Teoría Cuántica de Campos

Tarea 4 — Entregar \leq 11:10 viernes 21 de octubre

1. Jugando con un Espinor

- a) En un marco de referencia R, tenemos un espinor ψ con componentes (en la base de Weyl) $\psi^T = (5 + 2i, -3, 0, 4i)$. ¿Cuáles son los correspondientes espinores derecho e izquierdo, y cuál es el espinor conjugado de Dirac?
- b) ¿Qué valor tiene este mismo espinor en otro marco R' relacionado con R por una rotación de 90° alrededor del eje x^1 ?
- c) ¿Qué valor tiene en otro marco R'' relacionado con R por un empujón con velocidad v = 1/2 a lo largo de x^3 ?
- d) ¿Qué valor tiene el espinor tras una transformación de paridad? ¿Y después de una inversión temporal?

2. Espinores de Majorana

Dado un espinor de Dirac ψ , en general no resulta útil restringirlo a ser real porque las matrices $M(\Lambda)$ son complejas. Es decir, como ψ y ψ^* transforman de manera distinta bajo Lorentz, la condición $\psi = \psi^*$ solo podría ser cierta en un marco de referencia específico. Pero recientemente (pp. 292-5) vimos que a partir de ψ es posible obtener un segundo espinor que está relacionado con ψ^* y sin embargo transforma bajo Lorentz de la misma manera que ψ . Me refiero a la operación de conjugación de carga (que tras cuantizar corresponde a intercambiar la partícula con la antipartícula): $\psi^C \equiv C\bar{\psi}^T \equiv i\gamma^2\psi^*$. Tiene sentido entonces imponer la restricción $\psi = \psi^C$, que aplica en todos los marcos de referencia. Los ψ que satisfacen esta condición se conocen como espinores de Majorana. Al cuantizar un campo de Majorana se obtendrían partículas de espín 1/2 que son sus propias antipartículas.

- a) Muestra que en la base de Weyl, para un espinor de Majorana ψ es posible escribir la componente de quiralidad derecha ψ_D en términos de la de quiralidad izquierda ψ_I (o viceversa). Esto implica que los espinores de Majorana, como los de Weyl, tienen solo 2 componentes complejas (= 4 reales) independientes. Nota por cierto que un espinor de Dirac ψ no puede ser simultáneamente de Weyl y de Majorana (aunque esto de hecho sí resulta posible en otras dimensiones, incluyendo 1 + 1 y 9 + 1).
- b) En clase enfatizamos que los espinores izquierdos y derechos transforman bajo representaciones no equivalentes del grupo de Lorentz restringido (es decir, la relación entre ambas no es un simple cambio de base). Verifica que, a pesar de esto, la expresión del tipo $\psi_D = f(\psi_I)$ que obtuviste en el inciso anterior es consistente: $f(\psi_I)$ en verdad transforma justamente como un espinor de Weyl derecho. (Para esto te conviene primero mostrar que $\sigma^2 \vec{\sigma}^* = -\vec{\sigma}\sigma^2$.) Con esto habrás comprobado directamente que la restricción de Majorana $\psi = \psi^C$ es compatible con Lorentz. Y aprendes además que, usando el mapeo f, puedes reescribir una teoría genérica puramente con espinores derechos (o puramente con izquierdos).
- c) Dado un espinor de Majorana ψ en la base de Weyl, comprueba que es posible cambiar a una nueva base donde sus componentes se vuelven *reales*. Es decir, escribiendo $\psi_I = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$, encuentra una matriz \mathcal{B} unitaria 4×4 tal que $\mathcal{B}\psi$ sea real.

- d) En esta nueva base, llamada base de Majorana, la condición de Majorana se ha convertido simplemente en $\psi = \psi^*$. Para no entrar en conflicto con lo que dijimos al principio de este problema, debe ser el caso que en dicha base las matrices $M(\Lambda)$ son reales, es decir, los generadores $S^{\mu\nu} \equiv i[\gamma^{\mu}, \gamma^{\nu}]/4$ son imaginarios puros, lo cual requiere a su vez que las γ^{μ} sean o todas reales o todas imaginarias puras. Determina cuál de estas dos últimas opciones es la que resulta al transformar las γ^{μ} de la base de Weyl a la base de Majorana.
- e) Dado un campo de Majorana clásico $\psi(x)$ escrito en la base de Weyl, desarrolla el término de masa del Lagrangiano de Dirac, $m\bar{\psi}(x)\psi(x)$, en términos del espinor de Weyl izquierdo $\psi_I(x)$. Muestra que si las componentes $\psi_1(x)$ y $\psi_2(x)$ de $\psi_I(x)$ son números ordinarios (conmutativos), entonces tu resultado se anula.

