la teoría está fuertemente aplicada ($g \gg 1$), la expansión perturbativa se vuelve completamente inútil, y perdemos nuestro método de cálculo y de visualización. Importante: cuán cuando $g \ll 1$ la serie perturbativa no converge, a orden n el la expansión reaer uno factor $g^n \ll 1$, pero el número de diagramas distintos crece como $\sim n!$, de modo que, sin importar que sea chiquito g, la serie comienza a diverger cuando $n! / g$. Esto indica que dicha serie no captura toda la física de la teoría - existe un efecto "no perturbativo".

Un ejemplo es la existencia en algunas teorías de excitaciones grandes pero localizadas del campo (soluciones no triviales de la ec. de mov. no lineal, estáticas y con energía finita $E \sim 1/g^2$) $\Phi(t, x)$ conocidas como **solitones**.

Estos estados/objetos físico de la teoría, que se comportan como partículas gordas y pesadas. La existencia de solitones (junto con varios otros fenómenos)
nos deja claro que el campo es el concepto primario, y las partículas usuales son apenas un tipo de excitaciones de él. El mundo está hecho de campos.

El lenguaje de teoría cuántica de campos impone algunas restricciones genéricas sobre nuestra descripción del microuniverso (p.ej., existencia de antipartículas, simetría CPT, conexión entre espin y estadísticas, cancelación de “anomalías” de normas), pero permite gran arbitrariedad: existe un número infinito de teorías de campo distintas, que difieren por el tipo y número de campos, interacciones, masas y suplantamiento, simetría, la dimensión del espacio-tiempo, etc. (Para nuestro propósito, vea la para enfatizar en particular que todo lo que hemos dicho se puede generalizar fácilmente de 3+1 a D dimensiones.)

La teoría de campos especifica que resume todo lo que sabemos hasta ahora respecto a la composición
microscópica de nuestro universo es el \textit{Modelo Estándar}, que tiene las siguientes propiedades.

- \textbf{Dimension:} \(3+1\)

- \textbf{Campos:} 2 escalares complejos \(\phi^+, \phi^0\) \(\text{Higgs}\)

 24 (48) campos de Dirac (Weyl)

 \(u^{c=1,2,3}, d^c, c^c, s^c, t^c, b^c\) \(\text{Quarks}\)

 \(\nu_e, \nu, \nu^0, \nu^\tau, \nu^e, \tau\) \(\text{Leptones}\)

 12 campos vectoriales: \(W^{a=1,2,3}, B^a\) \(\text{bosones electrodébil}\)

 \(G^b_{\mu=1,\ldots,8}\) \(\text{gluones}\)

- \textbf{Simetría/redundancia local o de norma:} \(\det = 1\)

 \(M^+ = M^{-1}\)

 \(M_{\text{ME}} = SU(3)_c \times SU(2)_I \times U(1)_Y\)

 \`Rotaciones\,' que actúan sobre los campos, y pueden ser distintas en cada \(x\)

 \(\text{p.ej., } \exp[\i \Theta^a \sigma^a] \in SU(2)_I\)
SU(3) es asociado a (y determina) la interacción fuerte, transmitida por el campo gluónico G^a_μ y generado/experimentado por objetos con el tipo de carga que llamamos color (índices c, b).

SU(2)$_I \times$ U(1) y está asociado/determina la interacción electrodébil con la parte de SU(2)$_I$ transmitida por W^a_μ y generada por la carga que llamamos isospin débil, y el factor U(1) y transmitido por B_μ y generado por la carga que llamamos hiper-carga.

- Representaciones de $SU(3)_c$:

 G^a_μ, W^a_μ, B_μ transforman como campos de norma (rep. `adjuntz`)

 $\text{Ej.: } W^a_\mu(x) \frac{\sigma^a}{2} \rightarrow U(x)[W^a_\mu(x) \frac{\sigma^a}{2} + \frac{i}{\sqrt{2}} \partial_\mu] U(x)^\dagger \tag{1}$

 $\exp[i\Theta^a_\mu \frac{\sigma^a}{2}] \in SU(2)_I$ \(\dim\)

 Quarks \((\begin{pmatrix} u^1 \cr u^2 \cr u^3 \end{pmatrix}, (\begin{pmatrix} d^1 \cr d^2 \cr d^3 \end{pmatrix}), \ldots \in \text{rep. fundamental } (3) \)

