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Motivation

One of the greatest problems of theoretical physics is the incompatibility 
of Einstein’s General Relativity and the principles of Quantum Mechanics.

We are searching for a quantum theory of gravity

Small things, big problems



Motivation

One of the greatest problems of theoretical physics is the incompatibility 
of Einstein’s General Relativity and the principles of Quantum Mechanics.

We are searching for a quantum theory of gravity

Small things, big problems

The Standard Model of particle physics, despite its great success,  
can not be last word, there are a lot of open questions, e.g.:

Why so many parameters (more than 20)?  

Why 26 fields?  Why 3 generations?  

How do we describe QCD at low energies?

Hierarchy problem



Big things, also big problems

An important question that needs to be answered is what 
is our universe made of?

Dark matter (23%)?

Dark energy (72%)?



Big things, also big problems

None of these questions seems to have a simple answer 

Fortunately, a lot of people with great ideas and very different 
approaches are trying to solve the puzzles…

One of these roads is STRING THEORY

An important question that needs to be answered is what 
is our universe made of?

Dark matter (23%)?

Dark energy (72%)?



Why string theory?

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟     String theory is a promising candidate (at least for some people) 
for the long-sought quantum mechanical theory of gravity.

   String theory has the potential to unify the four fundamental 
forces of nature. 

(some) Pros:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Interesting new physics (extra dimensions, supersymmetry, 
more fields, etc)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟     A new tool to study certain strongly coupled gauge theories: 
The AdS/CFT correspondence



ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    It is far from certain that it describes our world

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    The complete theory still unknown. Lack of a non-perturbative 
 definition

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    String theory has not been able to obtain the Standard Model 
(similar theories)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    10 dimensions?

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    No direct experimental evidence

Why string theory?

(some) Cons:



The relativistic point particle

World-line

Parameter

To preserve manifest Lorentz covariance, we use a parameterized  
description             :



The relativistic point particle

World-line

The action is (Lorentz scalar):

Parameter

To preserve manifest Lorentz covariance, we use a parameterized  
description             :



The relativistic point particle

World-line

The action is (Lorentz scalar):

Parameter

To preserve manifest Lorentz covariance, we use a parameterized  
description             :

where

and



The symmetries of this action:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Spacetime reparametrization invariance (if                       then 
Poincaré invariance)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Worldline reparametrization invariance



The symmetries of this action:

Can we generalise this to a 1-dimensional object??

As usual, we define:

and        satisfies the condition: (first class const.)

D-1 degrees of freedom.

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Spacetime reparametrization invariance (if                       then 
Poincaré invariance)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Worldline reparametrization invariance



The relativistic bosonic string
Open strings Closed strings

World-sheet

The world-sheet is described by the embedding functions:

World-sheet



where

and 

where       is the fundamental string length 

And in complete analogy with the relativistic point particle:

This is known as the Nambu-Goto action



where

and 

where       is the fundamental string length 

And in complete analogy with the relativistic point particle:

What are the symmetries of this action?



The symmetries of the Nambu-Goto action:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Spacetime reparametrization invariance (if                       then 
Poincaré invariance)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Worldsheet reparametrization invariance



The symmetries of the Nambu-Goto action:

For the rest of the talk we will consider                      , so the NG 
action is given by 

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Spacetime reparametrization invariance (if                       then 
Poincaré invariance)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Worldsheet reparametrization invariance



The Nambu-Goto action is non-polynomial, so it is convenient to 
work with what is known as the Polyakov action

where , and the other elements

are the same as before.



The Nambu-Goto action is non-polynomial, so it is convenient to 
work with what is known as the Polyakov action

where , and the other elements

are the same as before.

Open string world-sheet

Auxiliary variable on the world-sheet 
             (Lagrange multiplier)

At the classical level the Polyakov action is equivalent to the NG action. 

The intrinsic metric is a dynamical field on the string world-sheet.



The symmetries of the Polyakov action:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Weyl invariance

Before going further, let’s pause and say a few words about symmetries 
and anomalies. 