3. El Campo de Dirac y Causalidad

- a) Calcula el anticonmutador de $\hat{\psi}_a(x)$ con $\hat{\psi}_b(x')$ para x y x' arbitrarios.
- b) Muestra que es igual a cero para intervalos tipo espacio, $(x x')^2 < 0$.
- c) Las observables locales más sencillas que se pueden construir con el campo de Dirac son de la forma $\hat{\mathcal{O}}(x) \equiv \hat{\psi}_a(x) O_{ab}(x) \hat{\psi}_b(x)$, con O(x) una matriz cuyos elementos son funciones ordinarias y/o operadores diferenciales. Como ejemplos concretos puedes pensar en la densidad Hamiltoniana $\hat{\mathcal{H}}(x)$ o la (densidad de cuadri-)corriente $\hat{J}^{\mu}(x)$. Muestra que estas observables satisfacen la condición de causalidad ($[\hat{\mathcal{O}}(x), \hat{\mathcal{O}}(x')] = 0$ cuando x' está fuera del cono de luz de x).

4. Identidades de Fierz

En clase vimos que a partir de productos antisimétricos de matrices gama podemos formar 16 matrices independientes $\mathbf{1}, \gamma^{\mu}, S^{\mu\nu}, \gamma^{\mu}\gamma^{5}, \gamma^{5}$. Cualquier matriz 4×4 se puede escribir entonces como una combinación lineal de estas matrices (con coeficientes complejos), a las que llamaremos en conjunto Γ^{A} , con $A=1,\ldots,16$. Es fácil comprobar (en la base de Weyl, por ejemplo) que son ortogonales en el sentido de que $\mathrm{Tr}(\Gamma^{A}\Gamma^{B}) \propto \delta^{AB}$ (en particular, $\mathrm{Tr}(\Gamma^{A})=0 \quad \forall \quad \Gamma^{A}\neq \mathbf{1}$).

a) Conviene escoger la normalización de estas matrices de manera tal que

$$\operatorname{Tr}(\Gamma^A \Gamma^B) = 4\delta^{AB},$$

lo cual determina $\Gamma^A=\{\mathbf{1},\gamma^0,i\vec{\gamma},\ldots\}$. Escribe las 11 matrices restantes.

b) Considera el producto $(\Gamma^A)_{ab}(\Gamma^B)_{cd}$. Para valores dados de c y b, tenemos una matriz 4×4 con componentes especificadas por los subíndices ad, que por completez de las Γ 's se deben poder expresar como una cierta combinación lineal de $(\Gamma^C)_{ad}$, con $C=1,\ldots,16$. Lo mismo aplica si pensamos en los índices a y d como fijos—podemos entonces desarrollar en términos de $(\Gamma^D)_{cb}$. Juntando estos dos enunciados, tenemos que

$$(\Gamma^A)_{ab}(\Gamma^B)_{cd} = \sum_{C.D=1}^{16} \mathcal{C}^{AB}{}_{CD}(\Gamma^C)_{ad}(\Gamma^D)_{cb} .$$

Usando la condición de ortonormalidad de **a**), muestra que el número $\mathcal{C}^{AB}{}_{CD}$ se puede obtener a partir de la traza del producto de las 4 Γ 's que aparecen en la fórmula

(especificando el orden en que aparecen en la traza, así como el coeficiente numérico). c) Si multiplicamos la fórmula anterior por $(\bar{u}_1)_a(u_2)_b(\bar{u}_3)_c(u_4)_d$, donde u_1, \ldots, u_4 son espinores de Dirac, y sumamos sobre a, b, c, d, obtenemos un conjunto de reglas para reordenar los espinores que aparecen en el producto de dos tensores arbitrarios de Dirac: $(\bar{u}_1\Gamma^Au_2)(\bar{u}_3\Gamma^Bu_4)$ se puede expresar como una suma específica sobre productos del tipo $(\bar{u}_1\Gamma^Cu_4)(\bar{u}_3\Gamma^Du_2)$. Estas reglas se conocen como identidades de Fierz y resultan útiles para simplificar algunos cálculos de, p.ej., secciones eficaces. Determina explícitamente las identidades de Fierz que se refieren a los productos $(\bar{u}_1u_2)(\bar{u}_3u_4)$ y $(\bar{u}_1\gamma^{\mu}u_2)(\bar{u}_3\gamma_{\mu}u_4)$.