 (nótese la multiplicación derecha `i' y `γ_5') \(\dim\)

 Leptones y Higgs $\nu_e, e, \ldots, \phi^+, \phi^0 \in \text{rep. trivial } (1)$ \(\dim\)

 de SU(3)$_c$ (neutros).
Quark de "quiralidad" izquierda

\[\left(\begin{array}{c}
 u_I \\
 d_I \\
 c_I \\
 s_I \\
 b_I
\end{array} \right) \in \text{rep. fundamental (2)} \]

de \text{SU}(2) _I

y tienen (hiper)carga \(Y = +\frac{1}{6} \) bajo \(U(1)_Y \).

Quark derecho

\[\left(\begin{array}{c}
 u_d \\
 d_d \\
 c_d \\
 s_d \\
 b_d
\end{array} \right) \in \text{rep trivial (1)} \text{ de } \text{SU}(2) _I

\text{(neutro)}, y tienen \(Y = +\frac{2}{3}, -\frac{1}{3}, +\frac{1}{3}, -\frac{1}{3}, +\frac{1}{3}, -\frac{1}{3} \).

El Modelo Estándar distingue entre derecho e izquierdo, es decir, es una teoría "quiral".

Leptono izquierdo

\[\left(\begin{array}{c}
 \nu_e \\
 \nu_{\mu} \\
 \nu_{\tau}
\end{array} \right) \in \text{rep. fundamental (2)} \]

de \text{SU}(2) _I, y tienen \(Y = -\frac{1}{2} \) bajo \(U(1)_Y \).

Leptono derecho

\[\nu_{\bar{d}}, e_d, \nu_{\bar{d}}, \nu_{\bar{d}}, \nu_{\bar{d}}, \nu_{\bar{d}}, \tau_d \]
\(\in \text{rep trivial (1)} \text{ de } \text{SU}(2) _I \text{ (neutro)}, y \)
\(\text{tienen } Y = 0, -1, 0, -1, 0, -1. \)
Notar triplicación de propiedades de quark y leptones: decimos que existen 3 generaciones (cada una debe aparecer completa para tener cancelación de “anomalías”).

\[Higgs: \Phi = (\phi^+) \in \text{rep. fundamental (2) de SU(2)_L} \]

y tiene \(y = +\frac{1}{2} \).

- Lagrangiano: esencialmente la expresión más general para los campos, grupo y rep. dados, con el requisito de ser ‘renormalizable’.

Renormalizar significa reescribir las predicciones de una teoría de campos en términos de parámetros (máscara, acoplamiento, etc.) experimentalmente medible (parámetro ‘vertido’ o renormalizador), en lugar de los parámetros abstractor que figuran en \(L \) (parámetros ‘desnudos’).

Pej., lo que en esencia de intercuaría hubiera sido el propagador de un electrón, \(\rightarrow \), en la teoría
Con interacciones (digamos, en QED) es reemplazado por

\[e^- \rightarrow + \quad Y (fotón) + \quad e^+ \rightarrow + \quad e^- + \ldots \]

(donde la constante de couplamiento en cada vértice es proporcional a la carga eléctrica del electrón). Es decir, en términos de los ingredientes básicos de la expansión perturbativa, debemos visualizar a una partícula física (o 'vertice') como un objeto bastante complicado,

![Diagrama](image)

nube de fotones, electrones, positrones, etc. virtuales (que continúan aparecer y desaparecer)

cuyas propiedades (masa, carga eléctrica, etc.) dependen de la distancia a la cual lo examinemos.

Se dice que una teoría cuántica de campos es renormalizable si todos los predicadores se pueden expresar en términos de un número finito de
cadenas "medibles" (p.ej., en el caso de QED, serían la masa y carga del electrón físico, así como la normalización de los campos $A_\mu(x), e(x)$), y no renormalizable si hacen falta un número infinito de datos experimentales (situación que claramente no es muy feliz).

En el caso del ME, la renormalizabilidad solo nor permite tener cierto vértice de interacción cuádrice (p.ej., χ_4) y cuártico (p.ej., χ_6).

- **Simetría del vacío**: invariante bajo $SU(3)_c$, y solo bajo $U(1)$ cierta combinación de las U rotaciones independentes en $SU(2)_L \times U(1)_Y$.