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Spacetime reparametrization invariance (if                       then 
Poincaré invariance)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Worldsheet reparametrization invariance



Anomalies are symmetries of classical field theories that do not survive 
the process of quantization.



Anomalies are symmetries of classical field theories that do not survive 
the process of quantization.

Anomalies in global symmetries are interesting:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟  Chiral anomaly in QCD (e.g. pion decay). 
ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟  Most of the mass of the Universe.



Anomalies are symmetries of classical field theories that do not survive 
the process of quantization.

Anomalies in global symmetries are interesting:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟  Chiral anomaly in QCD (e.g. pion decay). 
ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟  Most of the mass of the Universe.

The Weyl symmetry suffers an anomaly and this will play a central role 
in string theory. 

Anomalies in gauge symmetries are fatal!

In particular, “fixing this problem” implies that the theory lives in 26 
space-time dimensions! (more on this later).



Now, let’s work the equations of motion (eom).

Notice that now we have to vary with respect to                AND       .



Now, let’s work the equations of motion (eom).

Notice that now we have to vary with respect to                AND       .

The equation of motion for        :



The equation of motion for        :

Now, let’s work the equations of motion (eom).

Notice that now we have to vary with respect to                AND       .

The equation of motion for        :

This last equation can be rewritten as

i.e. the intrinsic metric is proportional to the induced metric!



Remember that                               , meaning that the variation of the 

action with respect to the intrinsic metric is the energy-momentum tensor

on the string world-sheet.



Remember that                               , meaning that the variation of the 

action with respect to the intrinsic metric is the energy-momentum tensor

on the string world-sheet.

And what about the kinetic term for        ?

Turns out that gravity in 1+1 dimensions is non-dynamical (due to 
diffeos. invariance and Bianchi identities), therefore the LHS of 
Einstein’s equations is identically zero. 

Let’s see what happens if we choose



Rewriting the Polyakov action with                       and                     :



Rewriting the Polyakov action with                       and                     :

then the equation of motion for                is given by 

(wave equation!)

This is massless Klein-Gordon eq. in (1+1)-dim for D scalar fields



Rewriting the Polyakov action with                       and                     :

then the equation of motion for                is given by 

(wave equation!)

But we also need to check that                     is a solution of the eom. 

This is massless Klein-Gordon eq. in (1+1)-dim for D scalar fields



Rewriting the Polyakov action with                       and                     :

then the equation of motion for                is given by 

(wave equation!)

But we also need to check that                     is a solution of the eom. 

This is massless Klein-Gordon eq. in (1+1)-dim for D scalar fields



To sum up, the dynamics of the string is govern by the wave equation 
subject to two constraints (              ) 



1.                     the motion of the string (its velocity) is perpendicular

To sum up, the dynamics of the string is govern by the wave equation 
subject to two constraints (              ) 

Degrees of freedom?

What is the physical meaning of these constraints?

to the string itself.

2.                        ,  do it as an exercise!



Boundary conditions

This last case has very important implications 

Closed string: (Periodic)

Open string:

2- Non covariant under Poincaré

(Dirichlet: fixed endpoints)

(Neumann: free endpoints)

1- Covariant under Poincaré:

(Curso de Oscar)



Closed string quantization

Before we start getting our hands dirty, let’s say a few words  
regarding the process of quantization.

We will do what is call covariant canonical quantization.
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commutation rules.
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With this at hand (in the Heisenberg picture) we will get the 
quantum eom.



Closed string quantization

Before we start getting our hands dirty, let’s say a few words  
regarding the process of quantization.

We will do what is call covariant canonical quantization.

As usual, we will promote our dynamical variables and its  
conjugate momenta to operators. Then we will postulate the  
commutation rules.

We will obtain the time evolution operator, a.k.a. the Hamiltonian. 
With this at hand (in the Heisenberg picture) we will get the 
quantum eom.

We will construct the Fock space.



Closed string quantization

Before we start getting our hands dirty, let’s say a few words  
regarding the process of quantization.

We will do what is call covariant canonical quantization.

As usual, we will promote our dynamical variables and its  
conjugate momenta to operators. Then we will postulate the  
commutation rules.