5. Representaciones del Grupo de Lorentz

a) Hemos visto que cada campo relativista $\varphi_l(x)$ transforma bajo una representación específica del grupo de Lorentz: $\varphi'_{l'}(x') = \sum_{l=1}^N M_{l'l} \varphi_l(x)$ con $M(\mathbf{\Lambda}) \equiv \exp(\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})$, donde los 6 generadores $J^{\mu\nu}$ son matrices $N \times N$ que satisfacen las relaciones de conmutación de Lorentz. Muestra que si a partir de los generadores de rotaciones $J^i \equiv \epsilon^{ijk}J^{jk}/2$ y los de empujones $K^i \equiv J^{0i}$ formamos las dos combinaciones independientes

$$\vec{J}_I \equiv \frac{1}{2} \left(\vec{J} + i \vec{K} \right)$$
 y $\vec{J}_D \equiv \frac{1}{2} \left(\vec{J} - i \vec{K} \right)$,

entonces \vec{J}_I y \vec{J}_D conmutan entre sí y sus componentes satisfacen por separado las relaciones de conmutación de SU(2). [Solo para evitar confusiones: dado que \vec{J}_I y \vec{J}_D no son combinaciones lineales de \vec{J} y \vec{K} con coeficientes reales, tu resultado no quiere decir que el álgebra de Lie de $SO^+(3,1)$ coincide con la de $SU(2) \times SU(2)$ (lo cual si hubiera resultado ser el caso si estuviéramos estudiando a SO(4) en lugar de SO(3,1)).]

Lo anterior implica que para construir cualquier representación de Lorentz, ¡basta con saber como representar SU(2)! Esto último lo sabemos hacer bien: por cada valor posible del espín, $j=0,1/2,1,\ldots$, hay una representación de SU(2) de dimensión 2j+1. En clase recordamos/escribimos hace algún tiempo los generadores $\vec{J}^{[j]}$ correspondientes (haciendo énfasis en los casos que más nos interesan, j=1/2,1).

Así que para representar al grupo de Lorentz, necesitamos simplemente elegir los dos espines j_I y j_D que especifican a qué representación de SU(2) pertenecerán las matrices \vec{J}_I y \vec{J}_D — o en otras palabras, los autovalores $j_I(j_I+1)$ y $j_D(j_D+1)$ de los operadores de Casimir \vec{J}_I^2 y \vec{J}_D^2 . Pero tenemos que ser un poco más precisos, porque si usamos simplemente las representaciones *irreducibles* que conocemos, \vec{J}_I y \vec{J}_D serían en general matrices de dimensiones distintas $(2j_I+1$ y $2j_D+1$, respectivamente), y así no podríamos sumarlas directamente para obtener los generadores \vec{J} y \vec{K} que buscamos.

Lo que debemos hacer entonces es tomar representaciones reducibles donde las \vec{J}_I son matrices que contienen a los bloques irreducibles $\vec{J}^{[j_I]}$ (ver pp. 86-89) repetidos $2j_D+1$ veces, y a la inversa, las \vec{J}_D son matrices que contienen a los bloques irreducibles $\vec{J}^{[j_D]}$ repetidos $2j_I+1$ veces. En otras palabras, escribimos sus componentes como $(\vec{J}_I)_{l'l}=\vec{J}^{[j_I]}_{l'_I l_I}\delta_{l'_D l_D}$ y $(\vec{J}_D)_{l'l}=\delta_{l'_I l_I}\vec{J}^{[j_D]}_{l'_D l_D}$, donde hemos definido el índice doble

 $l \equiv (l_I, l_D)$, con $l_I = j_I, \ldots, -j_I$ y $l_D = j_D, \ldots, -j_D$. La representación de Lorentz (j_I, j_D) tiene entonces dimensión $N = (2j_I + 1)(2j_D + 1)$. Los generadores de rotaciones son $\vec{J} = \vec{J}_I + \vec{J}_D$, así que la representación (j_I, j_D) es en general reducible con respecto al subgrupo de rotaciones, e incluye los espines totales $|j_I - j_D|, \ldots, j_I + j_D$ que se pueden obtener al combinar espín j_I con j_D .