Para lograr esto, L incorpora

$$V(\Phi) = -\mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2,$$

si $\mu > 0$ (mínimo usual $\mu^2 > 0$)

de tal forma que el valor energéticamente preferido no es $\Phi = 0$.

\[\text{Mínimo en } |\Phi| = \frac{\mu}{\sqrt{2}}\]
que hubiera sido el único valor invariante bajo la simetría electrodébil. Así como la presencia de las sillas, etc. en este salón hace que no sea obvio la invarianza bajo rotaciones específicas, al adoptar el campo de Higgs un valor esperado en el vacío,
\[\langle 0 | \hat{\Phi} | 0 \rangle = \frac{\omega}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \]

solo queda manifestarse una combinación específica de las 'rotaciones' asociadas a \(W^3 \) y \(B \).

Decimos que el vacío rompe (escande) 'espontáneamente' la simetría electrodébil,
\[SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}. \]

La simetría remanente \(U(1)_{EM} \) tiene asociado como campo de forma a
\[A_\mu = \frac{1}{\sqrt{S_1 + S_2}} \left(S_1 W^3 + S_2 B \right), \]

que se mantiene sin masa. Este resulta ser el
campos electromagnéticos, que se asocian a la carga eléctrica \(Q = T^3 + Y \).

La combinación ortogonal

\[
\mathcal{Z}_\mu = \frac{1}{\sqrt{S_1^2 + S_2^2}} \left(\frac{S_1}{2} W_\mu^3 - S_2 B_\mu \right),
\]

así como \(W^\pm = \frac{1}{\sqrt{2}} (W_\mu^1 + i W_\mu^2) \), adquieren masas \(m_2 = \sqrt{S_1^2 + S_2^2} \frac{\mu}{2\sqrt{2}} \) y \(m_W = g_2 \frac{\mu}{2\sqrt{2}} \). Este es el famoso 'mecanismo de Higgs'.

- Parámetros:

* 3 constantes de acoplamiento \(S_1, S_2, S_3 \)

 o, equivalentemente, \(\alpha_n = \frac{g_n^2}{4\pi} \), para interacciones asociadas a \(U(1)_Y, SU(2)_I, SU(3)_C \), respectivamente.

(p.ej., para la interacción fuerte, la derivada cuadrante \(D_\mu = \partial_\mu - i g_3 T^b G^b_\mu \)

8 generadores de \(SU(3)_C \) \(\rightarrow \) campo gluónico
da lugar a términos en el lagrangiano \mathcal{L}_{HE} como
\[\bar{d}_c \gamma^\mu T^b_{cc} d_c \]

Los <apalnientes/carga> J_1, J_2, J_3 de hecho NO son constantes: por efecto de la nube de partículas virtuales, dependen de la energía del proceso.

Para energías $E \gg$ masas, los <apalnientes 'corren' de acuerdo con
\[
\alpha_n(E) = \frac{\alpha_n(E_0)}{1 + \frac{b_n}{2\pi} \alpha_n(E_0) \ln\left(\frac{E}{E_0}\right)}
\]

Con $b_n = \begin{cases}
\frac{11}{3} - \frac{2}{3} N_f & n = 3 \\
\frac{11}{3} \cdot 2 - \frac{2}{3} N_f & n = 2 \\
0 - \frac{2}{3} N_f & n = 1 \end{cases}$

$b_n > 0 \Rightarrow \alpha_n(E) \downarrow$

$n = 3$ "Libertad asintótica"

$b_n < 0 \Rightarrow \alpha_n(E) \uparrow$

"Exclusión asintótica"
En particular,
- QCD se vuelve fuertemente acoplado en
 \[E \ll E_{QCD} \approx 0.2 \text{ GeV} \]
- QED por sí solo se vuelve fuertemente acoplado en
 \[E \approx E_{poles} \approx 10^{23} \text{ GeV} \]

* 9 + 3 parámetros de masa \(m_e, m_u, \ldots, m_{\mu}, \ldots \)
que, a través de la historia del Higgs, provienen de
‘acoplamiento de Yukawa’ (\(\sim \) escalar - fermión - fermión).
Por ejemplo,
\[m_e \bar{e}e = m_e (\bar{e}_I e_d^I + e_d \bar{e}_I) \]
provienen de
\[\sim \lambda_e \overline{(\bar{e}e)}_I \left(\phi^+_I \right) e_d + \text{conjunto hermitiano}, \]
\[\tilde{e}_d \] adquiere un valor esperado \(\frac{\mu}{\sqrt{2}\lambda} \).

