the strongly coupled heterotic string

One puzzle in the phenomenology of the weakly coupled heterotic string concerns
the value of the gauge coupling and the unification scale. In the MSSM, the unifi-
cation scale is two orders of magnitude below the Planck scale. If we imagine that
the unification scale corresponds to a scale of compactification, then

αgut ∝ g2
s

V
. (28.52)

If we treat the left hand side as fixed, then as V becomes large, so does gs. Plugging
in the observed values, gs is quite large. As we will now show, the situation in the
strong coupling limit is much different – and much more promising.

Consider compactification of the strongly coupled theory on a Calabi–Yau space.
The full compact manifold, from the point of view of an eleven-dimensional ob-
server, is the product of the interval times a Calabi–Yau space X . Such a configu-
ration is an approximate solution of the lowest-order equations of motion. Even at
the level of the classical equations of this theory, there are corrections arising from
the coupling of bulk to boundary fields. These can be constructed in a power series
expansion. Terms in the expansion grow with R11, owing to the one-dimensional
geometry in the eleventh dimension. They are proportional to κ2/3, from the bulk–
brane coupling in Eq. (28.51). On dimensional grounds, there is a factor of R−4,
where r is the Calabi–Yau radius. The expansion parameter is thus

ε = κ2/3 R11/R4. (28.53)
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We can readily obtain the relation between the four-dimensional and eleven-
dimensional quantities. Using the string relations (here we will be careful about
factors of 2 and π ):

G N = e2φ(α′)4

64πV
αgut = e2φ(α′)3

16πV
(28.54)

where V is the volume of the compact space X , and the eleven-dimensional
relations:

G N = κ2

16π2V R11
αgut = (4πκ2)2/3

2V
, (28.55)

we have:

R2
11 = α3

gutV

512π4G2
N

M11 = R−1
(
2(4π )−2/3αgut

)−1/6
. (28.56)

where R = V 1/6. Putting in the “observed” value of αgut and the four-dimensional
Planck mass gives:

R11 M11 = 18 R = 2�11 = (3 × 1016) GeV. (28.57)

The regime of validity of the strongly coupled description is the regime where V
and R11 are large compared to �11. We see that nature might well be in such a
regime. If we evaluate the expansion parameter ε, we find ε ∼ 1. Adopting the
viewpoint that the ground state of string theory which describes nature should be
strongly coupled, this, again, seems promising: the parameters of grand unification
correspond to the point where the eleven-dimensional expansion is just breaking
down, ε ≈ 1. This is in contrast to the weak coupling picture, which seems far from
its range of validity.

Apart from this rather direct phenomenological application of string theory ideas,
there are two new possibilities which this analysis suggests. First, some compact
dimensions might be large compared to the Planck scale (or any fundamental scale).
Second, in a case with a one-dimensional geometry, this dimension can be signifi-
cantly warped, i.e. the metric need not be a constant. These ideas underlie the large
extra dimension and Randall–Sundrum models of compactification, which we will
encounter in the next chapter.

28.8 Non-perturbative formulations of string theory

We have seen that, at least in cases with a great deal of supersymmetry, we have a
surprisingly large access to non-perturbative dynamics. But much of the evidence
for the various phenomena we have described is circumstantial, matching actions
and spectra in various regions of a given string moduli space. We lack a general,
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non-perturbative formulation of the theory, analogous to, say, the lattice formu-
lations of Yang–Mills theories which we encountered in Part 1. One might have
hoped that there would be a string field theory, analogous to ordinary quantum field
theories, but such a program is fraught with conceptual and technical difficulties.
We have mentioned some of these. In this section, we will describe situations where
one can give a complete non-perturbative description. These descriptions are spe-
cific to particular backgrounds: flat space in higher dimensions, and certain AdS
spaces. In eleven dimensions, the flat space, supersymmetric theory can be described
as an ordinary quantum mechanical system, while the theory compactified on an
n-dimensional torus is described by a field theory in n + 1 space-time dimensions,
up to n = 3. Quite generally, string theory (gravity) in AdS spaces is described
by conformal field theories; this is known as the AdS–CFT correspondence. Both
formulations exhibit what is believed to be a fundamental feature of any quantum
theory of gravity: holography. The holographic principle asserts that the number of
degrees of freedom of a quantum theory of gravity grows, not as the volume of the
system, but as its area.

28.8.1 Matrix theory

We have seen that the strong coupling limit of the IIA theory is an eleven-
dimensional theory, whose low-energy limit is eleven-dimensional supergravity.
D0-branes were crucial in making the correspondence. The Kaluza–Klein states
of the eleven-dimensional theory were bound states of D0-branes; states with mo-
mentum N/R11 corresponded to zero-energy (“threshold”) bound states of N D0-
branes. The world-line theory of N D0-branes is ten-dimensional U (N ) Yang–Mills
theory reduced to zero dimensions. The action which describes this system is:

S =
∫

dt

[
1

g
tr(Dt Xi Dt Xi ) + 1

2g
M6 R2

11tr([Xi , X j ][Xi , X j ])

+ 1

g
tr(iθT Dtθ + M3 R11θ

T γ i [Xi , θ ])

]
, (28.58)

where R11 is the eleven-dimensional radius, M is the eleven-dimensional Planck
mass and g = 2R11. The Xs are the bosonic variables, X I , I = 1, . . . , 9; θs are
the fermionic coordinates. It is necessary to impose Gauss’s law as a constraint on
states.

Classically and quantum mechanically, this system has a large moduli space,
corresponding to configurations with commuting X I s. For large X I , the spectrum
in these directions consists, in the language of quantum mechanics, of 9N free
particles, and a set of oscillators with frequencies of order | �X |. We can integrate out
the fast degrees of freedom, obtaining an effective action for the low-energy degrees



462 28 Beyond weak coupling: non-perturbative string theory

of freedom, the X I s and their superpartners. The bosonic states are just momentum
states for these particles. They are the states corresponding to the collective modes
of the D-branes.

Banks, Fischler, Shenker and Susskind made the bold hypothesis of identify-
ing these degrees of freedom, and the Lagrangian of Eq. (28.58), as the com-
plete description of the eleven-dimensional theory, in the limit that N → ∞. More
precisely, the Hamiltonian following from the action of (28.58) is identified with
the light cone Hamiltonian, and N is identified with the light cone momentum,
P+ = N/R. In the large-N limit, this becomes a continuous variable; it is neces-
sary to take R → ∞ at a suitable rate. The first step in this identification is to note
that the spectrum of low-lying states of the matrix model is precisely that of the
light cone supergravity theory. We have already noted that the states are labeled
by a momentum nine-vector, �p. In addition, there are sixteen fermionic variables,
the partners of the bosons. As in other contexts, we can define eight fermionic
creation operators and eight fermionic destruction operators. From these we can
construct a Fock space with 256 states, of which half are space-time bosons (integer
spin), and half are fermions. This is just the correct number to describe a graviton
and antisymmetric tensor in eleven dimensions, and their superpartners. The states
transform correctly under the little group.

A more convincing piece of evidence comes from studying the S-matrix of the
matrix theory. Consider, for example, graviton–graviton scattering. Integrating out
the massive states of the theory gives an action involving derivatives of x . We won’t
reproduce the detailed calculation here, but the basic behavior is easy to understand.
One can compute the action from Feynman graphs, just as in field theory. With four
external Xs, simple power counting gives an action, in coordinate space, behaving
as:

LI ≈ Ẋ4
∫

dk

(k2 + M2)4
∼= c

v4

M7
. (28.59)

Here M ∝ |X | = R, the separation of the gravitons. The four factors ofv correspond
to the four derivatives in the graviton–graviton amplitude; 1/R7 is precisely the form
of the graviton propagator in coordinate space. With a bit more work, one can show
that one obtains precisely the four-graviton amplitude in eleven dimensions, for
suitable kinematics.

M theory compactified on an n-torus is described by an n + 1-dimensional field
theory. We won’t argue this, but note that in this case the power counting is correct to
give the right graviton–graviton scattering amplitude. If n > 3, however, the theory
is non-renormalizable, and the description does not make sense. An alternative
description can be formulated for dimensions down to six. The matrix model has
been subjected to a variety of other tests. It turns out that the large-N limit is not
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necessary; for fixed N , one describes a discretized version of the light cone theory
(DLCQ). One can actually derive this result, starting with the assumed duality
between IIA theory and eleven-dimensional supergravity.

All of this is quite remarkable. Without even postulating the existence of ordi-
nary space-time, we have uncovered space-time, and general relativity, in a simple
quantum mechanics model. One interesting feature of these constructions is the
crucial role played by supersymmetry. Without it, quantum effects would lift the
flat directions and one would not have space-time – though one would still have a
sensible quantum system. One might speculate that what we think of as space-time
is not fundamental, but almost an accident, associated with the dynamics of partic-
ular systems. Lacking, however, a formulation for a realistic, non-supersymmetric
system, this remains speculation.

28.8.2 The AdS/CFT correspondence

An equally remarkable equivalence arises in the case of string theory on AdS
spaces. This connection was first conjectured by Maldacena, and is referred to as
the AdS/CFT correspondence. It asserts that graviton theories in AdS spaces have
a description in terms of conformal field theories on the boundary.

A little more general relativity: anti-de Sitter space

We could construct anti-de Sitter space by solving the Freedman equation with neg-
ative cosmological constant. Instead, we will adopt a more geometrical viewpoint.
Starting with a flat p + 3-dimensional space, with metric:

ds2 = −dx2
0 − dx2

p+2 +
p+1∑
i=1

dx2
i (28.60)

we consider the hyperboloid:

x2
0 + x2

p+2 −
p+1∑
i=1

x2
i = R2. (28.61)

These coordinates can be parameterized in various ways. For example, one can take

x0 = R cosh(ρ) cos(τ ), x p+2 = R cosh(ρ) sin(τ )

xi = R sinh(ρ)�i
(
i = 1, . . . p + 1; �2

i = 1
)
. (28.62)

This automatically satisfies (28.61), and yields the metric:

ds2 = R2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρd�2). (28.63)
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In making the correspondence, another parameterization is helpful. These cover
one half of the hyperboloid

x0 = 1

2u
(1 + u2(R2 + �x2 − t2)); x p+2 = Rut

xi = Ruxi (i = 1, . . . p)

x p+1 = 1

2u
(1 − u2(R2 − �x2 + t2)). (28.64)

The metric is then:

ds2 = R2

(
du2

u2
+ u2(−dt2 + d�x2)

)
. (28.65)

AdS has interesting features, which we will not fully explore here. There is a
boundary at spatial infinity (u = ∞). Light can reach the boundary in finite time,
but not massive particles. In a cosmological context, negative cosmological constant
leads not to an eternal AdS space but to a singularity. The last form of the metric will
be useful in making the correspondence in a moment. The metric has isometries
(symmetries); the group of isometries can be seen from the form of the hyperboloid
and the underlying metric of the p + 3-dimensional space; it is SO(2, p + 1). This
turns out to be the same symmetry as conformal symmetry in p + 1 dimensions;
this, again, is a crucial aspect of the AdS/CFT correspondence.