We will obtain the time evolution operator, a.k.a. the Hamiltonian. 
With this at hand (in the Heisenberg picture) we will get the 
quantum eom.

We will construct the Fock space.

          Following this procedure, we will obtain states with negative
norm (call ghost) and we will have to use the constraints in 
order to get the physical spectrum (Gupta-Bleuler method ).



Closed string quantization

Something to keep in the back of your head:

When we quantize a theory (or a system), it is not always 
the case that the quantum equations of motion are the same 
as the classical ones. In principle, you should first obtain the time  
evolution operator (i.e. the Hamiltonian) and evolve the corresponding 
fields using the commutator. E.g. 

Luckily, in our case, the classical eom coincide with their quantum 
version (we will not prove it) so we don’t have to worry about that. 



Closed string quantization

We want to solve the e.o.m.

subject to periodic boundary conditions



Closed string quantization

We want to solve the e.o.m.

subject to periodic boundary conditions

It is not difficult to show that the solution is given by



Closed string quantization

We want to solve the e.o.m.

subject to periodic boundary conditions

It is not difficult to show that the solution is given by

Position of Center of mass

Momentum of center of mass

String oscillations

Left-moving mode

Right-moving mode

and                        , i.e. the zero mode is proportional to the spacetime 
                                momentum of the string. 



Closed string quantization

We want to solve the e.o.m.

subject to periodic boundary conditions

It is not difficult to show that the solution is given by

Discrete momentum:              
               (circle)



Doing canonical quantization:

and and



Doing canonical quantization:

and and

And we postulate:

identical to:

(Completely analogous to what you’ve done in Alberto’s lectures)

Plugging our solution into the commutation relation and after doing 
some algebra we get 



Doing canonical quantization:

and and

And we postulate:

identical to:

(Completely analogous to what you’ve done in Alberto’s lectures)

Plugging our solution into the commutation relation and after doing 
some algebra we get 

And now we can construct the Fock space...



As usual, let’s define the vacuum state                such that:



(We’ve made a small change of notation:                         and                      )

For example, some of the states are:

Vacuum: no oscillators One left-moving oscillator Two left-moving oscillators

As usual, let’s define the vacuum state                such that:



For example, some of the states are:

As usual, let’s define the vacuum state                such that:

We have not used the constraints yet, so, as we mentioned earlier we 
should expect to find states with NEGATIVE NORM.

Vacuum: no oscillators One left-moving oscillator Two left-moving oscillators

(We’ve made a small change of notation:                         and                      )



An example:



An example:

In order to get rid of this problem we need to use the constraints.

This means:

(analogue to the Gupta-Bleuler  
method for the Maxwell field)

This is just the quantum version of the constraints



First, recall: and (Weyl invariance)

Let’s define: and rewrite         : 



and now, we can expand                 and                  in Fourier modes, i.e., 

First, recall: and (Weyl invariance)

Let’s define: and rewrite         : 



It is possible to write the Fourier coefficients in terms of the left and 
and right-moving modes (working session): 

and

These are called the Virasoro operators and you will here a lot about 
them if you study string theory or CFT’s.



It is possible to write the Fourier coefficients in terms of the left and 
and right-moving modes (working session): 

and

At this point, we should remember (or learn) that in quantum mechanics it 
is important to consider “ordering” when writing products of operators  
(due to the commutation relation). An example of this is the NORMAL  
ORDER, which we define in the following way: 

(i.e. we put the creation operators to the left)

Then, we redefine

and



Given the definition of                , notice that              is the only 
operator with an ambiguous ordering. 

We write (and the same is true for       )



Explicitly,



The first and second term have the correct order, however the third one 
does not. Using the commutation relations:

Then,

Explicitly,



The first and second term have the correct order, however the third one 
does not. Using the commutation relations:

Then,

This is the space-time dimension

Explicitly,



The first and second term have the correct order, however the third one 
does not. Using the commutation relations:

Then,

Have fun, and show that this converges to            !! 

Explicitly,



The first and second term have the correct order, however the third one 
does not. Using the commutation relations:

Then,

So finally,

Explicitly,



Given the definition of                , notice that              is the only 
operator with an ambiguous ordering. 