- b) Comprueba que la matriz $M(\mathbf{\Lambda})$ que corresponde a una transformación de Lorentz con parámetros de rotación $\vec{\theta}$ y de rapidez $\vec{\alpha}$ (es decir, $\mathbf{\Lambda} = \exp[i\theta^i \mathbf{J}^{(i)} + i\alpha^i \mathbf{K}^{(i)}]$) se descompone en un producto de la forma $M_{l'l} = M_{l'_I l_I}^I M_{l'_D l_D}^D$, donde $M^I(\vec{\theta}, \vec{\alpha})$ y $M^D(\vec{\theta}, \vec{\alpha})$ son matrices que debes ser capaz de escribir de manera explícita en términos de $J^{[j_I]}$ y $J^{[j_D]}$, respectivamente.
- c) Los vectores φ sobre los cuales actúan las matrices M tienen componentes $\varphi_l = \varphi_{(l_I, l_D)}$, por lo que se les puede pensar naturalmente como matrices $(2j_I+1)\times(2j_D+1)$. Muestra que en notación matricial, transforman de acuerdo con $\varphi \to M^I \varphi(M^D)^T$.
- d) Comprueba que las matrices $M(\Lambda)$ en las representaciones (1/2,0) y (0,1/2) son precisamente aquellas bajo las cuales transforman los espinores de Weyl (con 2 componentes) ψ_I y ψ_D , respectivamente.

Podemos obtener cualquier otra representación a partir de productos directos y/o sumas directas de estas dos representaciones básicas. (La suma directa de 2 representaciones con dimensión N y M tiene dimensión N+M; el producto directo tiene dimensión NM.) En particular, la representación de Dirac, que incorpora la paridad, es la suma directa $(1/2,0) \oplus (0,1/2)$ (sabemos que la paridad transforma $\vec{J} \to \vec{J}$, $\vec{K} \to -\vec{K}$ y por tanto intercambia $\vec{J}_I \leftrightarrow \vec{J}_D$).

e) De acuerdo con lo que hemos dicho, la representación $(1/2,0)\otimes(0,1/2)=(1/2,1/2)$ tiene dimensión 4 y bajo rotaciones incluye espín 0 y 1, así que debe corresponder a la representación vectorial del grupo de Lorentz. En este caso los vectores $\varphi_l = \varphi_{(l_I,l_D)}$ son matrices 2×2 . Para ver la conexión con cuadrivectores, conviene hacer un cambio de base que convierta a φ en un nuevo vector (o matriz 2×2) $X\equiv \varphi\sigma^2$ (cuyas componentes son $X_{(l_I,l_D)}=\varphi_{(l_I,l'_D)}\sigma^2_{l'_Dl_D}$, con la suma sobre l'_D implícita). Muestra que X transforma de acuerdo con $X\to M^IX(M^I)^{\dagger}$ (para esto te convendrá primero demostrar que $\vec{\sigma}^T\sigma^2=-\sigma^2\vec{\sigma}$). M^I aquí es una matriz de $SL(2, \mathbf{C})$, y en la Tarea 1 mostraste justamente que si identificamos

$$X = x^{\mu} \bar{\sigma}_{\mu} = \begin{pmatrix} x^0 + x^3 & x^1 - ix^2 \\ x^1 + ix^2 & x^0 - x^3 \end{pmatrix},$$

entonces x^{μ} transforma como un cuadrivector. (A diferencia de lo que hicimos allá, aquí no nos estamos restringiendo a X hermíticas, así que las componentes de x^{μ} serán en general complejas.)

f) Usando las reglas usuales de adición de momento angular, identifica las representaciones irreducibles de Lorentz (j_I, j_D) que se obtienen al tomar el producto directo de un cuadrivector y un espinor de Dirac, $(1/2, 1/2) \otimes [(1/2, 0) \oplus (0, 1/2)]$, lo que correspondería a un campo $\psi_a^{\mu}(x)$ que tiene de entrada 16 componentes. Semejante campo, con restricciones que se encargan de retener solo la porción correspondiente a espín 3/2, se conoce como campo de Rarita-Schwinger (supongo que por rarito...)