Maldacena’s conjecture

Maldacena originally discovered this connection for the case of string theory on
Ad S5 × S5. One suggestive argument starts by considering a set of N parallel D3-
branes. We have discussed such configurations as open string configurations, but
they can also be uncovered as solitonic solutions of the supergravity equations, here
of the IIB theory. For these, the metric has the form:

ds2 = H (y)−1/2dxµdxµ + H (y)1/2
(
dy2 + y2d�2

5

)
Fµνρστ = εµνρστα∂

α H. (28.66)

Here the xµs are the coordinates tangent to the branes, while the ys (and their
associated angles) are the transverse coordinates. The dilaton in this configuration
is a constant; the other antisymmetric tensors vanish. The function H , for N parallel
branes, is

H (�y) = 1 +
N∑

i=1

4πgs(α′)2

|�y − �yi |4 . (28.67)
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This can be rewritten as:

ds2 =
(

1 + L2

y4

)−1/2

ηµνdxµdxν +
(

1 + L2

y4

)1/2 (
dy2 + y2d�2

5

)
. (28.68)

The parameter L is related to the string coupling, gs, the brane charge (number of
branes) N , and the string tension by:

L4 = 4πgs N (α′)2. (28.69)

It is convenient to introduce a coordinate u = L2/y, and to take a limit where N
and gs are fixed, while α′ → 0. The metric then becomes:

ds2 = L2

[
1

u2
ηµνdxµdxν + du2

u2
+ d�2

5

]
. (28.70)

The terms involving u and x we have seen previously; this is the geometry of Ad S5.
The remaining terms describe a five-sphere of radius L .

Now from a string point of view, the low-energy limit of the system of N D3-
branes is described by N = 4 Yang–Mills theory. So we might, with Maldacena,
conjecture that there is just such an equivalence. Not surprisingly, demonstrating
this equivalence is not so simple. One needs to argue that on the string side, the bulk
modes (graviton, antisymmetric tensors, and so on) decouple, as do the massive
excitations of the open strings ending on the branes. One cannot argue this at weak
coupling, and it would be surprising if one could; in that case, one could calculate
any quantity in the gravity theory in a weak coupling perturbation expansion in
the Yang–Mills theory. This is similar to the situation in the matrix model. There
are, however (as in the matrix model), many quantities which are protected by
supersymmetry, and quite detailed tests are possible, both in this case and for many
other examples of the correspondence.

Suggested reading

Non-perturbative string dualities are discussed extensively in the second volume
of Polchinski’s (1998) book. This provides an excellent introduction to D-branes.
D-branes are treated at length in the text by Johnson (2003), as well. The reader may
want to consult earlier papers on duality, especially Witten (1995). Matrix theory and
the AdS/CFT correspondence are treated in several excellent pedagogical reviews
(Bigatti and Susskind, 1997; Aharony et al., 2000; D’Hoker and Freedman, 2002),
but the original papers are very instructive; see, for example, Banks et al. (1997);
Seiberg (1997), Maldacena (1997), Witten (1998).
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Exercises

(1) D-branes: for a stack of N D-branes, write the open string mode expansions. Show
that, for small separations, the spectrum looks like that of a Higgsed U (N ) field theory,
with Higgs in the adjoint representation. In the light cone gauge, check the counting of
supersymmetries for open strings and D-branes.

(2) Verify the construction of the bosonic terms in the ten-dimensional action from the
dimensional reduction of the eleven-dimensional action.

(3) Verify that the NS5-brane is a solution of the ten-dimensional supergravity equations.
(4) Take the long-wavelength limit of the Horava–Witten theory. Write the Lagrangian in

the ten-dimensional Einstein frame and verify that the gauge and gravitational couplings
obey the relation appropriate to the heterotic string theory:

g2
ym = 4κ2α′−1. (28.71)

(5) Calculate the effective action of the matrix model at one loop in more detail. Verify
that treated in Born approximation, this yields the correct graviton–graviton scattering
matrix element for the eleven-dimensional theory. You may find the background field
method helpful for this computation.

(6) Check that the configuration of Eq. (28.66) solves the field equations of IIB supergravity
in the case of a single brane. You may want to use some of the available programs for
evaluating the curvature. Verify that, in the Maldacena limit, the metric can be recast as
in Eq. (28.30). If one requires that the curvature of the AdS space is small, check that
the D-brane theory is strongly coupled. Discuss the problem of decoupling.
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Large and warped extra dimensions

Considerations of the sort we encountered in the previous chapter have inspired
two approaches to physics beyond the Standard Model: large extra dimensions
(ADD) and warped spaces (Randall–Sundrum). In this chapter we will provide a
brief introduction to each.

29.1 Large extra dimensions: the ADD proposal

In string theory, it is natural to imagine that the compactification scale is not too
much different from the Planck scale. The size of the compact space is typically a
modulus, and if it is stabilized, one might expect it be stabilized at a value not much
different than one, in string (and therefore Planck) units. In terms of our general
discussion of moduli stabilization, this is precisely what we would expect: once the
radius becomes very large, any potential, perturbative or non-perturbative, tends to
zero.

But if we are willing to discard this prejudice, an extraordinary possibility opens
up. Perhaps the extra dimensions are not Planck size, but much larger, even macro-
scopic? Arkani-Hamed, Dimopoulos and Dvali realized that from an experimental
point of view, the limits on the size of such large compact dimensions are sur-
prisingly weak. Allowing the extra dimensions to be large totally reorients our
thinking about the nature of couplings and scales in string theory (or any under-
lying fundamental theory). Such a viewpoint places the hierarchy problem in a
whole different light, perhaps allowing entirely different solutions than technicolor
or supersymmetry.

Branes are crucial to this picture. The observed gauge couplings are small, but
not extremely small. But in Kaluza–Klein theory and in weakly coupled string
theories, they are related to the underlying scales in a clear way. For example, in
the heterotic string:

g−2
4

∼= g−2
s M6

s R6. (29.1)

467
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So if g4 is fixed, as R → ∞, gs → ∞. But even in a compactified theory, the gauge
coupling on D3-branes is insensitive to the large volume. With more general branes,
one has more intricate possibilities, depending on how the branes wrap the internal
space. On the other hand, gravity becomes weak as R becomes large:

G N = 1

M2
p

= 1

M8
p R6

= g2
s

�8
s R6

. (29.2)

Now if gs is fixed and of order one, as R → ∞, the Planck length tends to zero.
So how large might we imagine R could be? If we assume that R is macroscopic

or nearly so, then on distance scales smaller than R, the force of gravity will be that
appropriate to a higher-dimensional theory. In d space-time dimensions,

Forceg ∼ 1

rd−2
. (29.3)

Experiments currently probe possible modifications of the gravitational force law
on scales of order millimeters or somewhat smaller. (Since the proposal of large
extra dimensions was put forward, these limits have been significantly improved.)

If the scale of the large extra dimensions is of order millimeters, how large is
the fundamental scale? This depends on the number of dimensions that are actually
large. If there are a large extra dimensions, any others being comparable in size to
the fundamental scale,

M2
p = M2+a

fund Ra, (29.4)

or

Mfund = (
M2

p R−a
) 1

2+a R = M−1
p (Mp/Mfund)−(2+a)/a. (29.5)

A new viewpoint on the hierarchy problem arises by supposing that Mfund is
close to the scale of weak interactions, say

Mfund ∼ 1 TeV. (29.6)

Then we can use Eq. (29.5) to relate R to the Planck scale and the weak scale. For
example, if a = 2, R ≈ 0.01 cm! For larger a, it is smaller, but still dramatically
large; for a = 3, for example, it is about 10−7 cm. But a = 1 would be, quite
literally, astronomical in size, and is clearly ruled out by observations.

What is quite surprising is that it is difficult to rule out dimensions with size
of order millimeters. Since the original proposal, there have been several experi-
ments dedicated to improving the limits on deviations from Newtonian gravity at
millimeter distances.

The possibility of large extra dimensions offers a different perspective on the
hierarchy problem. The weak scale is fundamental; the issue is to understand why
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the radius of the large dimensions is so large. One possibility which has been
seriously considered is that there are some very large fluxes. For example, if HM N

is a two-form associated with a U (1) gauge field, and � is some closed two-
dimensional surface, we can have:∫

�

HM N dx M ∧ dx N = N . (29.7)

If the radius of the dimensions associated with � is large, then

H ∼ N

R2
. (29.8)

The potential, in turn, receives a contribution behaving as N 2/R2. If there is also a
(positive) cosmological constant,

V = �R2 + N 2

R2
(29.9)

and assuming that � is of order the fundamental scale,

R4 ∼ N 2�4
fund. (29.10)

To obtain a sufficiently large radius in this way, then, requires an extremely large
flux. There are some circumstances where such large pure numbers may not be
required; supersymmetry and low dimensionality (a = 2) help.

For now, we will assume that somehow a large radius arises for dynamical
reasons, and consider some of the other questions which, ultimately, such a picture
raises.

(1) Proton decay: with no further assumptions about the theory, we would expect that
baryon number violating operators would arise suppressed only by the TeV scale. It
would then be necessary to suppress operators of very high dimension. One possible
resolution of this problem is elaborate discrete symmetries. Another suggestion has
been that the modes responsible for the different low-energy fermions might be very
nearly orthogonal.

(2) Other flavor changing processes: for the same reason, flavor changing processes in
weak interactions, processes like µ → e + γ , and the like pose a danger. One possible
solution is a fundamental scale a few orders of magnitude larger than the weak scale.
This raises the question of why the weak scale is small – the hierarchy problem again.
Orthogonality of fermions, again, can help with many of these difficulties.

We turn, finally, to the phenomenology of large extra dimensions. Here there are
exciting possibilities. If R is large, the Kaluza–Klein modes are very light. They
are very weakly coupled, but there are lots of them and little energy is required for
their production. So consider inclusive production of Kaluza–Klein particles in an
accelerator. In terms of G N = κ2/8π the amplitude for emission of a Kaluza–Klein
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particle is proportional to κ . For any given mode, then, the cross section behaves as
σn ∼ G N E2, where the E2 factor follows from dimensional analysis. We need to
sum over n – equivalently, to integrate over a-dimensional phase space. As a crude
estimate, we can treat the amplitude as constant, and cut off the integration at E , so

σtot = Ra
∫

dak σk = G N Ra E2+a. (29.11)

Recalling that G N = Gfund R−a , we see that the tower of Kaluza–Klein particles
couples like a 4 + a-dimensional particle – i.e. at high energies, the extra dimen-
sions are manifest! The cross section exhibits exactly the behavior with energy one
expects in 4 + a dimensions.

The actual processes which might be observed in accelerators are quite dis-
tinctive. One would expect to see, for example, production of high-energy photons
accompanied by missing energy,with the cross section showing a dramatic rise with
energy. Such signatures have already been used (as of this writing) to set limits on
such couplings.

The production of Kaluza–Klein particles in astrophysical environments can be
used to set limits on extra dimensions as well. For example, in the case of two large
dimensions and fundamental scale of order 1 TeV, we saw that the scale of the
Kaluza–Klein excitations – the inverse of the radius of the extra dimensions – is of
order 10−12 GeV, so such particles are easy to produce. Like axions, they could be
readily produced in stars.

29.2 Warped spaces: the Randall–Sundrum proposal

Having entertained the possibility that some compact dimensions of space might
be very large, one might wonder why the extra dimensions should be flat. The
Horava–Witten theory provides a model. Taking the formulas of this theory literally,
we have seen that if this theory describes nature, the eleventh dimension is quite
large in fundamental units. The metric of this dimension is significantly distorted;
we might say that it is warped. This is not surprising. The geometry is essentially
one-dimensional. Green’s functions for the fields grow linearly with distance. One
of the appealing features of the Horava–Witten proposal is that the dimensions are
just large enough that the distortion of the geometry is of order one.