We write (and the same is true for       )

When quantizing the classical expression we will need to introduce 
a normal ordering constant  “  “, then



of the constant       and the space-time dimension      .
Turns out that a ghost free spectrum is only possible for certain values

Given the definition of                , notice that              is the only 
operator with an ambiguous ordering. 

We write (and the same is true for       )

When quantizing the classical expression we will need to introduce 
a normal ordering constant  “  “, then

If time allows, we will show that the critical values are:

and



Before we use the constraints to find the spectrum of the closed string, 
let’s say a few more things about the Virasoro operators. 

They satisfy the quantum Virasoro algebra:



Before we use the constraints to find the spectrum of the closed string, 
let’s say a few more things about the Virasoro operators. 

They satisfy the quantum Virasoro algebra:

is call the central charge and it can be shown that it is given
by the number of space-time dimensions (see GSW pp. 81).

The fact that             indicates a quantum anomaly (at the classical
level             ).

This is precisely the anomaly that we mentioned before and when  
fixing this problem we find the space-time dimension of string theory.



Finally the quantum constraints                       , can be written in 

(level matching condition)

terms of the Visaroro operators in the following way:



Finally the quantum constraints                       , can be written in 

(level matching condition)

Remember that we can write,

and

terms of the Visaroro operators in the following way:



Finally the quantum constraints                       , can be written in 

(level matching condition)

Remember that we can write,

and

and using the mass shell condition                    (and the above constraints)
we find

terms of the Visaroro operators in the following way:



Scalar field           with negative mass squared called TACHYON 

(sign of instability because                       ) 

State:

The closed string spectrum

Starting from

(No oscillators acting on the ground state).

1.



The closed string spectrum

States: with

(the same with       )

physical state 

Now, we use the second constraint,

and the result is

2.

Starting from



Finally, the most general physical state is given by



Finally, the most general physical state is given by

1. Trace: spinless particle; 

1 state, scalar field called the dilaton

The matrix can be split into 3 different cases:



Finally, the most general physical state is given by

1 state, scalar field called the dilaton

2. Symmetric (traceless) part: spin 2 particle; 

states; the graviton

The matrix can be split into 3 different cases:

1. Trace: spinless particle; 

This is why (some) people say that string theory is a candidate for 
quantum gravity! 



Finally, the most general physical state is given by

1 state, scalar field called the dilaton

3. Antisymmetric part:

states; called Kalb-Ramond field

The matrix can be split into 3 different cases:

2. Symmetric (traceless) part: spin 2 particle; 

states; the graviton

1. Trace: spinless particle; 



What about the open string quantization?

Very heavy!!!

The first massive state,

… With this, we have finished with the closed string.



Open string quantization

Again, want to solve , now with Neumann b.c.

i.e.,

As a consequence of b.c. : (stationary wave)



Open string quantization

Again, want to solve , now with Neumann b.c.

i.e.,

The solution to the e.o.m. :

Let’s jump directly to the spectrum…

As a consequence of b.c. : (stationary wave)

The quantization process is exactly the same as for the closed string

(But just with one set of oscillators)



The constraints translate into:

Using the first condition: 

Open string tachyon field

State:



The constraints translate into:

Using the first condition: 

Massless vector field

States:

physical state:If

states of a spin 1 particle



To sum up:

Closed string spectrum: Open string spectrum:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟T  Tachyon field ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟T  Tachyon field

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Infinite tower of massive 
fields (very heavy!)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Kalb-Ramond field

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Graviton

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Dilaton

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Infinite tower of massive 
fields (very heavy!)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Scalar fields (Dirichlet b.c.)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Maxwell field

What about interactions?

(Comments on the blackboard)



This	  is	  known	  as	  the	  supergravity	  action	  (and	  corresponds	  to	  the	  
low	  energy	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  limit	  of	  Type	  IIB	  string	  theory).	  
There	  is	  also	  an	  affective	  action	  for	  the	  massless	  modes	  of	  the	  open	  
string	  (Curso	  de	  Oscar).	  

