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Short gamma-ray burst
(<2 seconds’ duration)

.

A

f[ gy s \\
Stars*in ™
a compact T
binary system
begin to spiral
inward....

.

-eventually
colliding.

The resulting torus
has at its center

a powerful

black hole.

*Possibly neutron stars.
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Multi-Messenger (GW + EM) Observations

* What can we learn from the prompt
emission energetics and its onset delay
w.r.t. the GW chirp signal?

« Can we say anything about the merger
remnant?

* Is the interpretation for the prompt
emission consistent with the afterglow
data?
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Prompt Emission



The delay between GW chirp signal and sGRB onset

(LVC+Fermi+INTEGRAL 2017) o o
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What can we learn from the delayed onset?

c(tHMNs"'tbo"'tr)i"\
\ There could be at least 4 possible causes for the

delay:

1) Delayed collapse to black hole due to the
formation of a short lived hyper-massive
neutron star (HMNS):

source “" : ’ﬁ tnvans S 1
iCly
Y observer 2) Time taken by the relativistic jet to bore a hole
through the merger ejecta or neutrino driven
wind: tho < 1

3) Radial time delay for an on-axis observer due
to the jet traveling slightly slower than the GW,
which yields:

t, < iy
~ 2I2%c

= 1.7R13T';: ms — 1.7TR13'7? s

4) Extra light travel time for an off-axis observer:
= &[1 — cos(Af)] ~ y AO? = 1.67TR, 13007 s

t _
0 C 2c
Also see: Lazzati+17, Salafia+17, Alexander+17,

Haggard+17, loka & Nakamura 17, Jin+17,
Kathirgamaraju+17, Murguia-Berthier+17
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(Granot, Guetta, & Gill 2017)

Excluded

There could be at least 4 possible causes for the
delay:

1) Delayed collapse to black hole due to the
formation of a short lived hyper-massive
neutron star (HMNS):

tauvns S 1 s

2) Time taken by the relativistic jet to bore a hole
through the merger ejecta or neutrino driven

wind: tro <18

3) Radial time delay for an on-axis observer due
to the jet traveling slightly slower than the GW,
which yields:

tr S iy
~ 2I2¢

= 1.7Ry3T5 2 ms — 1.7Ry3T';° s

4) Extra light travel time for an off-axis observer:

R R

tg = —L[1 — cos(Af)] &~ 2—7A92 = 1.67R, 134602 s
C C

Also see: Lazzati+17, Salafia+17, Alexander+17,

Haggard+17, loka & Nakamura 17, Jin+17,
Kathirgamaraju+17, Murguia-Berthier+17



Nature of the remnant

(Granot, Guetta, & Gill 2017)

3.5
black hole

stable NS

L L 1
0 0.2 0.4 0.6 0.8 1

q — Ml/M2

e Chirp mass from GW signal
M = (M1M2)3/5(M1 —+ MQ)_1/5
= 1.1887 0005 Mo

(Abbott+17)



Nature of the remnant

(Granot, Guetta, & Gill 2017)

* 4 possible merger outcomes: 35F

|
|
black hole o |
!

« Stable NS: Requires roughly equal 31
binary masses and a stiff EOS.

« Supra-massive NS: Supported by
rigid-body rotation and collapses to BH
on the spin-down time.

stable NS

IC3 P02 -3 1F
Ted = >34 x10*"—="5
" 2fQ3 R B3 /B,

1
Eror = 5193 ~ 10°%% —10° erg 0

0 0.2 04 0.6 0.8 1
* This energy is released as a relativistic g = M, /M,

MHD wind and should give a bright
afterglow emission up to the spin-
down time.
e Chirp mass from GW signal
* Hyper-massive NS: Supported by B
differential rotation until it collapses to M = (M1 M5)*/>(My + Mp)~'/®
a BH after a short time: .
= 1.18810503 M,

<
tavns S 18 (Abbott+17)



Nature of the remnant

(Granot, Guetta, & Gill 2017)

* 4 possible merger outcomes: 35F

|
|
black hole o |
!

« Stable NS: Requires roughly equal 31
binary masses and a stiff EOS.

« Supra-massive NS: Supported by
rigid-body rotation and collapses to BH
on the spin-down time.

stable NS

I3 P2 _ I
= >34x10*-2 0 g 1
2fgzongS‘BO fBl4

Tsd

1
Eror = 5[93 ~ 10°%% —10° erg 0

) ) o 0 0.2 04 0.6 0.8 1
* This energy is released as a relativistic g = M, /M,

MHD wind and should give a bright
afterglow emission up to the spin-
down time.  Direct formation of BH: Requires a soft EOS.

* Hyper-massive NS: Supported by  Kilonova models predict M.; ~ 0.05M,
differential rotation until it collapses to (Drout+17, Evans+17, Kasen+17, Kasliwal+17,
a BH after a short time: Kilpatrick+17, Pian+17, Smartt+17)

< « This favors low mass ratios: ¢ S 0.5 —0.6
thuvns S 1 s

(Rosswog+14, Sekiguchi+16, Ciolfi+17, Dietrich+17)
(Baumgarte+00, Margalit & Metzger ‘17)



Constraints on jet geometry and 6.,s from energetics

« Unusually lower isotropic-equivalent energy and
typical photon energy (vF, - peak) for a SGRB

Eyiso = (3.1£0.7) x 10* erg [1 keV — 10 MeV]
Ey = 185+ 62 keV

» This fact [along with afterglow observations] suggests
an off-axis viewing angle.
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1052 L

Eiso (1 keV - 10 MeV) (erg)

(LVC+Fermi+INTEGRAL 2017)
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Off-Axis Emission from Relativistic Jets

« Consider a relativistically expanding
sharp-edged jet:

oI'E’
e F(Af) =6pFE =~
(A9) =p [1+ (TA6)?]
E(A6) »
: -: = ~ (I"'A0
- P 5o ~ A9 Fag>1
observer
dE'’
* Eis Af) =4 : 0
(A6) = 4md} = o (T A0)

[This is true for a point source only]

« For viewing angle only slightly larger than 6,
Fiso(A)  (TAH)?