Randall and Sundrum have made a more radical proposal: they argue that the
warping might be enormous, and might account for the large hierarchy between
the weak scale and the Planck scale. In the simplest version of their model, there is
again one extra dimension; call its coordinate φ, 0 < φ < π . The model contains
two branes, one at φ = 0, one at φ = π . The tensions of the two branes are taken
to be equal and opposite. One imagines that the Standard Model fields propagate
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on one brane, the “visible sector” brane, while some other, hidden sector fields
propagate on the other. The action is:

S = Sgrav + Svis + Shid. (29.12)

The bulk gravitational action, Sgrav, includes a cosmological constant term:

Sgrav =
∫

d4x
∫

dφ
√−G[−� + 2M3R], (29.13)

where M is the five-dimensional Planck mass. The brane actions are:

Svis =
∫

d4x
√−gvis[Lvis − �vis] Shid =

∫
d4x

√−ghid[Lhid − �hid]. (29.14)

Here we have separated off a brane tension term on each brane; we have also
distinguished the bulk five-dimensional metric, G M N , from the metrics on each of
the branes, gµν . This has the structure of a gravitational problem in five dimensions,
with δ-function sources at φ = 0, π . Einstein’s equations are:

√−G

(
RM N − 1

2
G M N R

)
= − 1

4M3

[
�

√−GG M N +�vis
√−gvisg

vis
µνδ

µ

Mδν
Nδ(φ−π )

+ �hid
√−ghidghid

µν δ
µ

Mδν
Nδ(φ)

]
. (29.15)

Now one makes an ansatz for the metric, which leads to warping:

ds2 = e−2σ (φ)ηµνdxµdxν + r2
c dφ2. (29.16)

Plugging in the ansatz, Eq. (29.16), one obtains equations for σ :

6σ ′ 2

r2
c

= −�

4M3

3σ ′′

r2
c

= �hid

4M3rc
δ(φ) + �vis

4M3rc
δ(φ − π ). (29.17)

This is solved by:

σ = rc|φ|
√

− �

24M3
(29.18)

provided that the following conditions on the �s hold:

�hid = �vis = 24M3k � = −24M3k3. (29.19)

In this case, the metric varies exponentially rapidly. Note that rc does not need to
be terribly large in order that one obtain an enormous hierarchy. One might worry,
though, about the identification of the graviton. It turns out that the metric has zero
modes:

ds2 = e−2krc|φ|[ηµν + h̃µν(x)dxµdxν + T 2(x)dφ2], (29.20)
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where T 2 represents a variation of rc, and is usually referred to as the radion, and
h̃µν is the four-dimensional metric. If one substitutes in the action, one finds:

S =
∫

d4x
∫

dφ2M3rce−2krc|φ|√−g̃ R̃. (29.21)

From this we can read off the effective Planck mass:

M2
p = M3rc

∫
dφe−2krc|φ| = M3

k

[
1 − e−2krc

]
. (29.22)

So the four-dimensional Planck scale is comparable to the fundamental five-
dimensional scale.

To see that the physical masses on the visible brane are small, consider the visible
sector action for a scalar particle:

Svis =
∫

d4x
√−ge−4krcπ

[
g̃µνe2krcπ |Dµφ|2 − λ

(|φ|2 − v2
0

)2
]
. (29.23)

Rescaling φ → ekrcπφ, we have:

Svis =
∫

d4x
√−g

[
g̃µν |Dµφ|2 − λ

(|φ|2 − e−2krcπv2
0

)2
]
, (29.24)

so the scale is indeed exponentially smaller than the scale on the other brane.
There are many questions one can ask about this structure.

(1) How robust is this sort of localization of gravity?
(1) How do higher excitations, e.g. bulk fields, interact with the fields on the brane? Is the

hierarchy stable? (The answer is yes.)
(3) Does this sort of warping arise in string theory? Again, the answer is yes, though the

details look different.
(4) As in the case of large extra dimensions, if this picture makes sense, there are many

excitations on the branes. Higher-dimension operators are suppressed only by the TeV
scale. As there, one has to ask: how does one understand conservation of baryon number?
Other flavor changing processes? Neutrino masses? Precision electroweak physics?
Answers have been put forward to all of these questions, but they remain suitable
subjects for research.

(5) Assuming the above problems are resolved, what are the experimental signals for such
warping? As in the case of large extra dimensions, one wants to focus on the additional
degrees of freedom associated with bulk fields and the brane. In this case, unlike the
case of large extra dimensions, the Kaluza–Klein states are not dense. Instead, the low-
lying states have masses and spacings of order the TeV scale. Their couplings are not
of gravitational strength, but instead scaled by inverse powers of the scale of the visible
sector brane.

Finally, there are other variants of the Randall–Sundrum proposal which have
been put forward. Perhaps the most interesting is one in which space is not
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compactified at all, but simply warped, with gravity localized on the visible brane.
These ideas suggest a rich set of possibilities for what might underlie a quantum
theory of gravity. Some of these features – the exponential warping of the metric,
in particular – have been observed in string theory, but many, at least to date, have
not. This is a potentially important area for further research.

Suggested reading

The original paper of Arkani-Hamed et al. (1999) is quite clear and comprehensive,
as is the paper of Randall and Sundrum (1999). The phenomenology of the Randall–
Sundrum models is explored by Davoudiasl et al. (2000).

Exercise

(1) Verify the Randall–Sundrum solution of Eq. (29.15).
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Coda: Where are We Headed?

As this book is being completed, the Large Hadron Collider (LHC) at CERN, and
its two large detectors, ATLAS and CMS, are nearing completion. The center of
mass energy at this machine will be large, about 14 TeV. The center of mass energies
of the partons – the quarks and gluons – within the colliding protons will be larger
than 1 TeV. The luminosity will also be very large. As a result, if almost any of the
ideas we have described for understanding the hierarchy problem in Part 1 of this
book are correct, evidence should appear within a few years. For example, if the
hypothesis of low-energy supersymmetry is correct, we should see events with large
amounts of missing energy, and signatures such as multiple leptons. Large extra
dimensions should be associated with rapid growth of cross sections for various
processes, again with missing energy; the warped spaces suggested by Randall
and Sundrum should be associated with the appearance of massive resonances.
Technicolor, similarly, should lead to broad resonances. Assuming some under-
lying technicolor model can satisfy constraints from flavor physics and precision
electroweak measurements, one might expect to find some number of light (com-
pared with 1 TeV), pseudo-Goldstone bosons, many with gauge quantum numbers.
If any of these phenomena occur, distinguishing among them in the complicated
environment of a hadron machine will be challenging. It is conceivable that there
will be competing explanations, and that choosing between them will require a
very high-energy electron–positron colliding beam machine. Such a machine is
under consideration by a consortium of nations, and is referred to as the Interna-
tional Linear Collider, or ILC. Hopefully in later editions of this book, it will be
possible to focus on real experimental results, rather than a range of theoretical
speculation.

Before the data rolls in, we might hope to select among these possibilities, or
perhaps discover some crucial idea – and possible set of phenomena – that we
are missing. Here, string theory might help. Many of the ideas for Beyond the
Standard Model Physics require phenomena which can only be understood within

475
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a quantum theory of gravity. This is certainly true of large extra dimensions or
Randall–Sundrum.

We have discussed many aspects of string theory, but as far as the world about
us and the experiments which explore it, we have left things in a rather unsettled
state. We have seen that string theories have many of the features we might hope
for from nature. We have exhibited ground states – more precisely, approximate
moduli spaces – with many of the features of the Standard Model: the observed
gauge groups, repetitive generations of quarks and leptons, calculable gauge and
Yukawa couplings, and more. But it is not clear how to make sharp predictions.
There are vast numbers of moduli spaces with the wrong features: the wrong num-
ber of dimensions, too much supersymmetry, the wrong gauge group and matter
content, and we have not offered a dynamical mechanism or principle which might
select among them. Not only are there discrete choices, but there are continuous
ones as well, associated with the moduli. We have seen how potentials for the
moduli arise, but we have not offered any idea for how stable or metastable vacua
might arise, other than to note that such states will typically lie at strong coupling,
where they are inaccessible to analysis. Note that our discussion of strong–weak
coupling duality, by itself, does not help with this problem; our general argu-
ments show that one cannot find stable vacua at arbitrarily weak coupling in any
description.

For a long time, string theorists hoped for some deus ex machina which might
resolve this conundrum. Some have imagined that one would simply find some new
type of string model or construction which would not suffer from these difficulties,
perhaps leading uniquely to the Standard Model at low energies. Developments in
string duality have suggested an alternative picture: there might exist a vast number
of isolated, stable or metastable states of the theory, with little or no supersymmetry.
These states seem to have a distribution of values of couplings, mass scales and
cosmological constant. There may be an exponentially large or even infinite number
of them.

To understand how these come about, we return, again, to the IIB theories. In
these theories, there are two three-form gauge fields, one arising from the NS–NS
sector, the other in the R–R sector; denote these H and F . If one compactifies on
a Calabi–Yau space, it is possible to have non-trivial backgrounds for these fields.
One can define three-form fluxes by integrating these over non-trivial three cycles.
The number of such cycles, we have learned, is h2,1. The fluxes are quantized, by
an argument identical to Dirac’s. There are also constraints on the values of fluxes,
resulting from absence of anomalies (violation of Gauss’s law). In the presence of
fluxes, we might expect the system to have a non-trivial energy; this energy is a
function of the values of the moduli, so there is a potential for the moduli. This
potential can be described in terms of a superpotential. It turns out that there is a
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simple formula for the superpotential:

W =
∫

G3 ∧ �, (30.1)

where G3 = F3 − τ H3 and ω is the covariantly constant three-form. One can obtain
explicit formulas in the case of compactification of the IIB theory on a torus. This
expression depends on the complex structure moduli, z, but not on the Kahler
moduli, ρ.

The equations DzW = 0 generically fix the complex structure moduli and the
dilaton but not the Kahler moduli. But the superpotential of Eq. (30.1) is not exact,
and can receive non-perturbative corrections. These can lead to a potential for the
Kahler moduli. Logically, we can organize the analysis by first integrating out the
complex structure moduli and the dilaton, leaving a superpotential for the Kahler
modulus, ρ, of the form:

Wρ = W0 + e−cρ. (30.2)

The Kahler potential, on the other hand, for large ρ and weak coupling should not
be too different than its tree-level form:

K = −3 ln(ρ + ρ∗). (30.3)

If W0 is small, it is not hard to see that the potential has a supersymmetric stationary
point at

ρ ≈ −c ln(W0). (30.4)

But why should W0 be small? The answer is that, in general, it isn’t, but there are
many possible choices of flux, and so there are many different possible states with
different values of W0. In this construction, the number of possible flux choices
which permit a supersymmetric low-energy theory for ρ is finite but extremely
large. One can understand this by thinking of a b-dimensional vector of integers,
�N , representing the fluxes, constrained by | �N |2 < L2. The number of possible flux
choices is then the volume of a b-sphere of radius L , or of order

N ≈ Lb. (30.5)

In interesting Calabi–Yau compactifications, L and b can be of order 100s.
If we suppose that W0 is distributed more or less randomly among these states,

we might expect that the probability of finding W0 at small W0 would be roughly
uniform with W0 as a complex variable, i.e.

∫
d2W0 P(W0), with P(W0) constant.

Numerical studies suggest that this is indeed the case.
Other quantities will also vary across the landscape. One can get gauge groups,

for example, by including branes in these configurations. There will be, then, a
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distribution of groups and couplings. Perhaps not surprisingly, the distribution of
gauge couplings, at small gauge coupling, is typically flat in g2. One might expect
to find supersymmetry broken dynamically or through brane configurations. There
is also a vast array of states – perhaps infinite, where supersymmetry is broken
already by the classical superpotential for the complex structure moduli, i.e. one
cannot solve the set of equations DzW = 0.