Note:	  don’t	  worry	  about	  the	  details…

Before	  we	  continue,	  let	  me	  say	  that	  by	  studying	  how	  all	  these	  fields	  	  
interact	  it	  is	  possible	  to	  construct	  and	  effective	  action.	  
In	  particular,	  for	  the	  massless	  modes	  of	  the	  closed	  superstring:



To sum up:

Closed string spectrum: Open string spectrum:

Notice, that besides having tachyons, the are NO FERMIONS in 
the bosonic string!

For that, we need SUPERSTRING THEORY!

Closed string spectrum: Open string spectrum:

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟T  Tachyon field ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟T  Tachyon field

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Infinite tower of massive 
fields (very heavy!)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Kalb-Ramond field

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Graviton

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Dilaton

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Infinite tower of massive 
fields (very heavy!)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Scalar fields (Dirichlet b.c.)

ꤰꤱꤲꤳꤴꤵꤶꤷꤸꤹꤺꤻꤼꤽꤾꤿꥀꥁꥂꥃꥄꥅꥆꥇꥈꥉꥊꥋꥌꥍꥎꥏꥐꥑꥒ꥓꥟    Maxwell field



A quick tour to Superstring Theory

We have learnt that the bosonic string theory has at least three 
important problems:

1. Tachyons (i.e. scalar fields with negative mass).

3. The space-time dimension is 26.

2. No fermions in the spectrum.



A quick tour to Superstring Theory

We have learnt that the bosonic string theory has at least three 
important problems:

1. Tachyons (i.e. scalar fields with negative mass).

3. The space-time dimension is 26.

2. No fermions in the spectrum.

The situation gets better when we incorporate a new symmetry to the 
theory, meaning SUPERSYMMETRY. 

Boson Fermions
(Curso Elena)

There are 3 equivalent formalism to describe superstring theory.
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Ramond-Neveu-Schwarz formalism

Superstring theory is obtained by adding to the bosonic string, whose 
action in flat gauge, we have seen is  

with       a worldsheet scalar, a sector describing 2-dimensional  
worldsheet spinors.

Xµ

SB = �T

Z
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µ@aXµ



Ramond-Neveu-Schwarz formalism

Superstring theory is obtained by adding to the bosonic string, whose 
action in flat gauge, we have seen is  

with       a worldsheet scalar, a sector describing 2-dimensional  
worldsheet spinors.

Xµ

Remember (or learn) that a spinor is by definition a representation  
of the Clifford algebra. Applied to the 2 dimensional worldsheet with 
flat metric, the Clifford algebra is generated by two dimensional 
                      with anti-commutation relations� �matrices

{�a, �b}AB = 2⌘abIAB where �a = �a
AB

Here          are spinor indices on the worldsheet and          are  
vector indices (                 ). 

A ,B a , b
a , b = 0 , 1

SB = �T

Z
d2�@aX

µ@aXµ



Explicitly, in 2-dimensions the gamma matrices are given by

�0 =

✓
0 1
�1 0

◆
�1 =

✓
0 1
1 0

◆
and



A spinor        transform under Lorentz transformations as       

 A ! SAB B , SAB =

⇥
exp(i!ab

i

4

[�A, �B ])
⇤

!abwith         a Lorentz infinitesimal transformation.
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A spinor        transform under Lorentz transformations as       

 A ! SAB B , SAB =

⇥
exp(i!ab

i
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[�A, �B ])
⇤

!abwith         a Lorentz infinitesimal transformation.

Explicitly, in 2-dimensions the gamma matrices are given by

�0 =

✓
0 1
�1 0

◆
�1 =

✓
0 1
1 0

◆
and

In view of this,       can be taken to be real. 
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◆
,  ⇤ =

✓
 +
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=

✓
 +
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◆

This REALITY condition is called Majorana condition and the  
corresponding spinor is called Majorana spinor.



A spinor        transform under Lorentz transformations as       

 A ! SAB B , SAB =

⇥
exp(i!ab

i

4

[�A, �B ])
⇤

!abwith         a Lorentz infinitesimal transformation.