* 3 ángulos \(\theta_{12}, \theta_{13}, \theta_{23} \) y 1 fase en la llamada
matriz de Cabbibo-Kobayashi-Maskawa (\(= \text{CKM} \)).
o matriz de mezcla de los quarks

+ 3 ángulo y 1 fase en la llamada matriz de Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

o matriz de mezcla de los leptones,

que parametrizan la relación entre los estado de quarks/leptones que tienen masas bien definidas y aquéllos que figuran de manera simple en la interacción débil (unos son combinación lineal de los otros).

* 2 parámetros \(\mu \) y \(\lambda \) del potencial \(V(\Phi) \),

(o equivalentemente,

1 masa del bosón de Higgs \(m_\Phi = \sqrt{2}\mu^2 \)

\[
\begin{pmatrix}
0 \\
\mu
\end{pmatrix}
\]

\(\mu \) valor de fondo

\(\mu \) fluctuación

y 1 masa del \(Z \) \(m_Z = \sqrt{\mu^2 + \frac{\mu^4}{2\lambda}} \)

Total \(\sim 3 + 12 + 8 + 2 = 25 \) parámetros.
El Modelo Estándar funciona estupendamente: sus predicciones han sido confirmadas con muy alta precisión en cientos de experimentos (incluyendo, hasta ahora, los del LHC).

Aún así, tenemos claro que no puede ser la última palabra, porque posee limitaciones como las siguientes.

- “Problemas” Estéticos
 - ¿Por qué ~26 (16) campos? ¿Se podría describir el universo en menos ingredientes básicos?
 - ¿Por qué 3 generaciones?

- ¿Por qué los ~25 parámetros tienen los valores que tienen? P.ej., \(\frac{m_e}{m_b} \sim 10^{-11} \), \(\frac{m_u}{m_t} \sim 10^{-5} \), \(\Theta \sim 10^{-9} \).

 ¿Explicación para números pequeños?

- ¿Por qué simetría \(Y_{\text{ME}} \)? ¿Se podría descubrir una unificación de las fuerzas?

 P.ej., en las Teorías de Gran Unificación (GUT), las interacciones fuerte y electromagnética se combinan en una sola.
$SU(3)_c \times SU(2)_W \times U(1)_Y \subseteq SU(5), SO(10), E_8$

ruptura espontánea a escala M_{GUT}.

En este caso, $g_1, g_2, g_3 \neq$ serían independientes.

Por ejemplo, en $SU(5)$, $g_5 = g_3 = g_2 = \frac{\sqrt{5}}{3} g_1 \Leftrightarrow E = M_{\text{GUT}}$.

El curvamiento conocido de los acoplamiento implicaría entonces que $g_3 \geq g_2 \geq g_1$ a energías más bajas, lo cual concuerda con lo observado.

En más detalle, se encuentra que al extrapolar los veloces conocido de las g_n hacia mayores energías, casi se cruzan, con $M_{\text{GUT}} \sim 10^{13}$ GeV.

Pero no funciona del todo. (Además, el modelo $SU(5)$ más sencillo predice decimiento del protón demasiado rápido.)

Si somos más ambiciosos, buscariamos unificar también con la interacción gravitacional, cuya escala característica
parece ser la escala de Planck, \(M_P = \frac{1}{\sqrt{G_N}} \sim 10^{19} \text{ GeV.} \)

Una observación curiosa en esta dirección fue hecha por Kaluza y Klein hace 80-90 años: si postulamos la existencia de una cuarta dimensión especial que es circular con circunferencia \(2\pi R \),

\[
x^4 \sim x^4 + 2\pi R
\]

entonces al desarrollar los campos en modo de Fourier, el momento 4 debe ser discreto, \(p_4 = \frac{n}{R} \),

\[
\phi(x^0, x^4) = \sum_{n=-\infty}^{\infty} e^{-i\frac{n}{R}x^4} \phi_n(x^0)
\]

y un observador ignorante de la existencia de \(x^4 \)