This is compatible with many of our ideas for thinking about the hierarchy
problem. In supersymmetry, technicolor, and the Randall–Sundrum approaches,
one argues that it is reasonable to have exponentially small scales, because it is
reasonable to think that couplings should be small, but not much smaller than one.
Why this should be so is unclear. If there is a unique underlying theory, for example,
the couplings are whatever they are. But within this landscape, there is a distribution,
which would seem to motivate just the sorts of ideas we have explored.

Much work is going into mapping the features of this landscape. Many types of
states have been explored and their statistics at least partially understood, including
states with and without supersymmetry, with various gauge groups, and the like.
From these studies, it seems plausible that there are some – possibly many – states
in the landscape with the low-energy features of the Standard Model. This naturally
raises several related questions.

(1) Are typical states with the features of the Standard Model characterized by things we
might hope to measure, such as large extra dimensions or supersymmetry?

(2) Why do we find ourselves in a state which looks like ours does?

If one can answer these questions, one might hope to make real predictions. It
is, at this writing, too early to answer the first, though one can enumerate some of
the issues. For example, if there are comparable numbers of supersymmetric and
non-supersymmetric states, it might be that there are more supersymmetric states
with a large hierarchy of states than non-supersymmetric ones. If there are vastly
more non-supersymmetric states, it might be that technicolor or warping are the
most common ways of obtaining large hierarchies.

If the landscape really exists with the sorts of properties we are attributing to
it, it seems likely that the answer to the second question is, in part, environmental.
The issue is posed most starkly by the cosmological constant. The distribution of
cosmological constants is not likely to peak at the very tiny but non-zero observed
value. On the other hand, Weinberg, and also Banks, pointed out long ago that
if the cosmological constant were much larger than observed (perhaps a factor
of 10), galaxies would not form. The problem is that the exponential expansion
of the universe would begin before the perturbations from inflation became non-
linear. Given that structure formed when the universe was about 1/20 of its present
age, a cosmological constant far larger than the present energy density would be
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problematic. This argument predicted a cosmological constant in the observed
range.

The idea that some quantities are determined by environmental considerations,
or anthropic conditions, is quite controversial. At one level, one can ask what would
happen if several quantities, such as the parameters of the inflationary potential,
were allowed to vary. At another, this argument requires that the universe, somehow
in its history, sampled all of the different possible states. Within present ideas about
inflation, it is not clear whether this is possible. Finally, even granting the first two
points, this argument rests on the requirement of observers to determine at least
some of the laws of nature. Some physicists argue that this is no different than
saying that we find ourselves on a planet at a certain distance from a star because,
otherwise, the planet could not support life; they point out that through much
of human history, the Earth–Sun distance was viewed as fundamental. But many
physicists find this troubling. At this writing, however, it is fair to say that this is
by far the most plausible explanation we have of the value of �.

Hopefully, the reader who has worked patiently through this book, has been left
with challenging questions, and the skills to attack them. As the LHC turns on, as
further progress is made in understanding how quantum gravity might be reconciled
with much lower-energy physics, we may be at the threshold of understanding what
lies beyond the Standard Model.

Suggested reading

Weinberg’s argument for the cosmological constant appears in his 1989 paper.
The landscape picture we have described here was first put forward by Bousso
and Polchinski (2000) and Feng et al. (2001), and formulated most sharply in
string theory by Kachru et al. (2003). Some statistical studies, which significantly
elucidate the possible meaning of the landscape, appear in Ashok and Douglas
(2004).
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Appendix A

Two-component spinors

The massless Dirac equation simplifies dramatically in the case that the fermion mass is
zero. The equation

�Dψ = 0 (A1)

has the feature that if ψ is as solution, so is γ5ψ :

�D(γ5) = 0. (A2)

The matrices

P± = 1

2
(1 ± γ5) (A3)

are projectors,

P2
± = P± P+ P− = P− P+ = 0. (A4)

To understand the physical significance of these projectors, it is convenient to use a
particular basis for the Dirac matrices, often called the chiral or Weyl basis:

γ µ =
(

0 σµ

σ̄µ 0

)
, (A5)

where

σµ = (1, �σ ) σ̄ µ = (1, −�σ ). (A6)

In this basis,

γ5 = iγ 0γ 1γ 2γ 3 =
(−1 0

0 1

)
, (A7)

so

P+ =
(

0 0
0 1

)
P− =

(
1 0
0 0

)
. (A8)

We will adopt some notation, following the text by Wess and Bagger:

ψ =
(

χα

φ∗α̇

)
. (A9)
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Correspondingly, we label the indices on the matrices σµ and σ̄ µ as

σµ = σ
µ
αα̇ σ̄ µ = σ̄ µββ̇ . (A10)

This allows us to match upstairs and downstairs indices, and will prove quite useful. The
Dirac equation now becomes:

iσµ
αα̇∂µφ∗α̇ = 0 i σ̄ µα̇α∂µχα = 0. (A11)

Note that χ and φ∗ are equivalent representations of the Lorentz group; χ and φ obey
identical equations. We may proceed by complex conjugating the second equation in
Eq. (A11), and noting σ2σ

µ∗σ2 = σ̄ µ.
Before discussing this identification in terms of representations of the Lorentz group, it

is helpful to introduce some further notation. First, we define complex conjugation to
change dotted to undotted indices. So, for example,

φ∗α̇ = (φα)∗. (A12)

Then we define the antisymmetric matrices εαβ and εαβ by:

ε12 = 1 = −ε21 εαβ = −εαβ. (A13)

The matrices with dotted indices are defined identically. Note that, with upstairs indices,
ε = iσ2, εαβεβγ = δ

γ
α . We can use these matrices to raise and lower indices on spinors.

Define φα = εαβφβ , and similar for dotted indices. So

φα = εαβ(φ∗β̇)∗. (A14)

Finally, we will define complex conjugation of a product of spinors to invert the order of
factors, so, for example, (χαφβ)∗ = φ∗

β̇
χ∗

α̇ .
With this in hand, the reader should check that the action for our original

four-component spinor is:

S =
∫

d4xL =
∫

d4x
(
iχ∗

α̇ σ̄ µα̇α∂µχα + iφασ
µ
αα̇∂µφ∗α̇

)
=

∫
d4xL =

∫
d4x

(
iχασ

µ
αα̇∂µχ∗α̇ + iφασ

µ
αα̇∂µφ∗α̇

)
. (A15)

At the level of Lorentz-invariant Lagrangians or equations of motion, there is only one
irreducible representation of the Lorentz algebra for massless fermions.

Two-component fermions have definite helicity. For a single-particle state with
momentum �p = pẑ, the Dirac equation reads:

p(1 ± σz)φ = 0. (A16)

Similarly, the reader should check that the antiparticle has the opposite helicity.
It is instructive to describe quantum electrodynamics with a massive electron in

two-component language. Write

ψ =
(

e
ē∗

)
. (A17)

In the Lagrangian, we need to replace ∂µ with the covariant derivative, Dµ. Note that e
contains annihilation operators for the left-handed electron, and creation operators for the
corresponding antiparticle. Note also that ē contains annihilation operators for a particle
with the opposite helicity and charge of e, and ē∗, and creation operators for the
corresponding antiparticle.
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The mass term, mψ̄ψ , becomes:

mψ̄ψ = meα ēα + me∗
α̇ ē∗α̇ . (A18)

Again, note that both terms preserve electric charge. Note also that the equations of
motion now couple e and ē.

It is helpful to introduce one last piece of notation. Call

ψχ = ψαχα = −ψαχα = χαψα = χψ. (A19)

Similarly,

ψ∗χ∗ = ψ∗
α̇χ∗α̇ = −ψ∗α̇χ∗

α̇ = χ∗
α̇ψ∗α̇ = χ∗ψ∗. (A20)

Finally, note that with these definitions,

(χψ)∗ = χ∗ψ∗. (A21)





Appendix B

Goldstone’s theorem and the pi mesons

It is easy to prove Goldstone’s theorem for theories with fundamental scalar fields. But the
theorem is more general, and some of its most interesting applications are in theories
without fundamental scalars. We can illustrate this with QCD. In the limit that there are
two massless quarks (i.e. in the limit that we neglect the mass of the u and d quarks), we
can write the QCD Lagrangian in terms of spinors

� =
(

u
d

)
(B1)

as

L = ψ̄iγ µ Dµψ − 1

4
F2

µν. (B2)

This Lagrangian has symmetries:

� → eiωa τa

2 � � → eiωa τa

2 γ 5
� (B3)

(τ a are the Pauli matrices). In the limit that two quarks are massless, QCD is thus said to
have the symmetry SU (2)L × SU (2)R.

So writing a general four-component fermion as

q =
(

q
q̄∗

)
, (B4)

the Lagrangian has the form:

L = i�σµ Dµ�∗ + i�̄σµ Dµ�̄∗. (B5)

In this form, we have two separate symmetries:

� → eiωa
L

τa

2 � �̄ → eiωa
R

τa

2 �̄. (B6)

Written in this way, it is clear why the symmetry is called SU (2)L × SU (2)R.
Now it is believed that in QCD, the operator �� has a non-zero vacuum expectation

value, i.e.

〈��〉 ≈ (0.3GeV)3δ f f ′ . (B7)

This is in four-component language; in two-component language this becomes:

〈�̄ f � f ′ + �̄∗
f �

∗
f ′ 〉 �= 0. (B8)
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This leaves ordinary isospin, the transformation, in four-component language, without the
γ5, or, in two-component language, with ωa

L = −ωa
R, unbroken.

But there are three broken symmetries. Correspondingly, we expect that there are three
Goldstone bosons. To prove this, write

O = �̄�; Oa = �̄γ 5 τ a

2
�. (B9)

Under an infinitesimal transformation,

δO = 2iωaOa ; δOa = iωaO. (B10)

In the quantum theory, these becomes the commutation relations:

[Qa,O] = 2iOa ; [Qa,Ob] = iδabO. (B11)

Qa is the integral of the time component of a current. To see that there must be a massless
particle, we study

0 =
∫

d4x∂µ[〈�|T ( jµa(x)Ob(0))|�〉e−i p·x ] (B12)

(this just follows because the integral of a total derivative is zero). We can evaluate the
right-hand side, carefully writing out the time-ordered product in terms of θ functions, and
noting that ∂0 on the θ functions gives δ-functions:

0 =
∫

d4x〈�|[ j oa(x),Ob(0)]δ(x0)|�〉e−i p·x − i pµ ×
∫

d4x〈�|T ( jµa(x)Ob(0))|�〉.
(B13)

Now consider the limit pµ = 0. The first term on the right-hand side becomes the matrix
element of [Qa,Ob(0)] = O(0). This is non-zero. The second term must be singular, then,
if the equation is to hold. This singularity, as we will now show, requires the presence of a
massless particle. For this we use the spectral representation of Green’s function. In
general, a pole can arise at zero momentum only from a massless particle. To understand
this singularity we introduce a complete set of states, and, say for x0 > 0, write it as∑

λ

∫
d3 p

2E p(λ)
〈�| jµa(x)|λp〉〈λp|Ob(0)|�〉. (B14)

In the sum, we can separate the term from the massless particle. Call this particle πb. On
Lorentz-invariance grounds,

〈�| jµa|πb(p)〉 = fπ pµδab. (B15)

Call

〈λq |Oa(x)|πb(p)〉 = Zδab, e−i p·x (B16)

Considering the other time ordering, we obtain for the left-hand side a massless scalar
propagator, i/p2, multiplied by Z fπ pµ, so the equation is now consistent:

〈�̄�〉 = p2

p2
fπ Z . (B17)

It is easy to see that in this form, Goldstone’s theorem generalizes to any theory without
fundamental scalars in which a global symmetry is spontaneously broken.