Explicitly, in 2-dimensions the gamma matrices are given by

�0 =

✓
0 1
�1 0

◆
�1 =

✓
0 1
1 0

◆
and

In view of this,       can be taken to be real. 

 A

 A

 =

✓
 +

 �

◆
,  ⇤ =

✓
 +

 �

◆⇤
=

✓
 +

 �

◆

The labelling        refers to the chirality, i.e. the eigenvalues under  ± � = �0�1



We can now write the RNS action in flat gauge as the action obtained 
by adding the canonical term for free bosons and Majorana fermions 
on the worldsheet

S = �T

Z
d2�

�
@aX

µ@aXµ + i ̄µ
A�

a
AB@a µB

�

where                            with        representing Grassman valued µ
A =

✓
 µ
+

 µ
�

◆
 µ
±

space-time vectors, and                                        .  ̄ =  †�0 = (� �, +)



We can now write the RNS action in flat gauge as the action obtained 
by adding the canonical term for free bosons and Majorana fermions 
on the worldsheet

S = �T

Z
d2�

�
@aX

µ@aXµ + i ̄µ
A�

a
AB@a µB

�

where                            with        representing Grassman valued µ
A =

✓
 µ
+

 µ
�

◆
 µ
±

space-time vectors, and                                        .  ̄ =  †�0 = (� �, +)

Ignoring potencial boundary terms (for now), the eom for         is 
the DIRAC equation 

 µ
A

�a@a = 0 or in components @+ � = 0, @� + = 0



The symmetries of the susy action:

Worldsheet reparametrization invariance.

Space-time diffs.

Weyl invariance.

And we have a new symmetry!

 The action                  is invariant under:SB + SF

s
2

l2s
�Xµ = i✏̄ µ � µ =

s
2

l2s

1

2
�a@aX

µ · ✏and
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In order for these to be a symmetry of the full action        must obey✏A

�b�a@b✏ = 0



The symmetries of the susy action:

Worldsheet reparametrization invariance.

Space-time diffs.

Weyl invariance.

And we have a new symmetry!

 The action                  is invariant under:SB + SF

s
2

l2s
�Xµ = i✏̄ µ � µ =

s
2

l2s

1

2
�a@aX

µ · ✏and

This symmetry relates the bosonic and fermionic degrees of freedom.  
This is the characteristic property of a supersymmetry (SUSY).



The symmetries of the susy action:

Worldsheet reparametrization invariance.

Space-time diffs.

Weyl invariance.

SUSY is a deep concept that extends (in some sense uniquely) the  
Poincare symmetry. While found for the first time in the context of the two-
dimensional RNS theory, it has become an important principle of more  
general physical systems.

And we have a new symmetry!



 We can now continue with our analysis of the flat gauge RNS action  
and proceed to the boundary conditions and mode expansion of the  
worldsheet fields.

 The bosonic mode expansion and boundary conditions are  
just as in the bosonic string.
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worldsheet fields.
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 The most general boundary conditions that do not mix       and       
and respect the space-time Poincaré symmetry are 

 +  �
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+(�) = ± µ

+(� + l)

 µ
�(�) = ± µ

�(� + l)

Since      is a worldsheet spinor, the minus sign is possible as we go  
around the worldsheet once, taking                  .
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 We can now continue with our analysis of the flat gauge RNS action  
and proceed to the boundary conditions and mode expansion of the  
worldsheet fields.

 The bosonic mode expansion and boundary conditions are  
just as in the bosonic string.

 The most general boundary conditions that do not mix       and       
and respect the space-time Poincaré symmetry are 

 +  �

 µ
+(�) = ± µ

+(� + l)

 µ
�(�) = ± µ

�(� + l)

Notice that there are 4 independent sectors since for         we can  
independently choose either sign.