interpretaría a cada campo 5-dimensional \(\phi(x^0, x^4) \)

como una colección de un número infinito de campos
4-dimensional \(\phi_n(x^0) \), conocidos como modos

de Kaluza-Klein (KK). Si la masa 5-dimensional es-
\[m_{(s)}^2 \equiv p_0^2 - p_1^2 - p_2^2 - p_3^2 - p_4^2, \quad \text{entonces para el} \]
\[\equiv m_{(s)}^2 \left(\frac{n}{R} \right)^4 \]

observando 4-dimensiones, el campo \(\phi_n \) tiene masa
\[m_{(4)}^2 = m_{(s)}^2 + \left(\frac{n}{R} \right)^4. \]

Si \(R \) es suficientemente pequeño, entonces solo puede detectar el modo con \(n=0 \), que es constante a lo largo de \(x^0 \). Es decir, la quinta dimensión se vuelve indetectable. (Este truncamiento se conoce como reducción dimensional.)

En el caso de campos con índices espaciotemporales, el observador 4-dimensional interpreta los diversos componentes como distintos campos, dependiendo de si el índice se toma a lo largo de la dirección visible \(x^0 \) o la oculta \(x^4 \).

La importancia de esto para la gravedad es que, en el caso de la métrica que describe la dinámica del
especiamente 5-dimensional, $g^{(5)}(x^m, x^y)$, $M_{5,N} = 9, 12, 24$, el observador 4-dimensional encuentra:
- una métrica 4-dim $g^{(4)}(x^m)$ (+ modo KK)
- un campo vectorial $A^{(4)}_m(x^y) \sim g^{(5)}_{m4}(x^y)$ (+ KK)
- un campo escalar $f^{(4)}(x^m) \sim g^{(5)}_{44}(x^m)$ (+KK)

Y Kaluza mostró que la dinámica de $A^{(4)}_m$ coincide con la del campo electromagnético!

Este fue la primera propuesta de unificación de la gravitación con otras fuerzas fundamentales. Propone más dimensiones de una forma más complicada que las círculos, se pueden obtener campos de norma no deslizar.

(Desafortunadamente, la carga es precisamente n, y además no se pueden obtener teorías de normas quirales, como es el caso del Modelo Estándar.)

- Problema de Jerzy: ¿Por qué la escala de rompimiento electrodébil, $M_{ED} \sim 10^2$ GeV, es tan
ridículamente pequeño comparado con las supuestas
escalas fundamentales M_{pl} y $M_p \sim 10^{13} - 10^{17}$ GeV.
Mas técnicamente, esto se manifiesta como una
situación muy poco natural en la masa del bosón
Higgs:

$$M_{H^0,1}^2 = M_{H^0,0}^2 + \delta M_H^2$$

Masa física
Masa desnuda

Correcciones por particiones
virtuales con energías
arbitrariamente altas

Esperamos $\delta M_H^2 \sim M_p^2 \sim (10^{17}$ GeV$)^2$ o similar,
así que para lograr $M_{H^0,1}^2 \sim (10^2$ GeV$)^2$, hace falta
una cancelación en precisión de muchos dígitos.
(Este problema se manifiesta específicamente en el
Higgs porque es el único campo escalar. Para
fermiones y campos de norma, se conocen vecinos
por los cuales resulta más natural que sean ligeros.)

Entre las soluciones posibles, destacan 2:
* Supersimetría*, es decir, una simetría noológica que emparentaría bosones con fermiones. Concretamente, para cada bosón (fermión) que conozcamos existiría un fermión (bosón) que no conozcamos, conocida como su 'superpareja' (para el electrón, el selectrón; para el fotón, el fotino; etc.), y la acerca sería invariante bajo 'rotaciones fermiónicas' que las mezclen. Esto implica en particular que las superparejas tienen la misma masa y los mismo acoplamiento.

En este caso, las contribuciones cuánticas de bosones y fermiones a δm^2 se cancelan (porque los kier fermiónicos incluyen un factor de -1), y tendremos $m^2_H = m^2_{H^0}$ si la supersimetría no estuviera rotada. Pero, por supuesto, tiene que estar rotada a cierto escalo $M_{\text{susy}} > M_{\text{Ed}}$ (porque no hemos visto aún a las superparejas) y tendremos entonces $\delta m^2_H = m^2_{H^0}$.