Returning to QCD, what about the fact that the quarks are massive? The quark mass
terms break explicitly the symmetries. But if these masses are small, we should be able to
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think of the potential as “tilted.” This gives rise to a small mass for the pions. We can
compute these by studying, again, correlation functions of derivatives of currents. A
simpler procedure is to consider the symmetry-breaking terms in the Lagrangian:

Lsb = �̄M�, (B18)

where M is the quark mass matrix,

M =
(

mu 0
0 md

)
. (B19)

Since the π mesons are, by assumption, light, we can focus on these. If we have a
non-zero pion field, we can think of the fermions as being given by:

� = ei πa

fπ
γ 5 τa

2 �. (B20)

In other words, the pion fields are like symmetry transformations of the vacuum (and
everything else).

Now assume that there is an “effective interaction” for the pions containing kinetic terms
(1/2)(∂µπa)2. Taking the form above for �, the pions get a potential from the fermion
mass terms. To work out this potential, one plugs this form for the fermions into the
Lagrangian and replaces the fermions by their vacuum expectation value. This gives that

V (π ) = 〈q̄q〉Tr
(
eiωaγ5τ

a
M
)
, (B21)

one can expand to second order in the pion fields, obtaining:

m2
π f 2

π = (mu + md )〈q̄q〉. (B22)

Exercises

(1) Verify Eq. (B13).
(2) Derive Eq. (B22), known as the Gell-Mann–Oakes–Renner formula.
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Some practice with the path integral in field theory

The path integral is extremely useful, both in field theory and in string theory. This
appendix provides a brief review of path integration, and some applications. Many of the
examples are drawn from finite-temperature field theory. These are instructive since one
can easily write very explicit expressions. They are also useful for understanding the
high-temperature universe, and are closely connected to computations which arise in
compactified theories.

C.1 Path integral review

Feynman gave an alternative formulation of quantum mechanics, in which one calculates
amplitudes by summing over possible trajectories of a system, weighting by ei S/�, where
S is the classical action of the trajectory. For a particle, the path integral is:

Z =
∫

[dx]ei S/�. (C1)

Here
∫

[dx] is an instruction to sum over all possible paths of the particle.
This generalizes immediately to field theory, where surprisingly it is often more useful:

Z =
∫

[dφ]ei S. (C2)

For a single field, φ, it is useful to introduce sources, J (x), and to define

Z [J ] =
∫

[dφ]ei
∫

d4x( 1
2 (∂φ)2−V (φ)+Jφ). (C3)

Green’s functions of φ can then be obtained by functional differentiation of Z with respect
to J :

T 〈φ(x1) . . . φ(xn)〉 = δ

iδ J (x1)
· · · δ

iδ J (xn)
Z [J ]. (C4)

For free fields, the integral can be performed by completing the squares. Writing the
action as:

Sfree =
∫

d4x

(
1

2
φ(x)D−1φ(x) + φ(x)J (x)

)
(C5)
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with

D−1 = ∂2 − m2 = p2 − m2. (C6)

We can complete the squares in the action:

Sfree =
∫

d4x

(
1

2
φ(x) +

∫
d4 y J (y)D(y, x)

)
D−1

(
φ(x)+

∫
d4z J (z)D(z, x)

)
−

∫
d4xd4 y J (x)D(x, y)J (y). (C7)

Now in the free field functional integral, one can shift the φ integral, obtaining:

Z0[J ] = �e
−i
2

∫
d4xd4 y J (x)D(x,y)J (y). (C8)

Here � is the free field functional integral at J = 0. It is the (square root) of the functional
determinant of the operator D. D itself is the propagator of the scalar. This expression can
then be used to develop perturbation theory. For example, with a (λ/4!)φ4 interaction, we
can write:

Z [J ] = exp

(
i
∫

d4x
λ

4!

(
δ

iδ J (x)

)4
)

Z0[J ]. (C9)

Working out the terms in the power series reproduces precisely the Feynman diagram
expansion.

This has generalizations to non-Abelian gauge theories, with both unbroken and broken
symmetries, which we will discuss in the text. We will also find it useful for addressing
other questions.

C.2 Finite-temperature field theory

As an application of path integral methods and because of its importance in cosmology,
we consider at some length the problem of field theory at finite temperature.

In statistical mechanics, one is interested in the partition function,

Z [β] = Tre−β H . (C10)

For a quantum mechanical system, in contact with a heat bath, this is:

Z [β] =
∑

n

〈n|e−βEn|n〉, (C11)

where n label the energy eigenstates.
For a harmonic oscillator (unit mass), H = [(p2/2) + (ω2/2)]x2, and the partition

function is:

e−βF =
∑

n

e−βω(n+ 1
2 )

= e−ωβ/2 1

1 − e−βω
. (C12)

Now we can think of

〈x |e−β H |x〉 (C13)



Some practice with the path integral in field theory 493

as the amplitude that starting at x one ends up at x after propagating through an imaginary
time −iβ. This can be represented as a path integral:

〈x |e−β H |x〉 =
∫

x(0)=x(β)=x
[dx]e− ∫ β

0 dt LE , (C14)

where LE is the Euclidean Lagrangian,

LE =
(

dx

dt

)2

+ 1

2
ω2x2 (C15)

(note the signs here!). The partition function is now

Z [β] =
∫ dx0

x(0)=x(β)=x0

[dx]e− ∫ β

0 dt LE , (C16)

i.e. we integrate over the possible values of x at t = 0 in order to take the trace. This is the
problem of a periodic box in the time direction. For this simple system with one degree of
freedom, we can write:

x(t) =
∑

n

1√
T

ane− 2π in
β

t
. (C17)

We will simplify the problem slightly by taking x(t) to be complex (you can think of this
simply as an isotropic harmonic oscillator in two dimensions). The action of this
configuration is:

S =
∞∑

n=−∞

1

2

(
ω2

n + ω2
)|an|2. (C18)

The path integral is now:

Z [β] =
∏∫

danda∗
n e−SE . (C19)

The integrals are just Gaussian integrals. For a complex variable, z, we have∫
d2ze−a|z|2 = π

a
(C20)

so we have the result for Z :

Z [β] =
∏ 1

ω2 + ω2
n

, (C21)

where ωn = (2πn)/T .
Now before trying to evaluate this product, it is useful to pause and note that this can be

expressed in terms of the determinant of a matrix. Quite generally, Gaussian path integrals
take the form of (inverse) determinants. In this case, if we call M the differential operator:

M = 1

2

(
− d2

dt2
+ ω2

)
(C22)

its eigenfunctions are just eiωn t , with eigenvalues ω2
n + ω2. So Z is just the inverse

determinant of M. Had we worked with only one real coordinate, we would have
obtained the square root of the inverse determinant.
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The determinant of an infinite matrix may seem a daunting object, but there are some
tricks that permit evaluation in many cases. The first thing is to write the determinant as a
sum, by taking a logarithm. In general,

det M = e Tr ln(M) (C23)

(to see this, diagonalize M). It is easier to evaluate derivatives of the determinant rather
than the determinant itself. We can derive a very useful formula for the derivative of a
determinant by writing:

det(M + δM) = e Tr ln(M+δM) = e(Tr ln(M)+ln(1+M−1δM))

= e Tr ln(M)e TrM−1δM ≈ det M(1 + TrM−1δM). (C24)

Dividing by δM gives the derivative.
In our case, it is convenient to study:

1

Z

d

dω2
Z =

∑
n

1

ω2 + ω2
n

. (C25)

This is progress. Our infinite product is now an infinite sum. The question is: how do we
do the sum? The trick is to look for a periodic function which is well-behaved at infinity,
but has poles at the integers. A suitable choice is

1

eizβ − 1
. (C26)

We can then replace any sum of the form,
∑

f (n), by a contour integral,

1

2π

∫
dz f (z)

1

eizβ − 1
. (C27)

Here the contour is a line running just above the real z axis and back just below. The
residues of the (infinite number of) poles just give back the original sum.

Now one can deform the contour, taking one line into the upper half plane, one into the
lower, picking up the poles at z = ±iω. This leaves us with:

d F

dω2
=

(
1

e−ωβ − 1
− 1

eωβ − 1

)
1

2ω
. (C28)

We could analyze this problem further, but let us jump instead to free field theory. Then

Z [β] =
∫

φ(β)=φ(0)
[dφ]e− ∫

d4x[(∂µφ)2+m2φ2]. (C29)

In a finite box, with periodic boundary conditions, we can expand:

φ(�x, t) =
∑
�k,m

ei�kn ·�x+iωm tφ�k,m (C30)

where ωm = 2πmT .
In this form, we have that

Z [β] = det(−∂2 + m2)−1/2. (C31)

Again, this is somewhat awkward to work with. It is easier to differentiate:

1

Z

∂ Z

∂m2
= 1

Z

∫
[dφ]e− ∫

d4xLE

∫
d4z

1

2
φ2(z). (C32)
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This is just the propagator, with periodic boundary conditions in the time direction:∫
d4z〈φ(z)φ(z)〉 = βV 〈φ(0)φ(0)〉. (C33)

The propagator is given by:

〈φ(0)φ(0)〉 =
∑

m

∑
k

1

ω2
m + �k2 + m2

. (C34)

We can convert this into a more recognizable form by means of the same trick. The
propagator is given by the expression below:

〈φ(0)φ(0)〉 =
∫

d3k

(2π2)3

1

2π

∫
dz

eizβ − 1

1

(2πnT )2 + �k2 + m2
. (C35)

Now deform the contour as before, picking up the poles at ±i
√�k2 + m2. Both poles

make the same contribution, yielding:

1

2
√�k2 + m2

[
1

e−β

√
�k2+m2 − 1

− 1

eβ

√
�k2+m2 − 1

]

= 1

2
√�k2 + m2

[
1 + 2

eβ

√
�k2+m2 − 1

]
. (C36)

Note the appearance of the Bose–Einstein factors here. Note also the first term has the
structure of the zero temperature expression for the energy; the second is the finite
temperature expression. This is what we find differentiating:

βF = V
∫

d3k

(2π )3

[
1

2
Ek + β−1 ln(1 − e−βEk )

]
. (C37)

Note the connection with the result for the single oscillator. So far our discussion has been
for free field theory, but we can extend it immediately to interacting theories, developing a
perturbation order by order in the couplings, just as at zero temperature.

C.3 QCD at high temperature

Two particularly important cases are QCD and the weak-interaction theory. At low
energies, QCD is a complicated theory. But at high temperatures, things drastically
simplify. In perturbation theory, if we are studying the free energy, for example, we are
instructed to study a Euclidean problem with discrete energies which are multiples of T .
So, provided that we do not encounter infrared problems, the free energy should be a
power series in g2(T ), calculable in perturbation theory.