 ±



In short, the boundary conditions can be written as

 ±(� + l) = e2⇡i4± ±(�) where
4 = 0

4 =
1

2

Ramond sector

Neveu-Schwarz sector

The Ramond sector (R) corresponds to periodic boundary conditions with 
integer mode expansion

 µ
�(�, ⌧) =

X

n✏Z

r
2⇡

l
bµne

� 2⇡
l in(⌧��)

 µ
+(�, ⌧) =

X

n✏Z

r
2⇡

l
b̃µne

� 2⇡
l in(⌧+�)



In short, the boundary conditions can be written as

 ±(� + l) = e2⇡i4± ±(�) where
4 = 0

4 =
1

2

Ramond sector

Neveu-Schwarz sector

The Neveu-Schwarz sector (NS) corresponds to anti-periodic boundary 
conditions with half-integer mode expansion

 µ
+(�, ⌧) =

X

r✏Z+ 1
2

r
2⇡

l
b̃µr e

� 2⇡
l ir(⌧+�)

 µ
�(�, ⌧) =

X

r✏Z+ 1
2

r
2⇡

l
bµr e

� 2⇡
l ir(⌧��)



In short, the boundary conditions can be written as

 ±(� + l) = e2⇡i4± ±(�) where
4 = 0

4 =
1

2

Ramond sector

Neveu-Schwarz sector

The four different sectors are therefore

(4+,4�) = (0, 0)

(4+,4�) = (
1

2
,
1

2
)

(4+,4�) = (
1

2
, 0)

(4+,4�) = (0,
1

2
)

R-R

NS-NS

NS-R

R-NS



We want to quantize the theory so we postulate (anti) commutations 
relations:

The        -sector modes continue to enjoy the familiar  
commutation relations

Xµ

The fermions       satisfy the canonical anti-commutation relations µ
A

{ µ
+(⌧,�), 

⌫
+(⌧,�

0)} = 2⇡⌘µ⌫�(� � �0)

{ µ
�(⌧,�), 

⌫
�(⌧,�

0)} = 2⇡⌘µ⌫�(� � �0)

{ µ
+(⌧,�), 

⌫
�(⌧,�

0)} = 0

Then

{bµm, b⌫n} = {b̃µm, b̃⌫n} = ⌘µ⌫�m+n,0



At this point we would’ve construct the Fock space and then use 
the corresponding (quantum) constraints to obtain the physical 
states.

Due to lack of time (and knowledge) we will jump to the end result!
(this is a huge jump!).

Following similar arguments as we did for the bosonic string, one can 
show that consistency of the theory at the quantum level implies:

10 space-time dimensions



One can show that there are five consistent ways of combining 
the different sectors (then we have five “different” theories):

�, B[µ⌫] , G(µ⌫)

�a , 
µ
a

�a , 
µ
a

The theory is chiral because left- and right-movers have the same chirality.

(NS+; NS+)

(NS+;R+)

(R+;R+)

(R+; NS+)

1.  Type IIB theory the following four sectors are in the spectrum:

C(0), C(2)
[µ1µ2]

, C(4)
[µ1µ2µ3µ4]



�, B[µ⌫] , G(µ⌫)

�a , 
µ
a

Here left- and right-movers have opposite chirality

(NS+; NS+)

(NS+;R+)

(R+;R+)

(R+; NS+)

1.  Type IIA theory the following four sectors are in the spectrum:

C(1)
[µ1

, C(3)
[µ1µ2µ2]

�̃a ,  ̃
µ
a

Type IIA and Type IIB both contain an equal number of bosonic and  
fermionic degrees of freedom, e.g. 128 + 128 at the massless level.  
This is a necessary condition for space-time supersymmetry , which  
exchanges bosonic and fermionic fields.

One can show that there are five consistent ways of combining 
the different sectors (then we have five “different” theories):
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The 10-dimensional low-energy effective action keeping only the 
massless modes for Type IIA and Type IIB theory can be computed 
order by order in spacetime and worldsheet perturbation theory, by 
generalising the methods we got to know in the bosonic theory.

For example, the action for Type IIB takes the form



We will not say anything about the other three cases …

(Just there names: Type I and Heterotic             and Heterotic              )

Until 1995 it seemed that all these 5 consistent theories in 10  
dimensions were independent. However, very smart people 
realised that they are related by dualities (Oscar’s lectures).  
Thus they should be interpreted as different manifestations of one  
underlying theory.

Final remark

SO(32) E8 ⇥ E8