= m ~ W(FA@)_E; X (FAH)_4
[Es) gl
Fo)

Granot+02, 05; Eichler & Levinson ‘04; Ramirez-
Ruiz+05; Granot & Ramirez-Ruiz ‘12



Off-Axis Emission from Relativistic Jets

« Consider a relativistically expanding
sharp-edged jet:

2T'E'
° E A — E/ ~
(86) = 0B~ [T (T Ad))
E(A0) L
source ’ﬁ E(()) ( )
observer
o |[f SGRB 170817A was observed . B 5 dE’ 6
slightly outside of the sharp- Eiso(Af) = 4mop, ay = (I'A0)
eaged et [This is true for a point source only]
Eiso,obs -3 r —4 YA/, —4 . . .
Eiso(0) ~ 10 100 0.05 » For viewing angle only slightly larger than 6,
h | Eio(A9)  (TAB)? » »
- - ———— ~ ——(T'Af A6
~ 1074 (L) ' (&) ! - Fiso(0) (T'0g)? ( )7 )
100 0.1 5
_[Ban) g ey
E(0) 0o

[:> Epk,obs = Epk,z ~ 6 — 20 MeV J

In the initial hard spike the peak energy Granosu?igg; gmg{ g FLzz\r’r']?rSeoan?ﬁz 'iazmirez'

would be too hard for a SGRB!!



Structured Jets

« Structured jets may be modeled as
e.g. having a uniform core and non-
uniform wings outside of the initial jet

aperture:
dE() B J » 0<60<80,
aQ E(Oi) 0. < 0 <0,
T, 0<6<0,
T(9) = b
(6) rc(%) 0. <0 <0,

(Rossi+02, Zhang & Meszaros ‘02)

« |t allows emission from material in the wings of the jet to be beamed into larger
solid angles with 0.1,s > few x 6. which can be observed if the jet core is beamed

away.

* The emission from the wings will also contribute to the early time sharply rising
afterglow lightcurve (LC), which may lead to a shallow rise of the LC to the peak.



Afterglow Emission



Afterglow Theory

Relativistic ejecta slowed down by ISM
Gamma-rays

~"
r_\/* X-rays
f\/\
/\/\

Black hole
central engine

(or magnetar) Shocked ejecta & ISM

Optical

Radio

« The afterglow emission is produced when
the ultra-relativistic ejecta is slowed down 5 o
by the inertia of the swept up ISM. o . ¢

* This gives rise to forward and reverse
shocks that heat up both the swept up ISM e k
and ejecta, respectively.

w

* The shock-heated relativistically hot (Sari, Piran, Narayan, 1998)
electrons have a power-law distriubtion:

VB (p-1)2 slow cooling

v M 10

Ne(Ve) X7 ?  Ym <ve <M .

VP2

» They cool by emitting synchrotron radiation
in the shock amplified magnetic field.




Off-Axis Afterglow Lightcurves

Numerical Modeling

» We obtained realistic afterglow lightcurves from
2D relativistic MHD simulations:

« Initial condition: Blandford-McKee self-similar _ (Granot, Gill, Guetta, De Colle 2017)

conical wedge
E =10% erg n=1cm> 6o = 0.2

 Lightcurves were obtained using shock
microphysical parameters:

EGZGB:O°]— p:25

v =5x1014 Hz

(De Colle+2012a,b)
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Comparison with Observations

« We carried out least-squares fits of the numerical lightcurves to the initial X-ray and
radio detections.

« Six parameters are needed for afterglow modeling: [E, n, €, €8, P, eobs]

» We fix two (shown in red) and find the best-fit values for the other four.
(Granot, Gill, Guetta, De Colle 2017)
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Recent Late-Time X-ray and Radio Data

F, [mJy x (D/40Mpc)~?]

« Both X-ray and radio observations show late-time brightening — this makes off-axis
emission from a homogeneous jet model very challenging.

* Mooley, Nakar, et al. 2017 have explained this rise due to emission from a mildly
relativistic quasi-spherical cocoon.

(Granot, Gill, Guetta, De Colle 2017)
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Recent Late-Time X-ray and Radio Data

Both X-ray and radio observations show late-time brightening — this makes off-axis
emission from homogeneous jets model very challenging.

Mooley, Nakar, et al. 2017 have explained this rise due to emission from a mildly
relativistic quasi-spherical cocoon.

Lazzati et al. 2017 very recently have instead shown that off-axis emission from a
structured jet can explain these observations.

* The emission still does arise from a mildly relativistic cocoon around the core,
but it doesn’t have to be a quasi-spherical cocoon.
Are both of these explanations the one and the same?

Further late-time radio observations and detailed modeling of structured jets can shed
some more light on this issue.

Thanks!