One can argue that there is actually a phase transition between a confined phase and a
deconfined phase. To find an order parameter for this transition, we start by considering a
Wilson line, running from imaginary time t = 0 to t = β,

UT (�x) = Pei
∫ β

0 A0(�x,t)dt . (C38)

Because of the periodic boundary conditions, this is gauge-invariant. The correlation of
two such operators is related to the potential of two static quarks:

P(R) = 〈UT ( �R)UT (0)〉 = Cexp(−βV (R)). (C39)
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In a confining phase, with a linear potential between the quarks, P(R) vanishes
exponentially with R. In a Coulomb phase (nearly free quarks), it will tend to a constant.
At very high temperatures, we would expect that we could compute P in a power series in
g2(T ), and that we will find the free quark behavior. Numerical studies show that there is a
phase transition at a particular temperature between confined and unconfined phases. The
order of the transition depends on the group.

Finite temperature perturbation theory suffers from infrared divergences, even at very
high temperature. The problem is the zero-frequency modes in the sum over frequencies.
If we simply set all of the frequencies to zero, we have the Feynman diagrams of a
three-dimensional field theory. At four loops the divergence is logarithmic. At higher
loops, it is power law.

We can understand this directly in the path integral. Consider a massless scalar field.
The exponent in the path integral is:∫ β

0
dtd3x(∂µφ)2. (C40)

For small β, assuming it makes sense to treat fields as constant in β, the path integral thus
becomes ∫

[dφ(�x)] e−β H , (C41)

which is the classical partition function for the three-dimensional system.
Thought of in this way, there is a natural guess for how the infrared divergences are cut

off. A three-dimensional gauge theory has a dimensionful coupling λ2. One might expect
that such a theory has a mass gap proportional to λ2 (in three dimensions, the gauge
coupling has dimensions of

√
M). In the present case the coupling is λ = g2T . This scale

then would cut off the infrared divergence. This suggests that the theory at finite
temperature makes sense, but does not help a great deal with computations. The problem
is that in four loops, we obtain a contribution g8 ln(g2), but at higher orders we obtain a
power series in g2/g2, i.e. we can at best compute the leading logarithmic term at four
loops. It is possible to study some of these issues numerically in lattice gauge theory,
which provides some support for this picture.

Instanton effects at high temperature

In QCD at zero temperature, we saw that instanton calculations were plagued by infrared
divergences. At high temperatures, this is not the case. The scale invariance of the
zero-energy theory is lost, and the instanton solution has a definite scale, of order the
temperature. As a result, instanton effects behave as exp(−8π2/g2(T )), and are
calculable. Thus it is possible to compute the θ dependence systematically. This is
particularly relevant to the understanding of the axion in the early universe.

C.4 Weak interactions at high temperature

The weak interactions exhibit different phenomena at high temperatures. Most strikingly,
there is a transition between a phase in which the gauge bosons are massive and one in
which they are massless. This transition can be uncovered in perturbation theory. By
analogy with the phase transition in the Landau–Ginzburg model of superconductivity,
one might expect that the value of 〈�〉 will change as the temperature increases. To
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determine the value of �, one must compute the free energy as a function of �. The
leading temperature-dependent corrections are obtained by simply noting that the masses
of the various fields in the theory (the W and Z bosons and the Higgs field, in particular)
depend on �. So the contributions of each species to the free energy are �-dependent:

F(�)VT (�) = ±
∑

i

∫
d3 p

2π3
ln
(

1 ∓ e−β
√

p2+m2
i (�)

)
, (C42)

where β = 1/T , T is the temperature, the sum is over all particle species (physical
helicity states), and the plus sign is for bosons, the minus for fermions. In the Standard
Model, for temperature T ∼ 102 GeV, one can treat all the quarks as massless, except for
the top quark. The effective potential (C42) then depends on the top quark mass, m t, the
vector boson masses, MZ and mW , and on the Higgs mass, mH. Performing the integral in
the equation yields

V (�, T ) = D
(
T 2 − T 2

0

)
�2 − ET �3 + λ

4
�4 + · · · . (C43)

The parameters T0, D and E are given in terms of the gauge boson masses and the gauge
couplings. For the moment, though, it is useful to note certain features of this expression.
E turns out to be a rather small, dimensionless number, of order 10−2. If we ignore the φ3

term, we have a second-order transition, at temperature T0, between a phase with φ �= 0
and a phase with φ = 0. Because the W and Z masses are proportional to φ, this is a
transition between a state with massive and massless gauge bosons.

Because of the φ3 term in the potential, the phase transition is potentially at least
weakly first order. A second, distinct, minimum appears at a critical temperature. A
first-order transition is not, in general, an adiabatic process. As we lower the temperature
to the transition temperature, the transition proceeds by the formation of bubbles; inside
the bubble the system is in the true equilibrium state (the state which minimizes the free
energy) while outside it tends to the original state. These bubbles form through thermal
fluctuations at different points in the system, and grow until they collide, completing the
phase transition. The moving bubble walls are regions where the Higgs fields are
changing, and all of Sakharov’s conditions are satisfied.

C.5 Electroweak baryon number violation

We have seen that, at low temperatures, violations of baryon and lepton number are
extremely small. This is not the case at high temperature, where baryon number violation
is a rapid process, which can come to thermal equilibrium. This has at least two possible
implications. First, it is conceivable that these sphaleron processes can themselves be
responsible for generating a baryon asymmetry. This is called electroweak baryogenesis.
Second, sphaleron processes can process an existing lepton number, producing a net
lepton and baryon number. This is the process called leptogenesis. In this section, we
summarize the main arguments that the electroweak interactions violate baryon number at
high temperature.

Recall that, classically, the ground states are field configurations for which the energy
vanishes. The trivial solution of this condition is �A = 0, where �A is the vector potential.
More generally, one can consider �A which is a “pure gauge,”

�A = 1

i
g−1 �∇g, (C44)
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nCS

0 1 2

Fig. C1. Schematic Yang–Mills vacuum structure. At zero temperature, the in-
stanton transitions between vacua with different Chern–Simons numbers are sup-
pressed. At finite temperature, these transitions can proceed via sphalerons.

where g is a gauge transformation matrix. In an Abelian (U (1)) gauge theory, fixing the
gauge eliminates all but the trivial solution, �A = 0.1 This is not the case for non-Abelian
gauge theories. There is a class of gauge transformations, labeled by a discrete index n,
which do not tend to unity as |�x | → ∞, which must be considered to be distinct states.
These have the form:

gn(�x) = ein f (�x)x̂ ·τ/2, (C45)

where f (x) → 2π as �x → ∞, and f (�x) → 0 as �x → 0.
So the ground states of the gauge theory are labeled by an integer n. Now if we evaluate

the integral of the current K 0, we obtain a quantity known as the Chern–Simons number:

nCS = 1

16π2

∫
d3x K 0 = 2/3

16π2

∫
d3xεi jkTr(g−1∂i gg−1∂ j gg−1∂k g). (C46)

For g = gn , nCS = n. The reader can also check that for g′ = gn(x)h(x), where h is a
gauge transformation which tends to unity at infinity (a so-called “small gauge
transformation”), this quantity is unchanged. The “Chern–Simons number,” nCS, is
topological in this sense (for �As which are not “pure gauge,” nCS is in no sense quantized).

Schematically, we can thus think of the vacuum structure of a Yang–Mills theory as
indicated in Fig. C1. We have, at weak coupling, an infinite set of states, labeled by
integers, and separated by barriers from one another. In tunneling processes which change
the Chern–Simons number, because of the anomaly, the baryon and lepton numbers will
change. The exponential suppression found in the instanton calculation is typical of
tunneling processes, and in fact the instanton calculation which leads to the result for the
amplitude is nothing but a field-theoretic WKB calculation.

1 More precisely, this is true in axial gauge. In the gauge A0 = 0, it is necessary to sum over all time-independent
transformations to construct a state which obeys Gauss’s law.
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One can determine the height of the barrier separating configurations of different nCS by
looking for the field configuration which corresponds to sitting on top of the barrier. This
is a solution of the static equations of motion with finite energy. It is known as a
“sphaleron.” When one studies the small fluctuations about this solution, one finds that
there is a single negative mode, corresponding to the possibility of rolling down hill into
one or the other well. The sphaleron energy is of order

Esp = c

g2
MW . (C47)

This can be seen by scaling arguments on the classical equations; determining the
coefficient c requires a more detailed analysis. The rate for thermal fluctuations to cross
the barrier per unit time per unit volume should be of order the Boltzmann factor for this
configuration, multiplied by a suitable prefactor,

�sp = T 4e−Esp/T . (C48)

Note that the rate becomes large as the temperature approaches the W boson mass. The W
boson mass itself goes to zero as one approaches the electroweak phase transition. At this
point, the computation of the transition rate is a difficult problem – there is no small
parameter – but general scaling arguments show that the transition rate is of the form:2

�bv = α4
W

T 4. (C49)

Suggested reading

The path integral is well treated in most modern field theory textbooks. Peskin and
Schroder (1995) provide a concise introduction. High-temperature field theory is
developed in a number of textbooks, such as that of Kapusta (1989).

Exercises

(1) Go through the calculation of the free energy of a free scalar field carefully, being
careful about factors of 2 and π .

(2) Compute the constants appearing in Eq. (C43). Plot the free energy, and show that the
transition is weakly first order.

(3) Show, by power counting, that infrared divergences first appear in the free energy of a
gauge theory at three loops. To do this, you can look at the zero-frequency terms in the
sums over frequency. Show that the divergences become more severe at higher orders.

2 More detailed considerations alter slightly the parametric form of the rate.





Appendix D

The beta function in supersymmetric Yang–Mills theory

We have seen that holomorphy is a powerful tool to understand the dynamics of
supersymmetric field theories. But one can easily run into puzzles and paradoxes. One
source of confusion is the holomorphy of the gauge coupling. At tree level, the gauge
coupling arises from a term in the action of the form:∫

d2θ SW 2
α (D1)

where S = −(1/4g2) + ia. This action, in perturbation theory, has a symmetry

S → S + iα. (D2)

This is just an axion shift symmetry. Combined with holomorphy, this greatly restricts the
form of the effective action. The only allowed terms are:

Leff =
∫

d2θ (S + constant)W 2
α . (D3)

The constant term corresponds to a one-loop correction. But higher-loop corrections are
forbidden.

On the other hand, it is well known that there are two-loop corrections to the beta
function in supersymmetric Yang–Mills theories (higher-loop corrections have also been
computed). Does this represent an inconsistency? This puzzle can be stated – and has been
stated – in other ways. For example, the axial anomaly is in a supermultiplet with the
conformal anomaly – the anomaly in the trace of the stress tensor. One usually says that
the axial anomaly is not renormalized, but the trace anomaly is proportional to the beta
function.

The resolution to this puzzle was provided by Shifman and Vainshtein. It is most easily
described in a U (1) gauge theory, with some charged superfields, say φ±. Without masses
for these fields, the one-particle irreducible effective action has infrared singularities. In
addition, we need to regulate ultraviolet divergences. We can regulate the second type of
divergence by introducing Pauli–Villars regulator fields, while the infrared divergence can
be regulated by including a mass for φ±. The φ± and regulator mass terms are
holomorphic: ∫

d2θ M�+
pv�

−
pv. (D4)
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The gauge coupling term in the effective action must be a holomorphic function, now, of S
and M . But the effective action also includes wave function renormalizations for the
various regulator fields: ∫

d4θ Z−1(�+†�+ + �−†�−). (D5)

The wave function factors, Z , are not holomorphic functions of the parameters.1 The
physical cutoff is then Zpv M , and the physical infrared scale is Zφm. So to determine the
coupling constant renormalization in terms of this scale, we need to compute the Zs as
well. One needs to be a bit careful in this computation. If one works in a
non-supersymmetric gauge, such as Wess–Zumino gauge, one needs to actually compute
the mass renormalization; the wave function renormalizations will be different for the
different component fields.

Starting, then, with our holomorphic expression

8π2

g2(m)
= 8π2

g2(�)
+ b0 ln(m/M), (D6)

we have, in terms of the physical masses:

8π2

g2(m)
= 8π2

g2(�)
+ b0(ln(m/M) − ln(Z (m)/Z (M))). (D7)

To form the beta function, we need to take

β(g) = −g3

16π2

∂

∂ ln(m)
g−2(m) = − b0g3

16π2
+ b0g3

16π2
γ (D8)

where

γ = d

d ln(M)
ln(Z ) = − 4g2

16π2
. (D9)

So there are two- and higher-loop corrections to the beta function. Plugging in, one
obtains to two-loop order, for the U (1) theory:

−β(g) = g3

16π2
+ 4g5

(16π2)2
. (D10)

This is, in fact, the correct result.
This analysis makes clear why the holomorphic analysis is correct but subtle. For

non-Abelian theories, it is not quite so straightforward to introduce a holomorphic
regulator. One can arrive at the required modification by a variety of arguments. In many
ways, the most convincing and straightforward comes from examination of instanton
amplitudes. One can also simply make an educated guess by examining the results of
two-loop computations. The required relation is:

8π2

g2(m)
= 8π2

g2(�)
+ b0(ln(m/M) − ln(Z (m)/Z (M)) + CA ln(g2). (D11)

1 There is much dispute in the literature about whether to write the action with Z or Z−1. I have chosen Z−1,
following the convention of most field theory texts, in which propagators have a factor of Z in the numerator.
The reader is free to follow his or her taste.
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Differentiating, as before, one obtains the expression for the beta function:

β(g) = g3

8π2

3CA − ∑
T i

F (1 − γ i )

1 − (CAg2/8π )2
. (D12)

Exercise

(1) By examining ’t Hooft’s computation of the instanton determinant, argue that the
appropriate generalization of the Shifman–Vainshtein formula is that of Eq. (D11).
Derive the exact expression for the beta function of Eq. (D12). Verify, by comparison
with published results, that this correctly reproduces the two-loop beta function of a
supersymmetric gauge theory.
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Möbius group, 332
modular invariance, one-loop amplitudes, 337, 338
modular transformations, 336
moduli, 151, 195, 199, 375
moduli problem, 285
moduli spaces, 199
moduli spaces, approximate, 209

moduli, and inflation, 278
moduli, lifetime, 286
monopole problem, 270
MSSM, 167, 169
MSSM, breaking of SU (2) × U (1), 173
MSSM, Higgs mass limits, 176
MSSM, parameters, 171
mu term, 178

N = 2 theories, 219
N = 2, vector multiplet, 220
N = 4 Yang–Mills theory, 221
Nambu, Y., 307
Nambu–Goldstone bosons, 14
Ne’eman, Y., 102
Neumann boundary conditions, 316, 444
neutrino mass, 66
neutrino oscillations, 67
neutron electric dipole moment, 69
non-linear sigma model, 133
non-perturbative superpotential, 198
non-renormalization theorems, 151, 152, 153
non-renormalization theorems, string theory, 430,

431, 432, 433
normal ordering, 346, 347
NS 5-brane, 456
NS sector, 342
nucleosynthesis, 266

O’Raifeartaigh models, 157
O(10), 114
one-loop potential, 161
OPE, 324
open strings, 315
open superstrings, 341
orbifolds, 388, 389, 390, 391
orbifolds, discrete symmetries, 393
orbifolds, discrete symmetries and flat directions, 394
orbifolds, effective actions, 396
orbifolds, modular invariance, 394
orbifolds, N = 1 supersymmetry, 390
orientifolds, 447

parity, 24
partons, 4
Pauli–Villars, 501
Pauli–Villars fields, 213
Pauli–Villars regulator, 78
Peccei, R., 103
Peccei–Quinn symmetry, 103
Penzias, A., 266
perimeter law, 49
pion masses, 488
pions as Goldstone bosons, 91
Politzer, D., 6
Prasad, M. K., 124
Prasad–Sommerfield monopole, 124
proton decay, 70, 114
proton decay, supersymmetric GUTs, 188

QCD at high temperature, infrared divergences, 496



514 Index

QCD instantons, 92
QCD theta, 100, 101
QCD theta and massless u quark, 102
QCD theta and spontaneous CP violation, 103
QCD theta parameter, 71, 81, 89, 92
quadratic divergences, cancellations in

supersymmetry, 171
quantum moduli space, 211
quark condensate, 90, 132
quark distribution functions, 58
quark mass matrix, 27
quark masses, 34
Quinn, H., 103

R-symmetries, 195
R-symmetry, 149, 170
R-parity, 168, 189
radiation dominated era, 262, 263
Ramond sector, 342, 343
Randall, R., 278
Randall–Sundrum, 475
Ricci scalar, 250
Ricci tensor, 249
right-handed neutrino, 116

S-matrix, factorization, 333
S-matrix, string theory, 331
Sakharov, A., 287
Salam, A., 5
Scherk, J., 308
Schwarzschild metric, 252, 253, 254
Schwarzschild radius, 254
Schwarz, J., 308
Schwinger, J., 4
Seiberg duality, 240
Seiberg, N., 152, 198, 207, 227, 230, 238, 240
Seiberg–Witten theory, 225, 226, 227, 228, 229, 230
Shenker, S., 462
Shifman, M., 501
SLAC, 4
slow roll approximation, 272
small gauge transformations, 98, 126
soft breaking, constraints, 181, 182
soft breaking, experimental constraints, 180
soft breakings, experimental constraints, 179
soft masses, renormalization group equations, 175
soft supersymmetry breaking, 162, 169
solitons, 120
Sommerfield, C., 124
sphaleron, 499
spin connection, 257
spinor representations of orthogonal groups, 115
spinors, general relativity, 256
spontaneous supersymmetry breaking, 157
stress tensor, 250
string coupling, 368
string theory, Fayet–Iliopoulos terms, 434, 435, 436,

437
string theory, finiteness, 306
string theory, gaugino condensation, 437, 438
string theory, unification of couplings, 416, 424

strings, background fields, 382, 383
strong CP problem, 76
strongly coupled heterotic string theory, 458, 459
SU (5), 107, 108
superconformal zero modes, 204
superfields, 142
supergravity, eleven dimensions, 365, 366
superpotential, 145
superspace, 141
superspace covariant derivatives, 142
superstring action, 341
superstring mode expansion, 342
superstrings, space-time fermions, 343
superstrings, vertex operators, 355
supersymmetric guts, 185
supersymmetric qcd, 195
supersymmetry, 475
supersymmetry algebra, 140
supersymmetry breaking, early universe, 296
supersymmetry breaking, supergravity, 164
supersymmetry breaking, vanishing of the ground

state energy, 148
supersymmetry currents, 147
supersymmetry generators, 142
supersymmetry representations, 140
supersymmetry zero modes, 204
supersymmetry, component Lagrangian, 146
supersymmetry, world sheet, 345
Susskind, L., 307, 462
Susy QCD, Nf < N − 1, 200
Susy QCD, Nf = N − 1, 201

’t Hooft, G., 5, 40, 94, 96, 201, 238
’t Hooft–Polyakov monopole, 124
T -duality, 381
T -duality, open strings and D-branes, 449
technicolor, 131, 475
theta functions, 350
Tomanaga, S., 4
top quark, 39
top quark, symmetry breaking in MSSM, 175
toroidal compactification, 386
toroidal compactification, momentum lattice, 379
toroidal compactification, non-supersymmetric,

398
Type I-O(32) duality, 457
Type II strings, spectra, 347

U (1) problem, 99
unification of couplings, 110
unitarity triangle, 33

Vainshtein, A., 501
vector superfields, 143
Veltman, M., 5, 40
Veneziano amplitude, 333
Veneziano, G., 307
vertex operators, 329, 330
vielbein, 256, 257
Virasoro algebra, 327
Virasoro–Shapiro amplitude, 333



Index 515

visible sector, 164
vortices, 122

W boson, 135
W bosons, 26, 29, 133
Weinberg, S., 5, 103, 479
Wess–Zumino model, 149
Weyl basis, 483, 484
Weyl rescaling, 375
Wilczek, W., 6
Wilson line, 46
Wilson lines on Calabi–Yau manifolds, 420
Wilson lines, compactified, 379
Wilson loop, 47
Wilson, K., 36, 46, 71
Wilson, Ken, 47

Wilson, R., 266
winding modes, 377
Witten effect, 127
Witten index, 192
Witten, E., 127, 192, 227, 230, 308, 458
Wolfenstein parameterization, 33

Yang, C. N., 5
Yang–Mills action, 10
Yang–Mills theory, 9
Yoneya, T., 308
Yukawa, H., 3

Z boson, 26, 135
Z bosons, 29, 133
Zaks, A., 234


	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	A note on choice of metric
	Text website
	Part 1 Effective field theory: the Standard Model, supersymmetry, unification
	1 Before the Standard Model
	Suggested reading

	2 The Standard Model
	2.1 Yang–Mills theory
	2.2 Realizations of symmetry in quantum field theory
	2.2.1 The Goldstone phenomenon
	2.2.2 Aside: choosing a vacuum
	2.2.3 The Higgs mechanism
	2.2.4 Goldstone and Higgs phenomena for non-Abelian symmetries
	2.2.5 Confinement

	2.3 The quantization of Yang–Mills theories
	2.3.1 Gauge fixing in theories with broken gauge symmetry

	2.4 The particles and fields of the Standard Model
	2.5 The gauge boson masses
	2.6 Quark and lepton masses
	Suggested reading
	Exercises

	3 Phenomenology of the Standard Model
	3.1 The weak interactions
	3.2 The quark and lepton mass matrices
	3.3 The strong interactions
	3.3.1 Asymptotic freedom

	3.4 The renormalization group
	3.5 Calculating the beta function
	3.6 The strong interactions and dimensional transmutation
	3.7 Confinement and lattice gauge theory
	3.7.1 Wilson’s formulation of lattice gauge theory

	3.8 Strong interaction processes at high momentum transfer
	3.8.1 e+e Annihilation
	3.8.2 Jets in e+e annihilation
	3.8.3 Deep inelastic scattering
	3.8.4 Other high momentum processes

	Suggested reading
	Exercises

	4 The Standard Model as an effective field theory
	4.0.1 Integrating out the W and Z bosons
	4.0.2 What might the Standard Model come from?
	4.1 Lepton and baryon number violation
	4.1.1 Dimension five: lepton number violation and neutrino mass
	4.1.2 Other symmetry-breaking dimension-five operators
	4.1.3 Irrelevant operators and high-precision experiments
	4.1.4 Dimension-six operators: proton decay

	4.2 Challenges for the Standard Model
	4.2.1 A puzzle at the renormalizable level

	4.3 The hierarchy problem
	4.4 Dark matter and dark energy
	4.5 Summary: successes and limitations of the Standard Model
	Suggested reading

	5 Anomalies, instantons and the strong CP problem
	5.1 The chiral anomaly
	5.1.1 Applications of the anomaly in four dimensions
	5.1.2 Return to QCD

	5.2 A two-dimensional detour
	5.2.1 The anomaly in two dimensions
	5.2.2 Path integral computation of the anomaly
	5.2.3 The CPN model: an asymptotically free theory
	5.2.4 The large-N limit
	5.2.5 The role of instantons

	5.3 Real QCD
	5.3.1 The theory and its symmetries
	5.3.2 Instantons in QCD
	5.3.3 Physical interpretation of the instanton solution
	5.3.4 QCD and the U(1) problem

	5.4 The strong CP problem
	5.4.1 The θ-dependence of the vacuum energy
	5.4.2 The neutron electric dipole moment

	5.5 Possible solutions of the strong CP problem
	5.5.1 When mu = 0
	5.5.2 Spontaneous CP violation
	5.5.3 The axion

	Suggested reading
	Exercises

	6 Grand unification
	6.1 Cancellation of anomalies
	6.2 Renormalization of couplings
	6.3 Breaking to SU(3) × SU(2) × U(1)
	6.4 SU(2) × U(1) breaking
	6.5 Charge quantization and magnetic monopoles
	6.6 Proton decay
	6.7 Other groups
	Suggested reading
	Exercises

	7 Magnetic monopoles and solitons
	7.1 Solitons in 1 + 1 dimensions
	7.2 Solitons in 2 + 1 dimensions: strings or vortices
	7.3 Magnetic monopoles
	7.4 The BPS limit
	7.5 Collective coordinates for the monopole solution
	7.6 The Witten effect: the electric charge in the presence of Theta
	7.7 Electric–magnetic duality
	Suggested reading
	Exercises

	8 Technicolor: a first attempt to explain hierarchies
	8.1 QCD in a world without Higgs fields
	8.2 Fermion masses: extended technicolor
	8.3 Precision electroweak measurements
	Suggested reading
	Exercises


	Part 2 Supersymmetry
	9 Supersymmetry
	9.1 The supersymmetry algebra and its representations
	9.2 Superspace
	9.3 N = 1 Lagrangians
	9.4 The supersymmetry currents
	9.5 The ground-state energy in globally supersymmetric theories
	9.6 Some simple models
	9.6.1 The Wess–Zumino model
	9.6.2 A U(1) gauge theory

	9.7 Non-renormalization theorems
	9.8 Local supersymmetry: supergravity
	Suggested reading
	Exercises

	10 A first look at supersymmetry breaking
	10.1 Spontaneous supersymmetry breaking
	10.1.1 The Fayet–Iliopoulos D term

	10.2 The goldstino theorem
	10.3 Loop corrections and the vacuum degeneracy
	10.4 Explicit, soft supersymmetry breaking
	10.5 Supersymmetry breaking in supergravity models
	Suggested reading
	Exercises

	11 The Minimal Supersymmetric Standard Model
	11.1 Soft supersymmetry breaking in the MSSM
	11.1.1 Cancellation of quadratic divergences in gauge theories

	11.2 SU(2) × U(1) breaking
	11.3 Why is one Higgs mass negative?
	11.4 Radiative corrections to the Higgs mass limit
	11.5 Embedding the MSSM in supergravity
	11.6 The term
	11.7 Constraints on soft breakings
	11.7.1 Direct searches for supersymmetric particles
	11.7.2 Constraints from rare processes

	Suggested reading
	Exercises

	12 Supersymmetric grand unification
	12.1 A supersymmetric grand unified model
	12.2 Coupling constant unification
	12.3 Dimension-five operators and proton decay
	Suggested reading
	Exercises

	13 Supersymmetric dynamics
	13.1 Criteria for supersymmetry breaking: the Witten index
	13.2 Gaugino condensation in pure gauge theories
	13.3 Supersymmetric QCD
	13.4 N < N: a non-perturbative superpotential
	13.4.1 The Lambda -dependence of the superpotential

	13.5 The superpotential in the case N < N – 1
	13.6 N = N - 1: the instanton-generated superpotential
	13.6.1 An application of the instanton result: gaugino condensation

	Suggested reading
	Exercises

	14 Dynamical supersymmetry breaking
	14.1 Models of dynamical supersymmetry breaking
	14.1.1 The (3, 2) model

	14.2 Particle physics and dynamical supersymmetry breaking
	14.2.1 Gravity mediation and dynamical supersymmetry breaking: anomaly mediation
	14.2.2 Low-energy dynamical supersymmetry breaking: gauge mediation
	Minimal Gauge Mediation (MGM)


	Suggested reading
	Exercises

	15 Theories with more than four conserved supercharges
	15.1 N = 2 theories: exact moduli spaces
	15.2 A still simpler theory: N = 4 Yang–Mills
	15.3 A deeper understanding of the BPS condition
	15.3.1 N = 4 Yang–Mills theories and electric–magnetic duality

	15.4 Seiberg–Witten theory
	Suggested reading
	Exercises

	16 More supersymmetric dynamics
	16.1 Conformally invariant field theories
	16.2 More supersymmetric QCD
	16.3 N = N
	16.3.1 Supersymmetry breaking in quantum moduli spaces
	16.3.2 N = N + 1

	16.4 N > N + 1
	16.5 N ≥ 3/2N
	Suggested reading
	Exercises

	17 An introduction to general relativity
	17.1 Tensors in general relativity
	17.2 Curvature
	17.3 The gravitational action
	17.4 The Schwarzschild solution
	17.5 Features of the Schwarzschild metric
	17.6 Coupling spinors to gravity
	Suggested reading
	Exercises

	18 Cosmology
	18.1 A history of the universe
	Suggested reading
	Exercises

	19 Astroparticle physics and inflation
	19.1 Inflation
	19.1.1 Fluctuations: the formation of structure
	19.1.2 Models of Inflation
	19.1.3 Constraints on reheating: the gravitino problem

	19.2 The axion as dark matter
	19.3 The LSP as the dark matter
	19.4 The moduli problem
	19.5 Baryogenesis
	19.5.1 Baryogenesis through heavy particle decays
	19.5.2 Electroweak baryogenesis
	19.5.3 Leptogenesis
	19.5.4 Baryogenesis through coherent scalar fields

	19.6 Flat directions and baryogenesis
	19.7 Supersymmetry breaking in the early universe
	19.7.1 Appearance of the baryon number

	19.8 The fate of the condensate
	19.9 Dark energy
	Suggested reading
	Exercises


	Part 3 String theory
	20 Introduction
	20.1 The peculiar history of string theory
	Suggested reading

	21 The bosonic string
	21.1 The light cone gauge in string theory
	21.1.1 Open strings

	21.2 Closed strings
	21.3 String interactions
	21.3.1 String theory in conformal gauge

	21.4 Conformal invariance
	21.5 Vertex operators and the S-matrix
	21.5.1 Vertex operators
	21.5.2 The S-matrix
	21.5.3 Factorization

	21.6 The S-matrix vs. the effective action
	21.7 Loop amplitudes
	Suggested reading
	Exercises

	22 The superstring
	22.1 Open superstrings
	22.2 Quantization in the Ramond sector: the appearance of space-time fermions
	22.3 Type II theory
	22.4 World sheet supersymmetry
	22.5 The spectra of the superstrings
	22.5.1 The normal ordering constants
	22.5.2 The different sectors of the Type II theory
	22.5.3 Other possibilities: modular invariance and the GSO projection
	22.5.4 More on the Type I theory: gauge groups

	22.6 Manifest space-time supersymmetry: the Green–Schwarz formalism
	22.7 Vertex operators
	Suggested reading
	Exercises

	23 The heterotic string
	23.1 The O(32) theory
	23.2 The E × E theory
	23.3 Heterotic string interactions
	23.4 A non-supersymmetric heterotic string theory
	Suggested reading
	Exercises

	24 Effective actions in ten dimensions
	24.0.1 Eleven-dimensional supergravity
	24.0.2 The IIA and IIB supergravity theories
	24.0.3 Ten-dimensional Yang–Mills theory
	24.1 Coupling constants in string theory
	24.1.1 Couplings in closed string theories
	24.1.2 The coupling is not a parameter in string theory
	24.1.3 Effective Lagrangian argument
	24.1.4 World sheet coupling of the dilaton

	Suggested reading
	Exercise

	25 Compactification of string theory I. Tori and orbifolds
	25.1 Compactification in field theory: the Kaluza–Klein program
	25.1.1 Generalizations and limitations of the Kaluza–Klein program

	25.2 Closed strings on tori
	25.3 Enhanced symmetries
	25.4 Strings in background fields
	25.4.1 The beta function
	25.4.2 More general tori

	25.5 Bosonic formulation of the heterotic string
	25.6 Orbifolds
	25.6.1 Discrete symmetries
	25.6.2 Modular invariance, interactions in orbifold constructions

	25.7 Effective actions in four dimensions for orbifold models
	25.7.1 Couplings and scales

	25.8 Non-supersymmetric compactifications
	Suggested reading
	Exercises

	26 Compacti.cation of string theory II. Calabi–Yau compactifications
	26.1 Mathematical preliminaries
	26.2 Calabi–Yau spaces: constructions
	26.3 The spectrum of Calabi–Yau compactifications
	26.4 World sheet description of Calabi–Yau compactification
	26.5 An example: the quintic in CP4
	26.6 Calabi–Yau compactification of the heterotic string at weak coupling
	26.6.1 Features of Calabi–Yau compactifications of the heterotic string
	26.6.2 Gauge groups: symmetry breaking
	26.6.3 Massless Higgs fields, or the u problem
	26.6.4 Continuous global symmetries
	26.6.5 Discrete symmetries
	26.6.6 Further symmetry breaking: the Standard Model gauge group
	26.6.7 Gauge coupling unification
	26.6.8 Calculating the parameters of the low-energy Lagrangian
	26.6.9 Other perturbative heterotic string constructions

	Suggested reading
	Exercises

	27 Dynamics of string theory at weak coupling
	27.1 Non-renormalization theorems
	27.1.1 Non-renormalization theorems for world sheet perturbation theory
	27.1.2 Non-renormalization theorems for string perturbation theory

	27.2 Fayet–Iliopoulos D-terms
	27.3 Gaugino condensation
	27.4 Obstacles to a weakly coupled string phenomenology
	Suggested reading

	28 Beyond weak coupling: non-perturbative string theory
	28.1 Perturbative dualities
	28.2 Strings at strong coupling: duality
	28.3 D-branes
	28.3.1 Brane charges
	28.3.2 Brane actions

	28.4 Branes from T-duality of Type I strings
	28.4.1 Orientifolds

	28.5 Strong–weak coupling dualities: the equivalence of different string theories
	28.6 Strong–weak coupling dualities: some evidence
	28.6.1 IIA→ eleven-dimensional supergravity (M theory)
	28.6.2 IIB self-duality
	28.6.3 Type I –O(32) duality

	28.7 Strongly coupled heterotic string
	28.7.1 Compactiﬁcation of the strongly coupled heterotic string

	28.8 Non-perturbative formulations of string theory
	28.8.1 Matrix theory
	28.8.2 The AdS/CFT correspondence
	A little more general relativity: anti-de Sitter space
	Maldacena’s conjecture


	Suggested reading
	Exercises

	29 Large and warped extra dimensions
	29.1 Large extra dimensions: the ADD proposal
	29.2 Warped spaces: the Randall–Sundrum proposal
	Suggested reading
	Exercise

	30 Coda: Where are We Headed?
	Suggested reading


	Part 4 The appendices
	Appendix A Two-component spinors
	Appendix B Goldstone’s theorem and the pi mesons
	Exercises

	Appendix C Some practice with the path integral in field theory
	C.1 Path integral review
	C.2 Finite-temperature field theory
	C.3 QCD at high temperature
	Instanton effects at high temperature

	C.4 Weak interactions at high temperature
	C.5 Electroweak baryon number violation
	Suggested reading
	Exercises

	Appendix D The beta function in supersymmetric Yang–Mills theory
	Exercise


	References
	Index

